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INTRODUCTION

Magnetic resonance imaging (MRI) provides important 
information about the diagnosis and the biological plausibility 
of  imaging features to reflect the molecular differences of  
different tumor categories [Table 1] and the most important 
differential diagnoses as brain abscess, lymphoma, or metastasis. 
However, MRI examinations still vary considerably in terms 
of  field strength, magnetic resonance (MR) protocols, MR 
sequence design, scanner type, slice thickness, and image 
contrast. Therefore, examination protocols require further 

standardization with minimum requirements encompassing 
high‑resolution Fluid attenuated inversion recovery (FLAIR) 
and KM‑based 3‑D T1‑weighted sequences in addition to 
native T1‑ and T2‑weighted sequences and follow‑up at 
similar field strengths (EORTC and NBTS recommendations 
for structural MRI).[1] The integration of  3‑D T1‑weighted 
sequences plays a particularly important role for quantitative 
volumetric determination of  tumor geometry and tumor 
progression and the application of RANO criteria.[2] Limitations 
of  conventional MRI and qualitative assessment of  therapy 
response include a low sensitivity to distinguish between 

Neuroradiological imaging of gliomas has undergone many advances in the recent years. Visual 
assessment of structural image datasets is nowadays complemented by quantifiable imaging markers 
to detect tumor progression and correlations with molecular markers. Detailed information about the 
tumor-specific pathophysiology, reflected by alterations of hemodynamics and metabolism or about tumor 
microstructure and infiltration of neighboring structures, is nowadays accessible noninvasively through the 
magnetic resonance imaging (MRI). Some of these developments have been driven by the updates of the 
neuropathological classification of gliomas, which now ranks genotypic markers ahead of histomorphological 
criteria. Neuroimaging constitutes also a key element in the diagnostic support, therapy planning, and 
monitoring of disease progression under therapy. While computed tomography is still of importance in 
emergency situations to screen for neoplastic cerebral lesions or acute complications of therapy or tumor 
progression, as for example, hemorrhage or seizure generation, MRI is the fundamental technology for the 
differential diagnosis and localization of cerebral gliomas. This review aims at providing an introduction 
into the most frequent clinically employed advanced magnetic resonance methods for glioma imaging.
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true tumor progression and therapy‑induced effects and 
investigator‑dependent biases.[3] In this regard, the applications 
of  advanced neuroimaging methods for tissue typing such as 
MR spectroscopy (MRS), perfusion or diffusion imaging offer 
higher sensitivity and specificity but are hardly standardized 
compared to standard protocols. In a survey of  a total of  220 
centers in Europe, 85% of  the centers surveyed stated that they 
had implemented perfusion imaging as a standard in glioma 
protocols, whereas MRS, although available in approximately 
80% of  the centers, is frequently used on an individual basis for 
specific indications.[4] For presurgical planning of  gliomas that 
are located in eloquent areas of  the brain, functional imaging 
techniques in combination with diffusion tractography are 
nowadays routine in most centers. In this review, we provide 
an overview on advanced imaging techniques that aid in the 
differential diagnosis and follow‑up of  gliomas.

Perfusion imaging
Perfusion imaging has become a core element of  advanced 
imaging protocols in the assessment of  gliomas due to the 
ability to investigate the vasculature and permeability of  brain 

tumor tissue. Measuring the microvascular circulation on 
MRI is either based on an exogenous tracer (contrast agent) 
or an endogenous tracer (contrast‑free). Using gadolinium 
chelates as a tracer, perfusion imaging is either based on 
T2* effects (dynamic susceptibility contrast, DSC) or 
T1‑weighted (dynamic contrast‑enhanced, DCE) methods.

