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The use of assisted reproductive technologies (ART) worldwide has led to the conception
and birth of over eight million babies since being implemented in 1978. ART use is currently
on the rise, given growing infertility and the increase in conception age among men and
women in industrialized countries. Though obstetric and perinatal outcomes have
improved over the years, pregnancies achieved by ART still bear increased risks for
the mother and the unborn child. Moreover, given that the first generation of ART offspring
is now only reaching their forties, the long-term effects of ART are currently unknown. This
is important, as there is a wealth of data showing that life-long health can be predetermined
by poor conditions during intrauterine development, including irregularities in the structure
and functioning of the placenta. In the current review, we aim to summarize the latest
available findings examining the effects of ART on the cardiometabolic, cognitive/
neurodevelopmental, and behavioral outcomes in the perinatal period, childhood and
adolescence/adulthood; and to examine placental intrinsic factors that may contribute to
the developmental outcomes of ART offspring. Altogether, the latest knowledge about life
outcomes beyond adolescence for those conceived by ART appears to suggest a better
long-term outcome than previously predicted. There are also changes in placenta structure
and functional capacity with ART. However, more work in this area is critically required,
since the potential consequences of ART may still emerge as the offspring gets older. In
addition, knowledge of the placenta may help to foresee and mitigate any adverse
outcomes in the offspring.
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INTRODUCTION

Assisted reproductive technologies (ART) are increasingly used worldwide, to help couples conceive
a child, most notably in Europe, where the largest number of ART treatments are performed (De
Geyter, 2018; De Geyter et al., 2020). It is estimated that between 1978 - when the first in vitro
fertilized child was born - and 2018, over eight million babies were born following ART worldwide
(De Geyter, 2018; Sunderam et al., 2019). Though obstetric and perinatal outcomes have improved
over the years through the advent of single embryo transfer (Hoyos and Ory, 2021), pregnancies

Edited by:
João Ramalho-Santos,

University of Coimbra, Portugal

Reviewed by:
Susana Pereira,

Center of Neurosciences and Cell
Biology, University of Coimbra,

Portugal

*Correspondence:
Mariana Schroeder

mariana.schroeder@ibmm.unibe.ch

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Molecular and Cellular Reproduction,
a section of the journal

Frontiers in Cell and Developmental
Biology

Received: 28 March 2022
Accepted: 05 May 2022
Published: 20 May 2022

Citation:
Schroeder M, Badini G,

Sferruzzi-Perri AN and Albrecht C
(2022) The Consequences of Assisted

Reproduction Technologies on the
Offspring Health Throughout Life: A

Placental Contribution.
Front. Cell Dev. Biol. 10:906240.
doi: 10.3389/fcell.2022.906240

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 9062401

MINI REVIEW
published: 20 May 2022

doi: 10.3389/fcell.2022.906240

http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.906240&domain=pdf&date_stamp=2022-05-20
https://www.frontiersin.org/articles/10.3389/fcell.2022.906240/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.906240/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.906240/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.906240/full
http://creativecommons.org/licenses/by/4.0/
mailto:mariana.schroeder@ibmm.unibe.ch
https://doi.org/10.3389/fcell.2022.906240
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.906240


achieved by ART still appear to bear increased risks for the
mother and the unborn child (rewiewed in Qin et al., 2015, 2016).
Whether the additional maternal and neonatal risks are due to the
technology itself or underlying infertility-linked factors remains
unresolved (Hoyos and Ory, 2021). When the obstetric and
perinatal outcomes of ART and spontaneously conceived (SC)
pregnancies were compared using the samemother as control, the
results were similar (Ganer Herman et al., 2021), suggesting that
health outcomes may be predominantly linked to the parents and
not necessarily to ART (Hwang et al., 2018; Molinaro, 2021).

