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Abstract

Objective: Recent work has shown that people with common epilepsies have characteristic 

patterns of cortical thinning, and that these changes may be progressive over time. Leveraging a 

large multi-centre cross-sectional cohort, we investigated whether regional morphometric changes 

occur in a sequential manner, and whether these changes in people with mesial temporal lobe 

epilepsy and hippocampal sclerosis (MTLE-HS) correlate with clinical features.

Methods: We extracted regional measures of cortical thickness, surface area and subcortical brain 

volumes from T1-weighted (T1W) MRI scans collected by the ENIGMA-Epilepsy consortium, 

comprising 804 people with MTLE-HS and 1,625 healthy controls from 25 centres. Features with 

a moderate case-control effect size (Cohen’s d≥0.5) were used to train an Event-Based Model 

(EBM), which estimates a sequence of disease-specific biomarker changes from cross-sectional 

data and assigns a biomarker-based fine-grained disease stage to individual patients. We tested for 

associations between EBM disease stage and duration of epilepsy, age of onset and anti-seizure 

medicine (ASM) resistance.

Results: In MTLE-HS, decrease in ipsilateral hippocampal volume along with increased 

asymmetry in hippocampal volume was followed by reduced thickness in neocortical regions, 

reduction in ipsilateral thalamus volume and, finally, increase in ipsilateral lateral ventricle 

volume. EBM stage was correlated to duration of illness (Spearman’s ρ=0.293, p=7.03x10-16), age 

of onset (ρ=-0.18, p=9.82x10-7) and ASM resistance (AUC=0.59, p=0.043, Mann-Whitney U 

test). However, associations were driven by cases assigned to EBM stage zero, which represents 

MTLE-HS with mild or non-detectable abnormality on T1W MRI. 

Significance: From cross-sectional MRI, we reconstructed a disease progression model that 

highlights a sequence of MRI changes that aligns with previous longitudinal studies. 

This model could be used to stage MTLE-HS subjects in other cohorts and help establish 

connections between imaging-based progression staging and clinical features.
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MTLE, event-based model, disease progression, patient staging, duration of illnessA
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Key Points

 We estimated the sequence of progression of subcortical and neocortical atrophy in medial 

temporal lobe epilepsy (MTLE) with hippocampal sclerosis (HS).

 Abnormality started in the hippocampus, followed by decreased cortical thickness in the 

parietal and frontal lobes, thalamic volume and ventricular expansion.

 Image-based disease stages were correlated with duration of illness, age of onset and drug 

resistance.

 Associations were driven by MTLE-HS cases showing mild volume loss in the ipsilateral 

hippocampus that was indistinguishable from variation in the control group.

Word Count: 3,979
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1. Introduction

Epilepsy is characterized by recurrent seizures caused by excessive and abnormal neuronal 

activity in the cortex. Moreover, there is consistent evidence indicating decreased grey matter 

volume in people with epilepsy (PWE) compared to healthy controls. Quantitative analysis of 

MRI data from PWE in a large multicentre cohort showed reduced cortical thickness and 

subcortical volume in specific brain regions according to epilepsy type (Whelan et al., 2018). In 

people with focal epilepsy, differences tend to be more pronounced ipsilateral to the seizure focus 

(Park et al., 2021; Whelan et al., 2018). Beyond cortical thickness and subcortical volume 

differences, surface area reduction in the mesial and anterior temporal cortex has been previously 

reported (Alhusaini et al., 2012). 

Whether seizures, anti-seizure medication (ASM), head injuries, the epileptogenic process, the 

maintenance of seizure occurrence, or other comorbidities cause the observed loss of brain tissue 

is a much-discussed question. Many studies have found that grey matter thickness is correlated 

with the duration of illness in the common epilepsies, indicating that these cross-sectional 

differences may be progressive (Bernasconi et al., 2005; Bernhardt et al., 2009; Bonilha et al., 