Dynamic contrast‑enhanced perfusion imaging
DCE measures the shortening of  T1 relaxation time when 
gadolinium passes through the brain tissue estimating the 
extravasation of  contrast from the intravascular space to 
the extracellular space. DCE perfusion offers advantages 
in terms of  quantifying blood–brain barrier disruption of  
gliomas as a marker of  histopathologic malignancy grade, 
and DCE requires complex pharmacokinetic modeling. 
One of  the most important advantages of  the DCE is its 
robustness against susceptibility artifacts that are caused 
by postoperative material or blood products compared to 
T2*‑based methods.[5] Using postprocessing techniques, 
several parameters can be calculated. These parameters reflect 
hemodynamic features of  the region under investigation. 
In addition, pharmacokinetic models[6‑8] evaluate the 
transfer of  the volume of  tracer between the intravascular 
space (i.e., plasma) and the extravascular extracellular space 
and the underlying tumor vasculature.

In DCE perfusion, several parameters can be used to 
evaluate the microvascularity of  the tumor bed: (i) the area 
under the curve (AUC), (ii) initial AUC, (iii) Ktrans (volume 
transfer constant between blood plasma and extravascular 
extracellular space), (iv) the ve (extravascular extracellular 
volume fraction), (v) vp (blood plasma volume), (vi) kep 
(reverse transfer constant, (vii) wash‑in, and (viii) wash‑out 
rates.[9,10]

Dynamic susceptibility contrast perfusion imaging
DSC is based on a susceptibility‑induced signal loss 
on T2*‑weighted sequences by the bolus passage of  
gadolinium through the microvasculature of  the brain. DSC 
perfusion offers advantages in terms of  detecting cerebral 
blood flow (CBF) and transit time of  the contrast bolus in 
the tumor and its surrounding edema[5] For DSC perfusion, 
the most frequently used postprocessing technique is the 
deconvolution method (to estimate the tissue residue 
function by removing the contribution from the arterial 
input function). In DSC, different perfusion parameter 
can be calculated, as e.g., cerebral blood volume (CBV), 
CBF, permeability and various parameters of  the transit 
time of  the contrast passage. In brain tumors, the most 
important parameters used in DSC perfusion are the 
K2 (permeability map) which is the leakage coefficient 
calculated by linear fitting of  the T2* signal intensity 

Table 1: Tumor classification: Imaging markers according to 
genetic status
Genetic status Imaging characteristics

1p/19q co‑deletion 
(oligodendroglioma)

Frontal‑, parietal‑ and occipital lobe
Indistinct tumor margins
Heterogeneous T2‑signal
Calcification
Perfusion increase (rCBV)
Increased glucose metabolism (FDG‑PET)

1p/19q intact 
(diffuse 
astrocytoma)

Temporal lobe/insula
Distinct margins
Homogenous signal on T1w and T2 images
rCBV not elevated in Grade II gliomas

IDH mutation (GII, 
GIII, secondary 
GBM)

Periventricular and subventricular zone/frontal 
lobe
Distinct margins
Homogeneous signal
Large portions of unenhanced tumors
Cyst and small satellites

IDH intact (wild 
type)

2 Hydroxyglutarate peak (MR spectroscopy) 
Multilobar tumor, fronto‑temporo‑insular 
predilection
rCBV elevated
Increased APT‑weighted CEST signal

MGMT promotor 
methylated GBM

Temporal‑, parietal‑ or occipital lobe
Edema less pronounced
Nodular contrast enhancement
Lower rCBV
Lower rCBF
Increased permeability

MGMT promotor 
unmethylated GBM

Temporal lobe, basal ganglia, subventricular zone
Ring‑enhancement
Pronounced edema
Elevated rCBV
Lower permeability

GBM: Glioblastoma, rCBV: Relative cerebral blood volume, MR: Magnetic 
resonance, CEST: Chemical exchange saturation transfer, APT: Amide proton 
transfer, rCBF: Regional cerebral blood flow, IDH: Isocitrate dehydrogenase, 
MGMT: Methylation of O6-methylguanine DNA methyl transferase

[Downloaded free from http://www.internationaljneurooncology.com on Friday, June 10, 2022, IP: 130.92.165.97]