The phenomenon of an adverse in utero environment leading to
the development of diseases later in life is well-known and referred to
as the “developmental origin of health and disease” hypothesis. This
states that the fetus undergoes adaptive changes to maintain
homeostasis and to prepare the body for postnatal life. These
adaptations depend on numerous factors, such as the type, length,
and timing of the insult. Depending on their specific developmental
windows, some organs may be programmed differently than others
(Barker, 2012). To date, many conditions are believed to lead to fetal
programming, including maternal under/overnutrition, smoking,
physical inactivity, and psychological stress (Ravelli et al., 1999;
Fleming et al., 2018; Lahti-Pulkkinen et al., 2018), preterm birth
(Pandey et al., 2012; Qin et al., 2015; Ombelet et al., 2016; Qin et al.,
2016; Hwang et al., 2018; Chang et al., 2020; Cochrane et al., 2020),
gestational diabetes mellitus (GDM) (Chaveeva et al., 2011; Pandey
et al., 2012; Qin et al., 2015, 2016; Mohammadi et al., 2020),
preeclampsia (Chaveeva et al., 2011; Pandey et al., 2012; Qin et al.,
2015, 2016; Almasi-Hashiani et al., 2019; Petersen et al., 2020), and
infections (Fleming et al., 2018; Hwang et al., 2018; Lahti-Pulkkinen
et al., 2018) (Figure 1).Gestational insults lead to a 2–10-fold increase

in the susceptibility to cardiovascular disease (CVD), type-2 diabetes
mellitus (T2DM), obesity, cognitive dysfunction, and developmental
disorders (e.g., autism, Asperger’s, and Rett’s syndromes) (Godfrey
and Barker, 2000; Jirtle and Skinner, 2007; Van Den Bergh, 2011;
Reynolds and Caton, 2012). In addition, heritable environmentally-
induced epigenetic modifications resulting from gestational insults
may also be transmitted across generations (Jirtle and Skinner, 2007;
Nilsson et al., 2018; Beck et al., 2022).

While the exact mechanisms underlying developmental
programming for each disease are yet to be elucidated, the
placenta is believed to play a crucial role in this process
(Reynolds and Caton, 2012). Placental nutrient and oxygen
supply are vital for fetal development, thus an alteration in
placental structure or function is of key relevance for fetal
programming. Under adverse environmental conditions, the
placenta undergoes adaptive changes to optimize nutrient and
oxygen transport to the fetus (Burton et al., 2016). Such
adaptions include changes in placental blood flow, morphology,
transporter expression, and alterations in the epigenetic profile
(Barker et al., 2010a, 2010b, 2012; Eriksson et al., 2011; Barker
and Thornburg, 2013). These may, in turn, be exacerbated in
pregnancies achieved through ART, considering the increased
risks for pregnancy complications compared to SC pregnancies,
and that pregnancies achieved by ART imply more stress, due to the
many procedures the mother and fetus endure (Lahti-Pulkkinen
et al., 2018).

In the current review, we aim to summarize the available
knowledge on the effects of ART on offspring cardiometabolic,
cognitive/neurodevelopmental, and behavioral outcomes, and to
examine placental morphological, functional and epigenetic

FIGURE 1 | The effect of the use of ART on pregnancy complications, placental and fetal adaptations, and perinatal health outcomes. Legend: SGA: Small for
Gestational Age. FET: Frozen Embryo Transfer. IUI: Intra-Uterine Insemination, OI: Ovulation Induction with Clomiphene citrate.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 9062402

Schroeder et al. Placenta/Health Outcomes in ART

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


factors that may contribute to the developmental outcomes of
ART offspring in humans. ART includes procedures like in vitro
fertilization (IVF), intra-cytoplasmatic sperm injection (ICSI),
surgical sperm retrieval, ovarian hyperstimulation, embryo
culture, and embryo freezing. In the current review, we will
focus on data reporting the effects of IVF and ICSI, as these
are the most used.

PERINATAL OUTCOME IN NEWBORNS
CONCEIVED BY ART

Many studies have investigated pregnancy outcomes, as well as
short- (i.e. perinatal) and long-term (early life, adolescence, and
young adulthood) outcomes in people born after ART
procedures. Although most children born through ART are
healthy, conception by ART has been linked to a variety of

health complications and conflicting reports exist (See Figures
1, 2). For example, an increased risk for adverse perinatal
outcomes including low birth weight (LBW) and small for
gestational age (SGA) was shown when compared to SC
pregnancies (Chaveeva et al., 2011; Pandey et al., 2012;
Ombelet et al., 2016; Luke et al., 2017; Hwang et al., 2018;
Chang et al., 2020; Cochrane et al., 2020). In contrast, a recent
report found no differences and even reduced risk of SGA in ART
offspring (Glatthorn et al., 2021). Findings pertaining birth
weight were usually analyzed including the maternal weight/
height as a covariate. Congenital anomalies also appear to be
more prevalent in ART offspring compared to SC pregnancies
(Hansen et al., 2012; Donzelli et al., 2015; Qin et al., 2016; Hwang
et al., 2018; Valenzuela-Alcaraz et al., 2019; Chang et al., 2020),
most notably for the cardiovascular (Valenzuela-Alcaraz et al.,
2013, 2018, 2019), gastrointestinal and central nervous systems
(Qin et al., 2015; Chang et al., 2020). Importantly, further studies