2006; Coan et al., 2009; Whelan et al., 2018). Deciphering how grey matter reductions unfold over 

time in epilepsy is of great importance, but progress has been limited by the scarcity of 

longitudinal imaging cohorts. Recent work in this field has leveraged advanced mathematical 

models to infer longitudinal atrophy patterns from cross-sectional data. For instance, in a dataset 

of people with mesial temporal lobe epilepsy (MTLE), Zhang et al. used Granger causality 

analysis to determine whether a previously affected region, or a group of regions, helped to predict 

the next brain region to exhibit atrophy; they found that subcortical regions such as the 

hippocampus and thalamus causally affected other regions, most prominently the prefrontal cortex 

and cerebellum (Zhang et al., 2017). This approach, however, does not allow direct inference of a 

temporal sequence. A major step towards addressing the question of progression was provided by 

previous longitudinal studies that assessed progressive atrophy in patients with TLE (Bernhardt et 

al., 2009; Bernhardt et al., 2013; Coan et al., 2009), and prior meta-analytical studies on the topic 

(Caciagli et al., 2017). One recent study investigated people with focal epilepsy and longitudinal 

MRI scans at least six months apart, showing that the annualized rate of atrophy within brain 

regions structurally connected to the ipsilateral hippocampus exceeded the rate associated with 

healthy aging (Galovic et al., 2019); whilst they demonstrated the progressive nature of atrophy, A
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their approach did not address whether there is an explicit sequence in which these structural 

changes occur or whether this sequence can be used to stage epilepsy. Moreover, lower 

hippocampal volume has been reported in non-affected siblings and thus may reflect a genetic 

origin (Kobayashi et al., 2002; Long et al., 2020; Tsai et al., 2013; Vaughan et al., 2017) predating 

any further changes such as cortical thinning, which was not observed in siblings (Alhusaini et al., 

2019). We surmise that staging epilepsy in patients using a single MRI scan will help future 

research to assess the effectiveness of anti-seizure medications (ASMs) and disease-modifying 

agents, e.g., by directly establishing a link between disease stage and drug response or by 

improving efficacy of inclusion criteria for clinical trials of ASM candidates. Furthermore, 

understanding the spatial progression of atrophy in MTLE could help answer questions such as 

whether unilateral MTLE with hippocampal sclerosis (HS) can lead to bilateral HS in an 

individual patient. 

In this work, we investigated disease progression in patients with radiographically identified 

sclerosis of the hippocampus or the mesial temporal lobe (MTLE-HS) using the event-based 

model (EBM). In brief, the EBM is a machine learning approach that learns the most likely 

ordering of biomarker changes from cross-sectional data. The EBM was originally developed to 

study progressive loss of brain tissue in Alzheimer’s and Huntington's diseases (Fonteijn et al., 

2012). A trained EBM can be used to assign a disease stage to each patient based on their atrophy 

pattern (Young et al., 2014). Since it was introduced, the EBM has been used across a wide range 

of neurological diseases, including multiple sclerosis (Dekker et al., 2021; Eshaghi et al., 2018), 

amyotrophic lateral sclerosis (Gabel et al., 2020) and Parkinson's disease (Oxtoby et al., 2021). By 

applying the EBM to cross-sectional data from PWE, we aimed to answer two questions. Firstly, 

is there a characteristic order in which regional brain MRI morphometric changes develop in 

MTLE-HS? Secondly, is the accumulation of imaging changes related to clinical markers of 

disease duration or severity?
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2. Materials and methods

2.1 Data 

We analysed data from the ENIGMA-Epilepsy working group (Sisodiya et al., 2020) comprising 

imaging data from controls and people with epilepsy from 25 centres (Table 1). Each centre 

received approval from their local institutional review board or ethics committee. Written 

informed consent was provided according to local requirements. As previously described  (Whelan 

et al., 2018), T1-weighted (T1W) brain MRI scans were acquired using 1.5T or 3T MRI scanners 

from different manufacturers and different imaging sequences. Brain scans were processed at each 

contributing centre using the same pipeline based on FreeSurfer Version 5.3.0 (Dale et al., 1999; 

Fischl, 2012). Diagnosis of left and right MTLE were made by an epilepsy specialist at each 

centre, based on seizure semiology and EEG findings. Presumed sclerosis of the hippocampus or 

the mesial temporal lobe was diagnosed according to established features on MRI (i.e., a T2-

weighted or fluid-attenuated inversion recovery (FLAIR) scan). In some cases, HS was confirmed 

based on histology from resected tissue. A common set of 156 regional features was extracted 

based on the Desikan-Killiany atlas (Desikan et al., 2006): 68 measures for regional cortical 

thickness (CT), 68 measures of regional surface area (SA), two measures of hemispheric average 