Hakim and Wiest: MRI sequences in gliomas

S18  International Journal of Neurooncology | Volume 4 | Issue 3 | Special Supplement 2021

curve,[10] and the corrected CBV [Figure 1]. As contrast 
pooling due to leakage through the blood–brain barrier 
causes T1 shortening, the time concentration curve 
decreases below the baseline, hence corrections for this 
effect are important for glioma imaging. Corrections can be 
performed by optimizing the scanner parameters (such as 
using a lower flip angle to minimize the T1 effect),[11] 
preloading with Gadolinium to partially saturate the 
baseline T1 signal contribution,[12‑14] or via postprocessing 
by using one of  different available mathematical models 
(such as the Boxerman‑Schmainda‑Weisskoff  linear fitting 
algorithm)[15,16] as well as by various combinations of  these 
methods.[17] Some authors also recommend peak height and 
percentage of  signal recovery analysis.[9]

Perfusion analysis is useful in evaluating tumor vascular 
pathology, since it provides information about tumor entity, 
grading, and to some extent the molecular fingerprints. 
A hallmark of  aggressive and infiltrative tumors are 
immature endothelial cells with loose junctions and 
proliferative and invasive cells, irregular, and tortuous 
vessels or arteriovenous shunts. Low‑grade gliomas are 
composed of  normal endothelial cells with relatively 
intact blood‑brain barrier.[10,18] CBV is a marker of  
microvascular density[19,20] and it informs about tumor 
vascularity (neoangiogenesis), which is an important feature 
in high‑grade gliomas. The permeability surface area product 
is a marker for microvascular cellular proliferation,[21] 
since increasing angiogenic activity of  immature vascular 
structures result in “leaky” vessels.[5] In clinical routine, 
quantitative analysis is performed by drawing a region 
of  interest into the suspected lesion (contrast‑enhancing 
lesions and peritumoral region). The measurements within 
the tumor region are compared with areas within the 
normal‑appearing white matter [Figure 2]. However, to 
find the right threshold to differentiate between different 
entities (e.g., tumor recurrence and radiotherapy or different 
grades of  tumors) is challenging. Ratios differ in their cutoff  
values and technical factors affect thresholding. Imaging 

protocols and sequence parameters, bolus preloading, and 
postprocessing methods are subject to confounders.[17,22]

Recent methods to detect microcirculation without the 
need of  contrast injection, such as the so‑called intravoxel 
incoherent motion perfusion or arterial spin labeling allow 
the detection of  regional blood flow changes in tumor 
tissue without contrast agent application, but are still mostly 
used in the context of  studies to predict therapy response 
and for tumor grading.[23,24]

Magnetic resonance spectroscopy
Isocitrate dehydrogenase (IDH) status and 1p/19q 
codeletion are the important aspects of  modern tumor 
classification and thus essential for preoperative workup. 
Therefore, noninvasive consideration of  genetic imaging 
markers is of  great relevance. IDH mutations are involved 
in glioma genesis and are present in most Grade 2 and 
3 gliomas and in secondary glioblastomas (GBM).[25] 
Oligodendroglial tumors are classified based on 1p/19q 
codeletion. Frontal and parietal predilection, indistinct 
tumor margins or calcifications in the 1p/19q codeleted 
gliomas compared to temporal or insular predilection 
and more homogeneous signal intensities of  the tumor 
matrix in diffuse gliomas allow a first estimation of  
the underlying tumor entity with conventional MRI 
[Table 1].[26‑29] In gliomas, proton (1H) MRS provides a 
spectrum of  pathological brain metabolites encompassing 

Figure 1: Leakage correction in a patient with left sided high‑grade glioma (left). Hyperperfusion is absent in the cerebral blood volume map 
without leakage correction (middle), while detectable in the cerebral blood volume map with mandatory leakage correction (circle, right image)

Figure 2: Quantitative analysis of dynamic susceptibility contrast 
perfusion by delineation of a region of interest. In a patient with 
left frontal Grade IV glioma, the time intensity curves indicate the 
differences in the time attenuation curves within the glioma and the 
reference region in the unaffected hemisphere
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elevated creatine and choline (reflecting cell proliferation) 
and decreased N‑acetylaspartate (NAA) (loss of  neuronal 
integrity). Increased myoinositol levels favor the diagnosis 
of  low grade gliomas and elevated lactate points toward 
higher grade gliomas [Figure 3].

