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Introduction
Deep learning (DL) has been widely employed for image ana-
lytics in dermatology (skin photographs) (Jafari et al. 2016), 
ophthalmology (retina imagery) (Son et al. 2020), or pathology 
(histological specimens) (Kather et al. 2019). Also in dentistry, 
DL classification models have been employed to predict the 
modality of radiographs (Cejudo et al. 2021), the presence of 
caries lesions (Lee et al. 2018), periodontal bone loss (Krois  
et al. 2019), and apical lesions (Ekert et al. 2019) on dental 
radiographs. DL segmentation models, which perform a clas-
sification task at the pixel level, were used for the segmenta-
tion of anatomical structures in panoramic images (Cha et al. 
2021), apical lesions on cone beam computed tomography 
scans (Orhan et al. 2020), periodontal bone loss on panoramic 
radiographs (Kim et al. 2019), and caries lesions on bitewings 
(Cantu et al. 2020).

Recent guidelines in the field call for rigorous and compre-
hensive planning, conducting, and reporting of DL studies in 
dentistry (Schwendicke et al. 2021). One key element in those 
guidelines is a hypothesis-driven selection of the DL model 
configuration, which includes, among others, its architecture, 
its complexity, and the initialization strategy for the model 

weights (e.g., via transfer learning). (1) Architecture: The 
basic unit of an artificial neural network is a neuron, which is a 
nonlinear mathematical model inspired by the biological neu-
ron (McCulloch and Pitts 1943). These units are stacked to 
build layers that are connected via mathematical operations 
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Abstract
A wide range of deep learning (DL) architectures with varying depths are available, with developers usually choosing one or a few of 
them for their specific task in a nonsystematic way. Benchmarking (i.e., the systematic comparison of state-of-the art architectures on 
a specific task) may provide guidance in the model development process and may allow developers to make better decisions. However, 
comprehensive benchmarking has not been performed in dentistry yet. We aimed to benchmark a range of architecture designs for 1 
specific, exemplary case: tooth structure segmentation on dental bitewing radiographs. We built 72 models for tooth structure (enamel, 
dentin, pulp, fillings, crowns) segmentation by combining 6 different DL network architectures (U-Net, U-Net++, Feature Pyramid 
Networks, LinkNet, Pyramid Scene Parsing Network, Mask Attention Network) with 12 encoders from 3 different encoder families 
(ResNet, VGG, DenseNet) of varying depth (e.g., VGG13, VGG16, VGG19). On each model design, 3 initialization strategies (ImageNet, 
CheXpert, random initialization) were applied, resulting overall into 216 trained models, which were trained up to 200 epochs with 
the Adam optimizer (learning rate = 0.0001) and a batch size of 32. Our data set consisted of 1,625 human-annotated dental bitewing 
radiographs. We used a 5-fold cross-validation scheme and quantified model performances primarily by the F1-score. Initialization with 
ImageNet or CheXpert weights significantly outperformed random initialization (P < 0.05). Deeper and more complex models did not 
necessarily perform better than less complex alternatives. VGG-based models were more robust across model configurations, while 
more complex models (e.g., from the ResNet family) achieved peak performances. In conclusion, initializing models with pretrained 
weights may be recommended when training models for dental radiographic analysis. Less complex model architectures may be 
competitive alternatives if computational resources and training time are restricting factors. Models developed and found superior on 
nondental data sets may not show this behavior for dental domain-specific tasks.
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with other layers of neurons. The arrangement of these layers 
and operations defines the model architecture. Model architec-
tures such as ResNet (He et al. 2016) or VGG (Simonyan and 
Zisserman 2015) are widely used in the field of machine learn-
ing. For image segmentation, specialized layers extend the 
basic model architectures, which in such a setting are referred 
to as backbone. This allows one to plug in different backbones 
and benchmark them for image segmentation tasks.  
(2) Complexity: Most model architectures are available in dif-
ferent degrees of complexities, which reflects the depth of the 
neural network (i.e., the number of layers included and the 
number of neurons and connections between them). Deeper 
models are more complex as they consist of more parameters 
(i.e., connections between neurons). (3) Initialization: The 
connections between neurons and layers of neurons, which are 
also referred to as model weights, are basically digits that cor-
respond to the strength of the connection. During model train-
ing, these weights are adjusted to find a set of values that are 
most suitable to solve the underlying task. Starting with a pre-
defined setting of these weights enhances the efficiency of the 
training process and improves model convergence. Using a 
predefined setting of weights that stem from a previously 
trained neural network provides a meaningful starting point for 
the training process. This technique is referred to as transfer 
learning (Tan et al. 2018).