CT, two measures of hemispheric SA, and 16 subcortical brain volumes as previously described in 

detail (Whelan et al., 2018). Since the initial study (Whelan et al., 2018), five new centres were 

added, providing an additional 244 subjects. Overall, the ENIGMA-Epilepsy dataset features pre-

processed MRI scans from 1,625 controls as well as 446 left MTLE-HS and 358 right MTLE-HS 

patients. After segmentation quality assurance, certain regional brain measures were removed for 

some subjects in the acquired dataset (about 0.02% of the values). We removed subjects with more 

than ten missing values (66 subjects). Missing measures in the remaining subjects were imputed 

within each centre using a singular value decomposition (SVD)-based approach (Troyanskaya et 

al., 2001). Additionally, age, sex, case-control status, lateralization (left or right MTLE-HS), age 

at onset and duration of illness were available. Furthermore, drug-resistance status (defined as one 

or more seizures in the 12 months before MRI) was obtained for 408 MTLE-HS cases.  

2.2 Data harmonization and confound adjustment 

Since ENIGMA-Epilepsy is a multi-centric study, the data are subject to centre-specific biases 

arising from various factors. Thus, all 156 regional brain measures were harmonized for centre A
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biases using NeuroCombat (Fortin et al., 2018; Johnson et al., 2007), while retaining variation 

originating from age, sex, intracranial volume (ICV) and diagnosis. Following the harmonization, 

the regional measures were adjusted for ICV, age, and sex using linear regression. As in previous 

work (Gleichgerrcht et al., 2021), the residuals for each regional measure plus the intercept of the 

model were used as confound-adjusted measures for the remaining analysis. 

2.3 Ipsilateral and contralateral features 

Studies have shown unilateral and bilateral alterations of structural connectivity and structural 

measures in left and right MTLE-HS patients, with the ipsilateral regions being more strongly 

affected (Bonilha et al., 2015; Gleichgerrcht et al., 2021; Larivière et al., 2020; M. Liu et al., 

2016). To estimate a progression pattern for MTLE-HS regardless of lateralization, we jointly 

analysed left and right MTLE-HS cases. Therefore, we replaced ‘left’ and ‘right’ with the 

‘ipsilateral’ and ‘contralateral’ (e.g., left hemisphere is ipsilateral in left MTLE-HS and 

contralateral in right MTLE-HS). For the controls, we randomly sampled half as controls for left 

MTLE-HS, where left and right hemispheres were defined as ipsilateral and contralateral regions, 

respectively. Similarly, the remaining half acted as controls for right MTLE-HS with the 

hemispheres swapped. Overall, this enabled us to study brain regions commonly affected in both 

left and right MTLE-HS.

2.4 Brain Asymmetry Index features

Previous studies (Park et al., 2021; Shah et al., 2019) have used the asymmetry of brain regions to 

model atrophy in people with MTLE-HS. The rationale is that contralateral brain regions of each 

subject act as a personalized healthy reference region (in cases where pathology manifests 

unilaterally) and therefore may act as an earlier, more sensitive marker, in the EBM. We computed 

the brain asymmetry index (BASI) for regional cortical thickness, surface area and volume as 

following ratio: 

𝐵𝐴𝑆𝐼 =  
(𝑖𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 – 𝑐𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙)

(𝑖𝑝𝑠𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙 +  𝑐𝑜𝑛𝑡𝑟𝑎𝑙𝑎𝑡𝑒𝑟𝑎𝑙)/2

2.5 Feature selectionA
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First, we sought to identify brain regions with sufficient epilepsy-related atrophy to be used for 

progression modelling. We used a robust variant of Cohen’s d (Cohen, 1962) between MTLE-HS 

cases and controls for all 234 features (78 ipsilateral, 78 contralateral and 78 BASI). Robust 

Cohen's d uses the median and mean absolute deviation in place of the mean and standard 

deviation, respectively, and is more resilient against outliers (Hampel, 1974). A medium effect 

size (robust Cohen’s |d|≥0.5) was required for inclusion into disease progression modelling. We 

also evaluated a more lenient threshold (robust Cohen’s |d|≥0.4).
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2.6 Event-based modelling