MRS enables the delineation between different tumor 
grades and supports differential diagnosis of  inflammatory 
or infectious central nervous system diseases. Further, it 
allows the identification of  genetic markers by the detection 
of  2‑hydroxglutarate[30] in IDH‑mutated tumors.[31‑33] MRS 
enables tracking of  molecules related to tumor grade and 

tissue invasion and has been shown to be superior to 
conventional imaging markers, perfusion imaging, and 
diffusion imaging in differentiating IDH wild type from 
IDH‑mutated gliomas [Figure 4].[26,34]

Chemical exchange saturation transfer (imaging)
Amide proton transfer (APT)‑weighted imaging (chemical 
exchange saturation transfer, CEST) is an MRI technique 
whose image contrast is based on chemical exchange 
between hydrogen atoms and mobile protons in amides, 
amines, and hydroxyl groups.[35,36] The signal from the 
protons of  peptide chains in proteins is too low to be 
measured by normal MRI. The exchange between protein 
amide groups and surrounding water opens a possibility to 
measure these protons. In tumor regions, the concentration 
of  proteins is elevated compared to surrounding tissues, and 
subsequently, the increased intracellular exchanges lead to an 
increased APT level [Figure 5]. Applications for APT‑CEST 
are noninvasive grading of  tumor heterogeneity,[37] 
determination of  the histopathologic malignancy grade, 
differentiation between therapy effects, and true progression 
and noninvasive differentiation of  1p/19q codeletion, 
IDH‑and MGMT methylation status.[38‑42]

Functional and diffusion tensor imaging
Blood oxygenation level dependent (BOLD)‑fMRI is used 
since more than two decades to measure the hemodynamic 
response related to a given stimulus related to motor or 
sensory function, language or memory processing, or visual 
input The BOLD signal is sensitive to dephasing of  the 
T2* signal and the contrast generated by relative changes 
in hemoglobin concentrations as an indirect consequence of  
information processing. The BOLD signal is a mixed signal 
sensitive to blood flow, oxygen concentration and blood 
volume and strongly correlated with the local field potential, 
a composite measure that reflects primarily the flow of  

Figure 3: Magnetic resonance spectroscopy of two patients with left 
temporal gliomas. The images in the upper row display a histologically 
proven low‑grade glioma. The magnetic resonance spectroscopy 
denotes an increased myo‑inositol peak at 3.5ppm as a marker for a 
low grade glioma. The images in the lower row display a histologically 
proven Grade IV glioma. The magnetic resonance spectroscopy shows 
a lipid peak resonating at 1.3 ppm due to release of membrane lipids 
as a marker for tissue infiltration and damage

Figure 4: 2‑hydroxyglutarate‑edited MEGA‑semi‑LASER spectroscopy (CMRR, TE 60ms) in a patient with a Grade II isocitrate dehydrogenase 
mutated glioma. The 2‑HG multiplet is visible at 4.02 ppm (Courtesy of Prof. J. Slotboom, Bern, with permission)
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information across neural networks. Since the BOLD 
signal receives contributions from multiple neural sources, 
factors such as regional increases in CBV, low cortical blood 
volume, and distance between BOLD activations and the 
tumor are potential confounders that may generate false 
positive results. A recent meta‑analysis that investigated the 
sensitivity and sensitivity of  fMRI reported a sensitivity 
of  92% and specificity of  76% for motor and of  80% 
and 71.5% for language protocols in comparison to direct 
electrical stimulation (DCS).[43] Another study reported a 
sensitivity of  40% and specificity of  80% on a per patient 
basis for language mapping in comparison with DCS. Thus, 
the primarily goal of  investigations of  the language network 
is still the determination of  the hemispheric dominance. In 
daily practice, BOLD fMRI is complemented by diffusion 
tensor imaging, a method that enables structural analysis 
of  structural connectivity between eloquent brain areas by 
calculating directional diffusivity of  water molecules in the 
white matter. Its principal advantage is the independence 
from patient compliance and its robustness in acquisition 
[Figure 6].[44]