The sheer number of possible configurations of model 
architecture, including backbones, complexity, and initializa-
tion strategies, impedes systematic and comprehensive com-
parisons of existing study findings (Schwendicke et al. 2019). 
One strategy to overcome this issue is to perform benchmark-
ing, which involves the systematic comparison of different 
model architectures and model configurations on an identical 
data set. Such benchmarking studies provide guidance for 
researchers in the model design process, which improves 
research efficiency by enabling the development of high- 
performing models in a shorter time at lower development 
costs. However, in the medical domain and, more so, dentistry, 
benchmarking initiatives are scarce, owing to limited data 
availability and high costs for establishing solid and accepted 
ground truth labels and annotations. To cope with these diffi-
culties, the ITU/WHO Focus Group Artificial Intelligence for 
Health (FG-AI4H) is developing a standard evaluation process 
and benchmarking framework for artificial intelligence (AI) 
models in health. The present study will inform this initiative.

In a recent benchmarking study, Bressem et al. (2020) 
benchmarked 16 different model architectures for classifica-
tion tasks on 2 openly available chest radiograph data sets: 
CheXpert (Irvin et al. 2019) and the COVID-19 Image Data 
Collection. They showed that complex and deep models do not 
necessary outperform simpler architectures. Similarly, Ke et al. 
(2021) addressed the assumption that model architectures that 
perform better on the ImageNet data set (Deng et al. 2009), a 
popular open-source benchmark data set containing millions of 
labeled images, also generally perform better on CheXpert. 
This assumption was not found to be valid based on the com-
parison of 16 convolutional architectures on 5 classification 
tasks.

In the present study, we aim to expand the studies of Bressem 
et al. (2020) and Ke et al. (2021) to a dental segmentation task. 
We benchmarked 216 DL models defined by their architecture, 
complexity, and initialization strategy. We evaluated these 
model configurations for a specific dental task: tooth structure 
(enamel, dentin, pulpal cavity, fillings, and crowns) segmenta-
tion on dental bitewing radiographs. We deliberately decided to 
use this application since first, there is evidence that segmenta-
tion models perform well on this task (Ronneberger et al. 
2015a) and, second, there is less ambiguity about the establish-
ment of the ground truth for this task, with tooth structures 
being easily discriminated even by nonsenior clinicians. We 
expect our results to inform dental researchers about suitable 
model configurations for their experiments and aim to contrib-
ute to evidence-guided DL model selection in dental research.

Materials and Methods

Benchmarking Tasks

This analysis is based on a segmentation task for tooth struc-
tures on dental bitewing radiographs. Several model develop-
ment aspects were benchmarked. (1) Architecture: First, we 
assessed different DL model architectures, since to date, most 
neural networks have mainly been benchmarked on openly 
available data sets such as ImageNet. However, it is not yet 
determined whether the best-performing networks on ImageNet 
will also perform best for dental radiographic images. Hence, 
we benchmarked architectures such as U-Net (Ronneberger  
et al. 2015b), U-Net++ (Zhou et al. 2018), Feature Pyramid 
Networks (FPN) (Kirillov et al. 2019), LinkNet (Chaurasia and 
Culurciello 2017), Pyramid Scene Parsing Network (PSPNet) 
(Zhao et al. 2017), and Mask Attention Network (MAnet) (Fan 
et al. 2020), among others. These networks were selected, as 
they all allow to employ the same established backbones of 
varying depths of model layers (ResNet50 [He et al. 2016], 
VGG13 [Simonyan and Zisserman 2015], DenseNet121 
[Huang et al. 2017]). The depth of the encoder is convention-
ally represented by the digits behind the name of the architec-
ture (e.g., ResNet18, ResNet34). All model implementations 
were taken from the same software package (Yakubovskiy 
2020). (2) Complexity: Second, we investigated the model 
performances emanating from model complexity. Supposedly, 
deeper DL models, which have more trainable parameters, out-
perform shallower alternatives if enough data and computa-
tional resources are available. However, deeper models are 
more likely to overfit training data, and model convergence 
may not be reached. Furthermore, limited computational 
resources imply restrictions regarding image resolution or 
batch size; both may negatively affect the model performance. 
(3) Initialization: Third, we analyzed different initialization 
strategies, such as random weights initialization or initializa-
tion based on pretrained weights from the ImageNet as well as 
the CheXpert data set. The latter strategies are referred to as 
transfer learning. Thereby, features learned on large, open data 
sets are directly transferred to a new task and hence do not 
have to be learned from scratch. This technique speeds up 
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model convergence and improves model performance. 
Initialization with ImageNet is one of the most popular transfer 
learning strategies. Even for tasks on medical radiographs, 
transferring knowledge from models trained on ImageNet 
yields a boost in performance (Ke et al. 2021). However, the 
feature space learned on ImageNet differs fundamentally from 
medical features of radiographs. ImageNet consists of natural 
RGB color images that are classified into more than 20,000 
classes, while radiographic images contain grayscale images 
and are usually classified in only a few categories. Hence, an 
initialization with pretrained models on radiographic images 
such as the CheXpert data set (Irvin et al. 2019) may poten-
tially be more suitable for medical segmentation tasks of, for 
instance, dental radiographs.