The selected regions were used as inputs to the EBM (Fonteijn et al., 2012). The EBM relies on 

two main assumptions: (i) biomarkers become abnormal sequentially; (ii) biomarkers follow a 

monotonic trajectory during disease progression, where an abnormal marker will not revert to a 

normal stage. Thus, the model assumes that for any given cross-sectional dataset a greater 

proportion of patients will show abnormalities for early-stage biomarkers, while fewer patients 

will also have abnormal later stage biomarkers. Further, the model requires distributions that 

define what normal and disease-specific measures look like for every biomarker. In practice, an 

overlap between the normal and disease-specific distributions for biomarkers is expected. We used 

a kernel density estimation-based (KDE) (Cao et al., 1994) mixture model that provides 

estimations of case and control distributions even when they are skewed or do not follow a 

parametric distribution (Firth et al., 2020). Next, the EBM determines the most likely ordering of 

biomarkers for the given dataset, as illustrated in Figure 1. Practically, the ordering is obtained 

using a maximum likelihood approach. Greedy ascent is used to initialise the sequence estimation 

and Markov Chain Monte Carlo (MCMC) sampling is used to perform the maximum likelihood 

estimation. The MCMC samples are used to derive a characteristic ordering of the events along 

with its variability. We used 10,000 iterations per chain during the greedy-ascent initialization and 

generated 500,000 MCMC samples. Finally, to generate a conservative, upper-bound estimate of 

the variability of the sequence, we combined the sequence estimation with bootstrapping (100 

repeats) and generated positional variance diagrams from these bootstraps. The patient staging 

mechanism (Young et al., 2014) is then used to assign each of the control subjects and MTLE-HS 

cases to a disease stage ranging from zero (i.e., no abnormality) to an asymptotic endpoint, which 

equals the number of biomarkers selected for analysis (i.e., all biomarkers abnormal). To 

investigate whether the biomarker sequence is consistent in cases with left and right MTLE-HS, 

we trained EBMs for these two groups separately.

2.7 Association of EBM stages with duration of illness, age of onset and treatment response

We hypothesized that subjects with advanced EBM-stages were more likely to have a longer 

duration of illness, earlier disease onset and are more likely to be drug-resistant. To determine 

whether individuals’ EBM stage is related to illness duration or age of onset, we computed 

Spearman’s rank correlations between EBM stage and the duration of illness (in years) at the time A
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of imaging and age of onset, respectively. Furthermore, we used the Mann-Whitney U test to test 

for a difference in EBM-assigned stage regarding drug-resistant status.
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3. Results

Table 1 displays the overall cohort split by centre. On average, each centre contributed a range of 

individuals, ranging from young adults in their 20s to adults over 60 years (median 33.0 years; 

IQR 18.08 years). The binary sex distribution within the dataset was well balanced with a slight 

majority of women (56.0% of MTLE-HS patients and 55.9% of healthy controls). The duration of 

illness ranged from recently diagnosed to 68 years (median 20.0 years; IQR 24.0 years).

3.1 Effect sizes of selected features

The seven selected features (robust Cohen’s |d|≥0.5) were ipsilateral hippocampal volume and its 

BASI, ipsilateral thalamic volume, cortical thickness of bilateral superior parietal gyrus, ipsilateral 

precuneus and ipsilateral lateral ventricle volume (Supplementary Table S1). Figure 2 provides 

a visual representation of the effect sizes rendered using the ENIGMA toolbox (Larivière et al., 

2021). Our mega-analysis replicated the finding of the original ENIGMA-Epilepsy meta-analysis 

(Whelan et al., 2018). Effect sizes (robust Cohen’s d) ipsilateral to the seizure focus were stronger 

than those in the corresponding contralateral region for the surface area (t=4.01; p= 0.00033; 

df=33; paired t-test) but not for cortical thickness (t=1.95, p=0.06; df=33, paired t-test) nor for 

subcortical volumes (t=1.60; p= 0.15; df=7; paired t-test). Effect sizes for cortical thickness were 

stronger than effect sizes for surface area (t=8.08; p=1.09x10-11; df=67; paired t-test). Use of the 

lower Cohen’s d cut-off of 0.4 produced 12 additional features for EBM modelling 

(Supplementary Table S1). 

