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The B̄ → Xsγγ decay:

NLL QCD contribution of the Electromagnetic Dipole operator O7
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We calculate the set of O(αs) corrections to the double differential decay width dΓ77/(ds1 ds2)

for the process B̄ → Xsγγ originating from diagrams involving the electromagnetic dipole operator

O7. The kinematical variables s1 and s2 are defined as si = (pb − qi)
2/m2

b , where pb, q1, q2 are

the momenta of b-quark and two photons. While the (renormalized) virtual corrections are worked

out exactly for a certain range of s1 and s2, we retain in the gluon bremsstrahlung process only

the leading power w.r.t. the (normalized) hadronic mass s3 = (pb − q1 − q2)
2/m2

b in the under-

lying triple differential decay width dΓ77/(ds1ds2ds3). The double differential decay width, based

on this approximation, is free of infrared- and collinear singularities when combining virtual- and

bremsstrahlung corrections. The corresponding results are obtained analytically. When retaining

all powers in s3, the sum of virtual- and bremstrahlung corrections contains uncanceled 1/ǫ singu-

larities (which are due to collinear photon emission from the s-quark) and other concepts, which

go beyond perturbation theory, like parton fragmentation functions of a quark or a gluon into a

photon, are needed which is beyond the scope of our paper.

I. INTRODUCTION

Inclusive rare B-meson decays are known to be a unique source of indirect information about physics at scales

of several hundred GeV. In the Standard Model (SM) all these processes proceed through loop diagrams and thus

are relatively suppressed. In the extensions of the SM the contributions stemming from the diagrams with “new”

particles in the loops can be comparable or even larger than the contribution from the SM. Thus getting experimental

information on rare decays puts strong constraints on the extensions of the SM or can even lead to a disagreement

with the SM predictions, providing evidence for some “new physics”.

To make a rigorous comparison between experiment and theory, precise SM calculations for the (differential) decay

rates are mandatory. While the branching ratios for B̄ → Xsγ [1] and B̄ → Xsℓ
+ℓ− are known today even to

next-to-next-to-leading logarithmic (NNLL) precision (for reviews, see [2, 3]), other branching ratios, like the one for

B̄ → Xsγγ discussed in these proceedings, has been calculated before to leading logarithmic (LL) precision in the

SM by several groups [4–7] and only recently a first step towards next-to-leading-logarithmic (NLL) precision was

presented by us in [8]. In contrast to B̄ → Xsγ, the current-current operator O2 has a non-vanishing matrix element

for b → sγγ at order α0
s precision, leading to an interesting interference pattern with the contributions associated

with the electromagnetic dipole operator O7 already at LL precision. As a consequence, potential new physics should

be clearly visible not only in the total branching ratio, but also in the differential distributions.

As the process B̄ → Xsγγ is expected to be measured at the planned Super B-factories in Japan and Italy, it is

necessary to calculate the differential distributions to NLL precision in the SM, in order to fully exploit its potential

concerning new physics. The starting point of our calculation is the effective Hamiltonian, obtained by integrating

out the heavy particles in the SM, leading to

Heff = −4GF√
2

V ⋆
tsVtb

8
∑

i=1

Ci(µ)Oi(µ) , (1)
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where we use the operator basis introduced in [9]:

O1 = (s̄LγµT
acL) (c̄Lγ

µTabL) , O2 = (s̄LγµcL) (c̄Lγ
µbL) ,

O3 = (s̄LγµbL)
∑

q(q̄γ
µq) , O4 = (s̄LγµT

abL)
∑

q(q̄γ
µTaq) ,

O5 = (s̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq) , O6 = (s̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρTaq) ,

O7 = e
16π2 m̄b(µ) (s̄Lσ

µνbR)Fµν , O8 = gs
16π2 m̄b(µ) (s̄Lσ

µνT abR)G
a
µν .

(2)

The symbols T a (a = 1, 8) denote the SU(3) color generators; gs and e, the strong and electromagnetic coupling

constants. In eq. (2), m̄b(µ) is the running b-quark mass in the MS-scheme at the renormalization scale µ. As we

are not interested in CP-violation effects in the present paper, we made use of the hierarchy VubV
∗

us ≪ VtbV
∗

ts when

writing eq. (1). Furthermore, we also put ms = 0.