Ethics Statement

This study was ethically approved by the ethics committee of 
the Charité (EA4/102/14 and EA4/080/18).

Study Design

In the present study, 72 models were built from a combination of 
varying architectures and encoder backbones and were each 
trained with 3 different initialization strategies on a tooth struc-
ture segmentation task. Each model was trained with 5-fold 
cross-validation with varying train, validation, and test sets for 
each fold. Hence, for each model run, the data were randomly 
split into training, validation, and test data with proportions of 
60% (3 folds), 20% (1 fold), and 20% (1 fold), respectively. We 
additionally applied a sensitivity analysis and assessed model 
performances on underrepresented classes (in our case, fillings 
and crowns), as in real life, medical data set class imbalance is 
likely the rule and not the exception. Reporting of this study fol-
lows the Standards for Reporting Diagnostic Accuracy guideline 
(STARD) (Bossuyt et al. 2015) and the Checklist for Artificial 
Intelligence in Dental Research (Schwendicke et al. 2021).

Performance Metrics

Model performances were primarily quantified by the F1-score, 
which captures the harmonic mean of recall (specificity) and 
precision (positive predictive value [PPV]). F1-scores are 
computed from the sum of true positives, false positives, and 
false negatives over all channels of segmentation masks and 
cross-validation folds. This method was described by Forman 
and Scholz (2010) and results in unbiased F-scores in cross-
validation schemes. Secondary metrics were accuracy, sensi-
tivity, precision, and intersection of union (IoU). Based on the 
distribution of the results, the median was chosen as a descrip-
tive statistic.

Data Set, Sample Size, and Reference Test

The available data set consisted of 1,625 dental bitewing radio-
graphs with a maximum of 8 to 9 teeth per image and is 
described in detail in the Appendix. Tooth structures visible on 

bitewing radiographs (namely, enamel, dentin, the pulp cavity, 
and nonnatural “structures” like fillings and crowns) were 
annotated in a pixel-wise fashion (as masks) by 1 dental expert. 
These masks represent the ground truth for each data sample. 
In a second iteration, those annotations were reviewed by 
another dental expert for validity and correctness. Each anno-
tator independently assessed each image using an in-house 
custom-built annotation tool described in Ekert et al. (2019). 
All examiners were calibrated and advised on how to perform 
the segmentation. Images with implants, bridges, or root canal 
fillings were very rare (<1%) and therefore excluded.

Notably, enamel, dentin, and pulpal areas were present in 
every radiograph, while fillings and crowns were only avail-
able in 80% and 20% of images, respectively. Images and seg-
mentation masks were resized to a resolution of 224 × 224 to 
provide a fixed input size of the images as required by the 
model architectures.

Models and Training

As represented in Figure 1, models were built by combining 
different model architectures (U-Net, U-Net++, FPN, LinkNet, 
PSPNet, MAnet) with backbones from 3 different families 
(ResNet, VGG, DenseNet) of different depths (ResNet18, 
ResNet34, ResNet50, ResNet101, ResNet152, VGG13, 
VGG16, VGG19, DenseNet121, DenseNet161, DenseNet169, 
DenseNet201). This led to a total of 72 model designs, which 
were each initialized with 3 different strategies (random, 
ImageNet, CheXpert), resulting into 216 trained models in 
total. All models were trained under a 5-fold cross-validation 
scheme, where the combination of samples in training, valida-
tion, and test set was varied for each fold to achieve a reason-
able estimate of the model performance independent from the 
data split. Details on training are described in the Appendix.

Statistical Analysis

Model configurations with respect to initialization strategies 
and architectures were ranked according to their median 
F1-score and formally tested for differences between configu-
rations with the nonparametric Wilcoxon rank-sum test. The 
nonparametric Spearman’s rank-order correlation was esti-
mated to determine the relationship between complexity and 
model performance (F1-score). To account for multiple com-
parisons, we adjusted the P values using the Benjamini–
Hochberg method (Benjamini and Hochberg 1995). P values 
below 0.05 were considered statistically significant. The num-
ber of pairwise comparisons C of conditions k was computed 
via equation (1).