3.2 Sequence of abnormal biomarkers in left and right MTLE-HS

The EBM estimated the sequence for the seven selected imaging biomarkers using the KDE 

mixture models (Supplementary Figure S1) and placed them in stages 0 to 7 (Figure 3). The 

bootstrapped version of the EBM placed reduced ipsilateral hippocampal volume and increased 

asymmetry in hippocampal volume at the beginning of the sequence. This was followed by 

decreased cortical thickness and decreased ipsilateral thalamic volume (Figure 3). We analysed 

left and right MTLE-HS cases separately, with similar progression patterns in both syndromes 

(Supplementary Figure S2). Reducing the inclusion threshold to Cohen’s |d|≥0.4 led to 19 

biomarkers and provided a more fine-grained staging, but with essentially the same progression 

sequence as in the original analysis (Supplementary Figure S3). A
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3.3 Cross-sectional distribution of patients across disease stages as defined by EBM

We used the trained EBM to stage participants based on brain regions with structural alterations 

(Young et al., 2014): controls and PWE were assigned to stages zero to seven. Most of the MTLE-

HS cases (71.1%) were staged at stage one or greater (Figure 4). However, a large proportion of 

MTLE-HS cases (28.9%) were staged at zero, indicating mild or non-detectable abnormality on 

T1W MRI. About 44.4% were assigned to stages one and two, reflecting reduced volume of the 

ipsilateral hippocampus and abnormal asymmetry in the hippocampus. The remaining MTLE-HS 

cases (26.7%) were staged beyond stage two, suggesting neocortical involvement, reduction of 

ipsilateral thalamic volume and increase in ipsilateral lateral ventricle volume. The distribution of 

stages differed between left and right MTLE-HS cases (H = 7.35, p-value = 0.0067; Kruskal-

Wallis test; Supplementary Figure S4).

Ipsilateral hippocampal volumes in cases at stage zero were significantly larger than in cases 

assigned to later stages (t=32.35, p =7.77x10-146, t-test; Supplementary Figure S5). 

Consequently, effect size of ipsilateral hippocampal volume was d=-0.31 and d=-2.09 for cases at 

stage zero and non-zero stages, respectively. In addition, cases assigned to EBM stages 3-7 

exhibited reduced contralateral hippocampal volume compared to controls (d=-0.54), which was 

not observed in cases assigned to stage zero (d=-0.17) or stages 1-2 (d=0.16).

3.4 EBM stage is associated with duration of illness and with response to ASMs in MTLE 

patients.

MTLE-HS patients assigned to early EBM stages showed a relatively shorter illness duration than 

those in later stages (Figure 5). Duration of illness and stages 0-7 were significantly correlated in 

all MTLE-HS cases (Spearman’s ρ=0.293, p=7.03x10-16). After excluding cases at stage zero, the 

correlation remained marginally significant (Spearman’s ρ=0.099, p=0.024). Thus, the correlation 

is driven by the significant difference in duration of illness between EBM stage zero (mean: 15.7 

years) and non-zero (mean: 25.1 years; t=-8.23, p=8.63x10-16). The same pattern was observed for 

age of onset: EBM stage and age of onset were negatively correlated (ρ=-0.18, p=9.82x10-7), but 

the effect vanished in the subset of cases at stages 1-7 (ρ=0.004, p=0.92). Age at onset was 

significantly later for stage zero cases compared to non-zero cases (t=5.69, p=1.75x10-8). EBM A
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stages differed between MTLE-HS cases who were resistant (N=363) or responsive (N=45) to 

ASMs in the 12 months prior to MRI (AUC=0.589, p=0.043, Mann-Whitney U test). 
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4. Discussion

We applied data-driven disease progression modelling to a large, multi-centre imaging study of 

epilepsy to characterize the progression of MTLE-HS. We identified a characteristic order of MRI 

morphometric changes originating in the ipsilateral hippocampus. We did not identify statistically 

significant correlations between the accumulation of imaging changes (EBM stages 1-7) and 

available clinical markers of disease duration or severity in this cohort. 