ULTRA‑HIGH FIELD MAGNETIC RESONANCE 
IMAGING

Clinical ultra‑high field (UHF) MRI has recently become feasible 
with the clearance of  7 T MRI. Currently approximately fifty 
systems with the FDA 510(k) clearance are available for clinical 
use worldwide. For glioma imaging, the principal advantages 
encompass higher spatial resolution due to improved signal 
to noise and consequently, more detailed information 
about tumor invasion and tumor vascularization [Figure 7]. 
Optimizations of  RF pulses, parallel and 3D‑sequences enable 
sufficient accelerations of  clinical MRI protocols. MRS profits 
from improvement in spatial and enhanced spectral resolution 
and identification of  metabolites with low concentration, such 
as glutamate, myo‑inositol or 2‑hydroxyglutarate.[45,46] In a 
survey of  comparisons between UHF MRI and routine field 
strength, image quality was improved in 24/51 or noninferior 
in 17/51 (who were equivalent at both feld strengths), and 
9/51 performed less well at UHF MRI.[47]

Image postprocessing
Recently, advances in medical image processing have 
been achieved through the implementation of  artificial 
intelligence to solve problems associated with extensive 
time consumption or rater‑dependent biases in the 
detection of  tumor volume and of  associations between 
genotype and imaging phenotype. Automated image 
segmentation enables classification of  previously trained 
tissue categories (e.g., edema, necrosis, enhancing, and 
nonenhancing tumor) from routinely acquired input 
images [Figure 8]. The computer is presented with ground 
truth labels assigned to images to learn the rules that generate 
the labels of  specific tissue classes. The goal of  these analyses 
is to train mainly algorithms based on expert knowledge 
to achieve the optimal output (i.e. optimal rendering of  
the posed problem).[48] AI methods have been successfully 
employed to differentiate genetic mutations[49‑51] and regional 

Figure 5: Amide proton transfer‑chemical exchange saturation transfer 
(MTRasym map, left) of a patient with an Grade 4 glioma (GBM). 
In the GBM, the concentration of proteins is elevated compared to 
surrounding tissues. The increased intracellular exchanges lead to 
an increased Amide proton transfer level (Courtesy of Prof Zaiss, 
Erlangen, with permission)

Figure 6: (a) Functional magnetic resonance imaging in a patient with insular glioma. Hemodynamic correlates related to a syntax paradigm 
(Gutbrod et al., 2012[44]) in the Wernicke area, left hemisphere. (b) Fiber tracking of the corticospinal tract in a patient with LGG. There is a distortion, 
but no infiltration of the right corticospinal tract. (c) Fiber tracking: Distorted arcuate fascicle in patients with oligodendroglioma

cba
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genetic heterogeneity, to define appropriate subregions for 
biopsy[52,53] or personalized radiotherapy.[54] In addition, 
automated tumor segmentation can distinguish between 
tumor‑associated edema, tumor necrosis, and enhancing 
tumor components. For example, neural network‑based 
expert systems are already used to complement visual 
analysis for glioma volume calculation and calculate tumor 
volume within a few seconds with an error rate comparable 
to medical experts.[48,55] In a retrospective analysis in a 
multicenter dataset from a prospective, randomized phase 
2 and 3 trial (EORTC‑26101), automated tumor response 
assessment outperformed RANO assessments for predicting 
overall survival.[56] By radiomic image analysis, structures 
within the segmented tumor matrix can be identified that 
contain prognostically relevant features which represent 
tumor heterogeneity at a molecular level.[51] For this purpose, 
correlation tests between quantitative features such as shape, 
signal distribution, and textures are performed to provide 
statistical information on malignancy grade, therapy response, 
and disease progression.[57] Initial retrospective studies 
demonstrate predictive value for progression‑free survival 
and overall survival of  glioma patients independent of  clinical 
and molecular markers. However, the analyses are sensitive 
to image protocols. Still, many derived features are lacking 
robustness in multi‑center data and are sensitive to bias