C
k k

=
−( )1

2
 (1)

Results
Figure 2 presents an overview of segmentation outputs gener-
ated by different model architectures in comparison to the 
ground truth. Figure 3 shows the F1-scores of different model 
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configurations grouped by architecture, backbone family, and 
initialization strategy.

(1) Architecture: Out of 15 pairwise comparisons of 
model architectures, 14 turned out to be statistically 
significantly different. U-Net++, U-Net, and LinkNet 
achieved a median (interquartile range [IQR]) F1-score 
of 0.86 (0.85, 0.87), (0.84, 0.86), and (0.85, 0.88), 
respectively, and outperformed MAnet, PSPNet, and 
FPN with statistical significance. Backbones from the 
VGG and DenseNet group reached a median (IQR) of 
0.85 (0.83, 0.86) and (0.81, 0.86), respectively, while 
the ResNet group reached a median (IQR) F1-score of 
0.84 (0.81, 0.86). Models with backbones from the 
VGG group outperformed models with backbones of 
the ResNet group with statistical significance.

(2) Complexity: We found a statistically significant weak 
positive monotonic relationship between the network 
size and its performance with r = 0.32 (P < 0.001).

(3) Initialization: Different initialization strategies com-
puted over all architectures and backbones achieved 
F1-scores of 0.86 (0.83, 0.87) (ImageNet), 0.86 (0.83, 
0.87) (CheXpert), and 0.83 (0.77, 0.84) (random ini-
tialization). Models initialized with ImageNet or 
CheXpert outperformed models initialized with ran-
dom weights (PImageNet < 0.001, PCheXpert < 0.001). No 
significant difference was observed between ImageNet 
and CheXpert (P = 0.85).

(4) Class imbalances: In a sensitivity analysis, the model 
performance was evaluated on the minority classes of 

filling (80%) and crown (20%). In general, models’ 
performance was inversely related to class frequencies 
(Fig. 4).

(4.1) Architecture: Models based on a VGG back-
bone outperformed models with a ResNet back-
bone on the minority classes of filling (P = 
0.009) and crown (P = 0.013). Notably, there 
was no statistical difference between the 3 back-
bones on the majority classes of pulpal cavity 
and dentin.

(4.2) Complexity: We found a statistically significant 
weak positive monotonic relationship between 
the network size and its performance for class 
dentin (r = 0.245, P < 0.001), enamel (r = 0.239, 
P < 0.001), filling (r = 0.195, P = 0.004), pulpa 
(r = 0.218, P < 0.001), and class crown (r = 
0.154, P < 0.023).

(4.3) Initialization: Models with ImageNet and 
CheXpert initialization consistently outper-
formed models with random initialization. There 
was no statistically significant difference 
between ImageNet and CheXpert initializations.

Discussion
We benchmarked 216 models defined by their architecture, 
complexity, and initialization strategy on a tooth structure seg-
mentation task of dental bitewing radiographs. Several find-
ings require a more detailed discussion.

Figure 1. Illustration of the study design. Model setups were based on different architectures, encoder backbones, and initialization strategies (top) 
and 5-fold cross-validation with varying train, validation, and test sets for each fold (bottom). Exemplary bitewing radiograph (left) and tooth structure 
components overlaid on an input image (right).
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First, we aimed to evaluate whether there are 
superior model architectures for the tooth segmen-
tation task at hand. We discovered a performance 
advantage of models with backbones from the VGG 
family over models with backbones from the 
ResNet family. Our findings are consistent with 
those from Ke et al. (2021), who reported that archi-
tecture improvements reported on ImageNet may 
not always be translated to performances on medi-
cal imaging tasks. New model architectures and 
model improvements seem to be prone to overfit-
ting on ImageNet data sets. Hence, transferability 
of newest AI research results into other domains, 
here the dental domain, may not be guaranteed.

The statistically significant performance advan-
tage of models with VGG encoder backbones plead 
for the usage of VGG encoders, when solid baseline 
models are required, which perform reasonably 
well across different model configurations and set-
tings. This may be relevant for the implementation 
of proof of concepts, for example. The top 10 per-
forming models on the tooth structure segmentation 
task were built with backbones from the ResNet 
and DenseNet family. Consequently, if the focus is on model 
performance, it seems warranted to invest time to find an opti-
mal model configuration based on more complex models (e.g., 
from the ResNet family). If, however, the validation of general 
concepts or benchmarking is the focus of the study, VGG-
based models seem a reasonable choice as they are more robust 
across model configurations.