For the progression modelling, we retained features exhibiting a medium effect size between cases 

and controls |d|≥0.5; and 0.4 for a sensitivity analysis (Supplementary Table S1). Our most 

interesting observation was a pattern of brain atrophy that appears to progress from the ipsilateral 

hippocampus to bilateral neocortical regions (e.g., precuneus and superior parietal lobule) as well 

as the bilateral thalamus (Supplementary Figure S3). Volume reduction and increased 

asymmetry in the hippocampus may represent a genetic predisposition to HS since hippocampal 

abnormalities have been frequently observed in healthy siblings of people with MTLE (Kobayashi 

et al., 2002; Long et al., 2020; Tsai et al., 2013; Vaughan et al., 2017), and an association was 

observed in a GWAS (Kasperavičiute et al., 2013). However, cortical thinning likely represents 

disease-related effects since these changes have not been reported in healthy siblings (Alhusaini et 

al., 2019). Furthermore, the progression pattern included decline in thalamic volume, which is a 

common feature in MTLE-HS (Bernhardt et al., 2012; Keller et al., 2008; Pulsipher et al., 2007; 

Seidenberg et al., 2008) and may be linked to the strong structural connectivity between the 

hippocampus and the thalamus (Bernasconi et al., 2004; Keller et al., 2008; Maller et al., 2019). 

At first glance, it appears surprising that many MTLE-HS cases were assigned to stage zero 

despite the loss of hippocampal volume being one of the hallmark signs of MTLE-HS. Two 

factors contribute to this discrepancy. Firstly, the radiologic diagnosis of HS is based on multiple 

imaging sequences, whereas hippocampal atrophy, as defined on T1W images is only one 

component of HS (Jin et al., 2018). Secondly, even though we observed a large group effect size 

for hippocampal volume difference in the whole cohort (d=-1.76), there is significant variability in 

volume loss at the individual level. In fact, about half the subjects with HS exhibit hippocampal 

volume that is within the normal range (Coan et al., 2014); this is also the case in the ENIGMA-

Epilepsy cohort (Supplementary Figures S1 and S5). A
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Duration of illness is typically used as a proxy for progression in cross-sectional studies 

(Bernhardt et al., 2009; Caciagli et al., 2017; McDonald et al., 2008). Moreover, within ENIGMA-

Epilepsy (Whelan et al., 2018) changes in numerous neocortical regions, subcortical volumes as 

well as hippocampal volume were negatively correlated with duration of illness. However, these 

results were driven by epilepsies without HS: no correlations within the left MTLE-HS subgroup 

were found to be statistically significant; and within the right MTLE-HS group significant 

correlations were limited to the ipsilateral hippocampus, putamen, thalamus as well as the 

contralateral transverse temporal gyrus and the ipsilateral caudal middle frontal gyrus. Therefore, 

the marginal correlations between EBM stages 1-7 and duration of illness in subjects with MTLE-

HS agrees with these earlier observations. Furthermore, Zhang et al. (2017) reported that measures 

of the ipsilateral hippocampus, the bilateral frontal lobes, and cerebellar hemispheres negatively 

correlated with duration of illness. However, in the same study, the lifetime number of seizures, 

another proxy for disease severity, was investigated and was correlated with atrophy in a different 

set of brain regions. Thus, either measure may capture different aspects of disease severity and the 

relationship between disease duration and atrophy may be more complex. Disease duration, and 

the other measures examined here are the most obvious and plausible factors to examine, and 

those most available, but may not be those that most influence the EBM-derived sequence of 

changes we detect.  

Longitudinal studies of PWE reveal cortical atrophy beyond the expected range of normal aging 

(Alvim et al., 2016; Bernhardt et al., 2009; Coan et al., 2009; Liu et al., 2003). Moreover, recent 

longitudinal studies of people with focal epilepsy (Galovic et al., 2019, 2020) found progressive 

atrophy in the contralateral regions of the parietal and frontal lobes, which was also featured in our 

study when using the more lenient cutoff (Supplementary Figure S3). Overall, we find that our 

regional disease progression sequence, which is based on cross-sectional data, agrees with 

previous findings in longitudinal cohorts that show the progressive nature of atrophy in MTLE-HS 

(Bernhardt et al., 2009; Bernhardt et al., 2013; Caciagli et al., 2017). Contralateral hippocampal 

volume (d=-0.14) missed the inclusion threshold for the EBM. Thus, the analysis could not 

provide further insights on whether untreated unilateral HS will lead to bilateral HS. However, 

PWE assigned to later EBM stages did present with reduced volume in the contralateral A
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hippocampus, while this was not the case for PWE assigned to earlier stages, illustrating the 

potential of EBM.