Impact on patient management
Differential diagnosis
Due to differences in microvascular and molecular biology 
in different tumor entities and between neoplastic and 
nonneoplastic lesions, advanced imaging can be used to 
differentiate these lesions[58]e.g., glioblastoma multiforme 
(GBM) versus a brain abscess or vs. tumefactive 
demyelinating lesion[59,60] CBV values are higher in patients 
with GBM than in patients with a brain abscess or an 
inflammatory[61] or tumefactive lesion [Figure 9].[62] It also 
helps to discriminate different neoplastic lesions (such 
as the differentiation between GBM, metastasis, and 
lymphoma).[63‑65]

Moreover, peritumoral infiltration can be detected with 
advanced imaging by increased CBV, AUC, Ktrans or increase 
in Cho/Cr or Cho/NAA ratios in areas of  T2 hyperintensity 
adjacent to the contrast‑enhancing lesion.[64,66‑68] Peritumoral 
perfusion or metabolic abnormalities are absent in lymphoma 
or metastasis [Figure 10]. However, accuracy is moderate for 
differentiating high‑grade glioma from lymphoma.[69]

Treatment planning
Glioma grading
Histological and molecular analysis is the gold standard for 
glioma grading. However, it is an invasive procedure, and in 

Figure 7: Ultra‑high field magnetic resonance imaging: ToF and 3‑D 
FLAIR sequence show the regional vascularization and extension of 
a right frontal LGG

Figure 8: Segmentation results of an automated brain tumor 
segmentation in a GBM. Enhancing component of the tumor (cyan), 
necrotic part of the tumor (orange), vasogenic edema (yellow) are seen

Figure 9: Dynamic susceptibility contrast perfusion maps of a patient 
with brain abscess, high‑grade glioma and lymphoma, respectively. 
The contrast enhancing rim of the brain abscess is ill‑perfused, while 
the enhancing part of the high‑grade glioma shows severly increased 
Relative cerebral blood volume. In lymphoma, the Relative cerebral 
blood volume is slightly elevated
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show higher CBV values than diffuse astrocytomas of  
similar histological grade.[74]

Outcome prediction
Tumors with higher CBV values at baseline have a shorter 
time to progression or death than tumors with lower CBV 
values.[73,75,76] Therefore, tumors showing higher CBV 
values, even with low histological grade should be treated 
more aggressively than tumors with lower CBV.[16] CBV 
values in astrocytomas outperformed histopathological 
grading as predictor for recurrence and 1‑year survival.[77,78] 
Increased ve predicts worse progression‑free survival and 
overall survival in patients with high‑grade gliomas.[79]

Sampling errors
Due to the internal heterogeneous nature of  gliomas, 
biopsies are prone to sampling errors and underestimation 
of  tumor grading. Advanced imaging can guide the planning 
of  the biopsy. As CBV is a marker for neoangiogenesis and 
Choline is a marker of  mitotic activity, both can be used 
to identify the tumors area of  highest grade[80] [Figure 13].