While the Wilson coefficients Ci(µ) appearing in eq. (1) are known to sufficient precision at the low scale µ ∼ mb

since a long time (see e.g. the reviews [2, 3] and references therein), the matrix elements 〈sγγ|Oi|b〉 and 〈sγγ g|Oi|b〉,
which in a NLL calculation are needed to order g2s and gs, respectively, are not known yet. To calculate the (Oi,Oj)-

interference contributions to the differential distributions at order αs is in many respects of similar complexity as the

calculation of the photon energy spectrum in B̄ → Xsγ at order α2
s needed for the NNLL computation. As a first step

in this NLL enterprise, we derived in our paper [8], the O(αs) corrections to the (O7,O7)-interference contribution

to the double differential decay width dΓ/(ds1ds2) at the partonic level. The variables s1 and s2 are defined as

si = (pb − qi)
2/m2

b , where pb and qi denote the four-momenta of the b-quark and the two photons, respectively.

At order αs there are contributions to dΓ77/(ds1ds2) with three particles (s-quark and two photons) and four

particles (s-quark, two photons and a gluon) in the final state. These contributions correspond to specific cuts of the

b-quarks self-energy at order α2×αs, involving twice the operator O7. As there are additional cuts, which contain for

example only one photon, our observable cannot be obtained using the optical theorem, i.e., by taking the absorptive

part of the b-quark self-energy at three-loop. We therefore calculate the mentioned contributions with three and four

particles in the final state individually.

We work out the QCD corrections to the double differential decay width in the kinematical range

0 < s1 < 1 ; 0 < s2 < 1− s1 .

Concerning the virtual corrections, all singularities (after ultra-violet renormalization) are due to soft gluon

exchanges and/or collinear gluon exchanges involving the s-quark. Concerning the bremsstrahlung corrections

(restricted to the same range of s1 and s2), there are in addition kinematical situations where collinear photons

are emitted from the s-quark. The corresponding singularities are not canceled when combined with the virtual

corrections. We found, however, that there are no singularities associated with collinear photon emission in the

double differential decay width when only retaining the leading power w.r.t to the (normalized) hadronic mass

s3 = (pb − q1 − q2)
2/m2

b in the underlying triple differential distribution dΓ77/(ds1ds2ds3). Our results of our paper

are obtained within this “approximation”. When going beyond, other concepts which go beyond perturbation theory,

like parton fragmentation functions of a quark or a gluon into a photon, are needed [10].

II. LEADING ORDER AND FINAL RESULTS FOR THE DECAY WIDTH

In d = 4 dimensions, the leading-order spectrum (in our restricted phase-space) is given by

dΓ
(0)
77

ds1 ds2
=

α2 m̄2
b(µ)m

3
b |C7,eff (µ)|2 G2

F |VtbV
∗

ts|2 Q2
d

1024 π5

(1 − s1 − s2)

(1− s1)2s1(1− s2)2s2
r0 . (3)

where

r0 = −48s32s
3
1 + 96s22s

3
1 − 56s2s

3
1 + 8s31 + 96s32s

2
1 − 192s22s

2
1 + 112s2s

2
1 − 56s32s1 +

112s22s1 − 96s2s1 + 8s1 + 8s32 + 8s2
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The complete order αs correction to the double differential decay width dΓ77/(ds1 ds2) is obtained by adding the

renormalized virtual corrections and the bremsstrahlung corrections. Explicitly we obtain

dΓ
(1)
77

ds1 ds2
=

α2 m̄2
b(µ)m

3
b |C7,eff (µ)|2 G2

F |VtbV
∗

ts|2 Q2
d

1024 π5
× αs

4π
CF

[ −4 r0 (1− s1 − s2)

(1− s1)2 s1 (1 − s2)2 s2
log

µ

mb

+ f

]

, (4)

where f can be found explicitly in [8].