The staging of individual MTLE-HS patients using the trained EBM allowed us to investigate 

associations with duration of illness and clinical markers such as ASM resistance. In agreement 

with Whelan et al. (2018) and Zhang et al. (2017), EBM-based stages (stage 0 to stage 7) and 

duration of illness were found to be correlated. However, this association was mainly driven by 

patients who were assigned to stage zero. Indeed, MTLE-HS cases assigned to EBM stage zero 

did not show pronounced changes in ipsilateral hippocampal volume compared to controls 

(Supplementary Figure S5) and as a group had shorter duration of illness and later age of onset 

than the other MTLE-HS cases. Of note, the fraction of stage zero MTLE-HS varied across centres 

(Supplementary Figure S6) and may reflect differences between regional practices and 

capabilities to detect and diagnose mesial temporal sclerosis or hippocampal sclerosis. 

There were several limitations in our study. First, this ENIGMA-Epilepsy cohort is not a 

population-based cohort but represents data mostly from tertiary epilepsy centres and therefore the 

findings may not be generalisable to the overall epilepsy population. Also, within the ENIGMA-

Epilepsy cohort, we observed sampling bias regarding availability of ASM response data 

(Supplementary Table S2): PWE with missing response data were younger, diagnosed more 

recently and had later age of onset. Second, although the results were robust under bootstrap 

validation, they would benefit from a validation in a longitudinal cohort. However, designing 

well-powered longitudinal studies in controls and patients is challenging, especially since drug-

resistant TLE patients may eventually undergo epilepsy surgery (Caciagli et al., 2017). Third, 

clinical features such as lifelong ASM exposure were not available in the ENIGMA-Epilepsy 

dataset and would prove difficult to ascertain retrospectively but should be considered in future 

work. The use of specific ASMs may affect disease progression and, in some cases, even amplify 

tissue loss in epilepsy (Tondelli et al., 2020). Finally, our model could be improved by considering 

measures from diffusion MRI scans to understand the role of white matter abnormalities in disease 

progression (Hatton et al., 2020; Sisodiya et al., 2020). 

In conclusion, we estimated a sequence of progressive pathology in MTLE-HS that can be used to 

assign patients to fine-grained, image-based disease stages. Beyond stage zero, the EBM staging A
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did not correlate with duration of illness, age of onset or drug-resistance. However, our EBM 

model trained on the ENIGMA-Epilepsy data can be used to stage MTLE-HS subjects in other 

cohorts with relevant clinical data and help establish connections between imaging-based 

progression staging and other clinical features such as the lifetime number of seizures and detailed 

information on ASM exposure. 
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Figure Legends

Figure 1. EBM workflow: A set of k biomarkers and case-control status are provided for each 

subject. Then, mixture modelling is used to estimate distributions of the biomarkers in cases and 

controls, respectively. The maximum likelihood sequence (i.e., optimal ordering) of the k 

biomarkers is estimated using MCMC with 500,000 iterations. The MCMC sequence is initialized 

using 10 random starting solutions and a greedy ascent run for 10,000 iterations.  Finally, in a 

third step, we used 100 bootstrap samples to determine the uncertainty and variability of the 

sequence. 

Figure 2: Regional differences in MTLE-HS compared to Controls. Effect size between MTLE-

HS cases and controls measured as robust Cohens’ d for Surface Area, Cortical Thickness and 

Volumes depicted ipsilateral or contralateral to the seizure focus (top three rows). The bottom two 

rows depict effect sizes for asymmetry features. 

Figure 3. Sequential Accumulation of Pathology in MTLE-HS: Data-driven sequence of atrophy or 

increased asymmetry of brain regions:  Colour intensity in the positional variance diagram (PVD) 

represents the proportion of certainty (0.0 in white to 1.0 in dark blue) in which biomarkers (y-

axis) appear in a particular position (x-axis) in the event order obtained through bootstrapping. 

CT=cortical thickness, V=Volume, BASI=Brain Asymmetry Index, I=ipsilateral, C=contralateral.
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Figure 4. EBM Stage Distribution: Histogram showing stages (x-axis) assigned to controls and 

MTLE-HS patients and the corresponding count (y-axis). Stage 0 is assigned to subjects with no 

statistically detectable abnormal regional brain measure based on the T1W MRI scans. EBM 

places subjects with abnormal features progressively, such that subjects in stage 7 exhibit 

abnormality in all seven regional measures.

Figure 5. Distribution of duration of illness per EBM stage: Violin plots showing distribution of 

duration of illness (in years) of corresponding EBM stages 0-7 of MTLE-HS patients. MTLE-HS 

cases assigned to EBM stage 0 showed a shorter duration of illness compared to cases assigned to 

the remaining EBM stages. 