Second, one of our objectives evolved around the effect of 
the model complexity on the model performance. One of the 
key findings was a weak positive relationship between model 
depth and model performance. Therefore, we accept our 
hypothesis. Notably, however, the number of parameters 
increased in large steps, with only incremental improvements 
of model performance. Hence, the performance improvement 
was oftentimes disproportionate to the increasing demands for 
computational resources, training time, or the need to reduce 
image resolutions. The largest network in the present study 
was MAnet combined with a ResNet152 backbone, which 
reached an F1-score of 0.85 (0.85, 0.85) over all folds 
(ImageNet initialization). LinkNet in combination with a 
ResNet50 backbone was 5 times smaller but reached an F-score 
of 0.88 (0.88, 0.88) in comparison. It should be highlighted 
that lower computational costs allow for input imagery of 
higher resolution, which may be relevant for many dental 
applications.

Our third objective, aimed to give insights whether initial-
izing with ImageNet or CheXpert, is consistently superior even 
when there is a difference in performance between both initial-
ization strategies. We found statistically significant perfor-
mance boosts for models initialized with ImageNet or CheXpert 
weights in comparison to a random initialization. These find-
ings are consistent with those from Ke et al. (2021), who 
reported that 12 of 16 architectures benefited from an 

initialization with ImageNet weights for a classification task of 
chest radiographs. The comparison of ImageNet and CheXpert 
initialization showed no significant differences.

Fourth, we additionally found predictions on the minority 
class of filling (80%) to be generally more stable over different 
model configurations than predictions on class crowns (20%). 
Our results showed that there are superior architectures for 
segmenting minority classes (e.g., U-Net, U-Net++, LinkNet), 
but choosing a reasonable architecture may not be sufficient to 

Figure 2. Examples of segmented bitewing radiographs. (A) Naive input image. (B) 
Ground truth and (C–H) output of tooth structure segmentation by different model 
architectures. The red, dark green, light green, gray, and blue colors indicate enamel, 
pulp cavity and root canals, dentin, filling, and crown classes, respectively. All models 
in this example were built with a ResNet50 backbone and initialized with pretrained 
CheXpert weights. This figure is available in color online.

Figure 3. F1-scores stratified by initialization strategy, architecture, 
and backbone family based on sample sizes n. Median, interquartile 
range, and 95% confidence interval are represented by the white dot, 
the black box, and the black line, respectively. Different superscript 
letters indicate statistically significant difference (e.g., between U-Net 
and LinkNet), while the same superscript letters represent no significant 
difference (e.g., between LinkNet and U-Net++) (see Appendix for more 
details).
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overcome class imbalance. Hence, it could be recommended to 
address this problem with weighted loss functions (Guerrero-
Penã et al. 2018) or oversampling (Buda et al. 2018).

This study comes with several limitations. First, our results 
were based on 1 specific DL task, a tooth structure segmenta-
tion on bitewing radiographs, and are limited to the examined 
model architectures. Hence, we do not claim generalizability 
of our findings across other segmentation tasks or over all 
existing model architectures. Second, images of our data set 
originate from varying machines, which may lead to different 
behavior of the models. Furthermore, radiographs with bridges, 
implants, and root canal fillings were not considered in the 
present study as they were very rare. We accept this as our aim 
was to benchmark models and not to build clinically useful 
ones in this study. In line with this, we were only aiming at a 
model comparison instead of proposing a high-precision 
model. Hence, we did not take any actions against the existing 
class imbalance and did not perform an extensive hyperparam-
eter search. Finally, we based our analysis of the relationship 
between model performances and model complexity exclu-
sively on the number of model parameters. It may be the case 
that model architectures with more parameters require less 
computational power through more efficient structures of lay-
ers. Furthermore, we did not evaluate the effect of minor dif-
ferences in performance within the dental environment or how 
computational resources are affected by differences in the 
number of parameters of the models.

Conclusion
We benchmarked different configurations of DL models based 
on their architecture, backbone, and initialization strategy 
regarding their performance on a tooth structure segmentation 

task of dental bitewing radiographs to provide guidance for 
researchers in their DL model selection process. Regarding the 
superiority of certain model architectures, we found that VGG 
backbones provided solid baseline models across different 
model configurations, while peak performances were reached 
through combinations of U-Net++, LinkNet, and ResNet or 
DenseNet encoders. Superior architectures did not overcome 
class imbalance. Models known to perform better than others on 
a nondental data set like ImageNet did not demonstrate such 
superiority on our dental imaging task. The analysis of the rela-
tionship between model complexity and performance showed 
that deeper models did not necessarily perform better than shal-
low alternatives with lower demands in computational resources. 
Finally, we found that transfer learning boosts model perfor-
mance, independent of the origin of transferred knowledge.
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