The order αs correction dΓ
(1)
77 /(ds1ds2) in Eq. (4) to the double differential decay width for b → Xsγγ was the

main result of our paper [8].

III. SOME NUMERICAL ILLUSTRATIONS

In our procedure the NLL corrections have three sources: (a) αs corrections to the Wilson coefficient C7,eff (µ), (b)

expressing m̄b(µ) in terms of the pole mass mb and (c) virtual- and real- order αs corrections to the matrix elements.

To illustrate the effect of source (c), which is worked out for the first time in our paper [8], we show in Fig. 1 (by

the long-dashed line) the (partial) NLL result in which source (c) is switched off. We conclude that the effect (c) is

roughly of equal importance as the combined effects of (a) and (b).

For completeness we show in this figure (by the dotted line) also the result when QCD is completely switched off,

which amounts to put µ = mW in the LL result.

From Fig. 1 we see that the NLL results are substantially smaller (typically by 50% or slightly more) than those

at LL precision, which is also the case when choosing other values for s2.

In the numerical discussion above, we have systematically converted the running b-quark mass m̄b(µ) in terms of

the pole mass mb. As perturbative expansions often behave better when expressed in terms of the running mass, we

also studied the results obtained when systematically converting mb in terms of m̄b(µ). After doing also this version,

we observe the following: Generally speaking, NLL corrections are not small for both cases, when taking into account

the full range of µ, i.e., mb/2 < µ < 2mb. More precisely, in the MS version they are large for µ = mb/2 and smaller

for larger values of µ, while in the pole mass version they are large for all values of µ.

We stress that the numerically important contributions involving the operator O2 are not discussed in our paper.

Therefore, the issue concerning the reduction of the µ dependence at NLL precision cannot be addressed at this level.

Finally, the relevant input parameters that we used in our analysis together with the values of the Wilson coefficient

C7 and the strong coupling αs at different values of the scale µ are listed in Table I.

Parameter Value

mb(pole) 4.8 GeV

mt(pole) 175 GeV

MW 80.4 GeV

MZ 91.19 GeV

GF 1.16637 × 10−5 GeV−2

VtbV∗

ts
0.04

α−1 137

αs(MZ) 0.119

αs(µ) C0
7,eff

(µ) C1
7,eff

(µ)

µ = MW 0.1213 −0.1957 −2.3835

µ = 2mb 0.1818 −0.2796 −0.1788

µ = mb 0.2175 −0.3142 0.4728

µ = mb/2 0.2714 −0.3556 1.0794

TABLE I: Left: Relevant input parameters . Right: αs(µ) and the Wilson coefficient C7,eff (µ) at different values of the scale µ.

IV. CONCLUDING REMARKS

In the present work we calculated the set of the O(αs) corrections to the decay process B̄ → Xsγγ originating

from diagrams involving O7. To perform this calculation, it is necessary to work out diagrams with three particles

(s-quark and two photons) and four particles (s-quark, two photons and a gluon) in the final state. From the

technical point of view, the calculation was made possible by the use of the Laporta Algorithm to identify the needed
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FIG. 1: Frames 1)-3): Double differential decay width dΓ77/(ds1ds2) as a function of s1 for s2 fixed at s2 = 0.2. The dotted(black),

the short-dashed(red) and the solid line(blue) shows the result when neglecting QCD-effects, the LL and the NLL result, respectively.

The long-dashed line(purple) represents the (partial) NLL result in which the virtual- and bremsstrahlung corrections worked out in our

paper [8] are switched off. In the frames 1), 2) and 3) the renormalization scale is chosen to be µ = mb/2, µ = mb and µ = 2mb,

respectively. Down right: The relevant phase-space region for s1 and s2.

master integrals and by applying the differential equation method to solve the master integrals. When calculating

the bremsstrahlung corrections, we take into account only terms proportional to the leading power of the hadronic

mass. We find that the infrared and collinear singularities cancel when combining the above mentioned approximated

version of bremsstrahlung corrections with the virtual corrections. The numerical impact of the NLL corrections is

large: for dΓ77/(ds1 ds2) the NLL result is approximately 50% smaller than the LL prediction.
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