A
cc

ep
te

d 
A

rt
ic

le



This article is protected by copyright. All rights reserved

Tables

Table 1.  Cohort overview: Table showing individual cohort demographics including age, number of left and right MTLE-HS, controls as well as age 

of onset and duration of illness for MTLE-HS patients.

Centre

Age controls 

(Mean ± SD)

Age cases 

(Mean ± SD)

Age of onset 

(Mean ± SD)

Duration of 

illness

(Mean ± SD)

Female 

controls

Female 

cases

Total 

controls

Total 

cases

L MTLE-

HS cases

R MTLE-

HS cases Total n

Bern 32.5± 9.39 31.3 ± 9.09 N/A N/A 41 9 78 18 10 8 96

Bonn 40.4± 13.79 40.2 ± 13.37 17.1 ± 12.14 23 ± 14.16 41 62 80 112 74 38 192

CUBRIC 28± 8.17 N/A N/A N/A 34 0 48 0 0 0 48

EKUT 35.3± 12.33 N/A N/A N/A 9 0 18 0 0 0 18

EPICZ 38.8± 11.08 39.7 ± 9.11 18.1 ± 14.15 21.6 ± 13.48 59 26 116 46 19 27 162

EPIGEN_3T 34.7± 9.37 40.4 ± 6.28 21.8 ± 13.16 18.5 ± 11.98 30 6 70 13 8 5 83

Florence 32.2± 8.84 N/A N/A N/A 14 0 30 0 0 0 30

Genova 25.2± 8.23 N/A N/A N/A 8 1 20 1 0 1 21

Greifswald 26.3± 7.48 N/A N/A N/A 59 0 99 0 0 0 99

HFHS N/A 40.4 ± 14.85 10.4 ± 12.96 25.4 ± 14.44 0 15 0 20 9 11 20

IDIBAPS 33.1± 5.99 37.4 ± 9.94 17.7 ± 12.79 18.8 ± 9.97 29 29 52 53 17 36 105

KCL_CNS 31.7± 8.4 41 ± 9.57 17.5 ± 14.16 25.2 ± 16.97 54 11 101 15 6 9 116

KCL_CRF 28.7± 8.29 37.8± 11.52 22.6 ± 12.34 15.2 ± 8.04 16 1 26 5 3 2 31

KUOPIO 25.2± 1.55 41.1± 11.06 23.3 ± 18.23 17.8 ± 17.02 33 5 67 9 0 9 76
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MICA 31.9± 4.77 38.9± 13.12 23.4 ± 11.71 15.7 ± 14.58 18 7 38 14 12 2 52

MNI 30.7± 7.38 33.6± 9.53 17.3 ± 10.57 16.3 ± 11.4 22 48 46 83 45 38 129

MUSC 54.9± 8.4 33.5± 12.73 15.4 ± 12.34 18.2 ± 12.79 45 17 58 27 21 6 85

NYU 30.1± 10.36 33.8± 9.31 14.1 ± 8.04 20.2 ± 14.44 62 12 118 19 8 11 137

RMH 38.8± 20.44 39.6± 15.59 27.1 ± 17.69 12.4 ± 13.23 11 13 27 35 22 13 62

UCL 37.7± 12.4 39.5± 11.29 11.8 ± 8.72 27.7 ± 15.12 17 21 29 37 24 13 66

UCSD 36.9± 15.1 39.2± 12.53 15.6 ± 12.44 24.3 ± 17.82 16 15 37 26 16 10 63

UMG 34.7± 10.26 40.6± 12.49 15.4 ± 14.04 23.9 ± 18.49 12 12 21 20 10 10 41

UNAM 33.2± 12.29 34.4± 12.47 15.5 ± 13.84 18.8 ± 13.16 25 12 35 20 10 10 55

UNICAMP 34.4± 10.47 42.7± 8.33 11.4 ± 9.6 31.3 ± 12.13 249 113 398 191 107 84 589

XMU 31.5± 7 28.2± 8.45 17.2 ± 12.06 11.3 ± 8.02 4 15 13 40 25 15 53

Total 33.8 ± 11.45 38.5 ± 11.44 15.9 ± 12.4 22.7 ± 14.39 908 450 1625 804 446 358 2429
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