Follow‑up
Adding advanced imaging to the conventional MRI 
protocol in the follow‑up of  low‑grade gliomas allows for 

Figure 10: Magnetic resonance spectroscopy from two different 
patients. Upper row: Patient with lymphoma and normal peritumoral 
spectra and a Cho/NAA ratio of 1.1. Lower row: Patient with GBM and 
increased peritumoral Cho/NAA ratio of 1.8

Figure 11: Magnetic resonance spectroscopy of a patient with a diffuse 
brain stem glioma: The elevated myo‑insositol peak is indicative for 
a LGG: No biopsy was performed due to the localization of the tumor

Figure 12: Relative cerebral blood volume differences in a LGG versus  
a high‑grade glioma. Axial FLAIR (left), relative cerebral blood volume 
(midlle) and leakage (K2) maps of two patients with gliomas. Upper 
row: WHO II isocitrate dehydrogenase mutated glioma with decreased 
relative cerebral blood volume without leakage. Lower row: WHO 
IV isocitrate dehydrogenase mutated tumor with increased relative 
cerebral blood volume and increased leakage

some instances, the patient is not eligible for surgery or the 
tumor’s localization restricts resection [Figure 11]. Relying 
on conventional imaging for tumor grading is not accurate, 
as low‑grade gliomas can show contrast enhancement and 
high‑grade gliomas may not enhance.[70,71] In these instances, 
advanced imaging can provide a “second reference” for tumor 
grading. DCE maps (ve and vp), as well as DSC map (CBV) have 
high accuracy for glioma grading.[3] DCE has high accuracy in 
differentiating between high‑grade and low‑grade gliomas.[69]

Low‑grade gliomas show lower CBV values than high‑grade 
gliomas [Figure 12]. CBV is associated with increased mitotic 
activity and vascularity.[72,73] Oligodendrogliomas frequently 

Figure 13: Magnetic resonance spectroscopy for image‑guided biopsy. 
The focally increased Cho/NAA ratio is indicative of the higher tumor 
grade and should be the target of the biopsy
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the early detection of  malignant transformation.[81] The 
criteria for assessment of  tumor response under therapy 
are based on measuring the enhancing lesion and 
evaluation of  the T2 changes; however, treatment with 
chemoradiotherapy causes similar changes to neoplastic 
changes on conventional imaging,[82] due to vasodilatation, 
edema, and demyelination after treatment.[9,16] Therefore, 
the term ‘pseudoprogression’ has been coined[83,84] as these 
imaging findings cannot easily be differentiated from true 
tumor progression. Advanced imaging can address this 
limitation, as these images address the vascularity and 
metabolism of  tumors which differs from radiation‑induced 
changes.[85,86] True progression shows higher CBV 
values than radiation‑induced changes[19,87‑90] [Figure 14]. 
Parameters reflecting blood volume (CBV, AUC)[91] and 
permeability derived parameters[92] or ve

[93] as well as MRS,[94] 
are helpful in this differentiation. In a systematic comparison 
of  DSC and DCE, both methods were equivalent in the 
discrimination between tumor tissue and therapy‑related 
effects[89] and outperform the RANO criteria that are solely 
depending on conventional imaging interpretations.[95] 
Similarly, using perfusion imaging can differentiate between 
recurrent metastasis and radiation necrosis.[96]

Pa t i e n t s  u n d e r  t h e r a p y  w i t h  a n g i o g e n e s i s 
inhibitors (e.g. Bevacizumab) may present with decreased or 
absent tumor enhancement in the follow‑up with stationary 
or increased tumor volume. This contrast reduction is a 
consequence of  a reduced leakage in the tumor vascular 
bed.[84] This phenomenon is called pseudoresponse[82] and 
can be mistaken as a true response when using conventional 
MRI imaging [Figure 15]. MR perfusion and spectroscopy 
support the discrimination of  these entities.

CONCLUSION

The ongoing development of  neuro‑oncological imaging 
aims at the detection of  cerebral gliomas and the 

differentiation of  therapy‑associated changes from tumor 
progression, furthermore at the prognosis assessment 
under therapy. Advanced neuroimaging and automated 
image analysis techniques are used for this purpose. This 
creates new interdisciplinary challenges and professional 
profiles in imaging, for which close collaboration between 
neuropathologists, engineers, image informatics experts 
and radiologists is indispensable.
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