FIGURE 2 | The effect of the use of ART on childhood, adolescent and adult health outcomes. Legend: LH: Luteinizing Hormone; DHEAS:
Dehydroepiandrosterone sulfate; HDL: High-density lipoprotein; ADHD: Attention-deficit/hyperactivity disorder; BP: Blood pressure; BMI: Body Mass Index, GTT:
Glucose Tolerance Test, ITT: Insulin Tolerance Test, ET: Embryo Transfer.
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reporting on birth defects showed these were linked to underlying
infertility and not necessarily to ART, since children born to sub-
fertile parents show similar health outcomes compared to ART
conceived offspring (Davies et al., 2012; Levi Setti et al., 2016;
Hwang et al., 2018). Finally, it has been suggested that ART may
lead to an increased risk of cancer in the offspring, specifically for
hematological malignancies, leukemia, neural and hepatic tumors
(Hargreave et al., 2013; Wang et al., 2019). However, further
studies showed no increased risk of cancer (Raimondi et al., 2005;
Levi-Setti and Patrizio, 2018).

METABOLIC AND CARDIOVASCULAR
HEALTH OF CHILDREN CONCEIVED
BY ART
The cardiovascular changes observed among ART-conceived
children starting at the age of 3 years include dilated atria,
more globular ventricles, endothelial dysfunction, signs of
systolic and diastolic dysfunction, and systemic and
pulmonary hypertension (Sakka et al., 2010; Zhou et al., 2014;
Liu et al., 2015; von Arx et al., 2015; Guo et al., 2017; Valenzuela-
Alcaraz et al., 2019; Zandstra et al., 2020). At the age of
6–10 years, ART offspring also presented a higher risk for
metabolic dysfunction, with elevated fasting glucose, insulin,
and insulin resistance compared to SC children (Chen et al.,
2014; Pontesilli et al., 2015; Guo et al., 2017; Cui et al., 2020). They
also presented elevated body fat and skinfolds (Ceelen et al., 2007;
Hart and Norman, 2013). In contrast, Scherrer et al reported no
differences in lipid profile, basal glucose, glucose and insulin
tolerance, blood pressure, or body mass index (BMI) in ART
children compared to SC controls. However, they found general
and pulmonary vascular dysfunction in a cohort of 11-year-old
children born through ART (Scherrer et al., 2012). In addition,
despite presenting similar gross body size, the growth patterns of
ART children appear strikingly similar to those of SC children
who develop T2DM and CVD later in life (Barker et al., 2005;
Magnus et al., 2021; Roseboom and Eriksson, 2021). These
adverse outcomes persist when looking at singleton ART
pregnancies only and thus, cannot be explained by multiple
pregnancies after the use of ART (Pandey et al., 2012; Qin
et al., 2015; Ombelet et al., 2016; Qin et al., 2016) (Figure 2).

COGNITIVE AND
NEURODEVELOPMENTAL HEALTH OF
NEWBORNS AND CHILDREN CONCEIVED
BY ART

ART children show similar neurological and psychomotor
developmental faculties up to 3 years of age even when born
preterm (Roychoudhury et al., 2021) compared with SC children
(Nekkebroeck et al., 2008; Carson et al., 2010; Sánchez-Soler et al.,
2020). Moreover, singletons and twins of both sexes conceived by
ART perform as well as SC children once they reach school
(Wagenaar et al., 2008; Punamäki et al., 2016; Norrman et al.,

2018; Luke et al., 2020). Cognitive function, visual-motor ability,
attention, and verbal skills of ART children were similar to SC
children (Farhi et al., 2021a). Some reports suggested that ART does
exert some negative influences on cognitive development. One study
found a 4-fold higher risk of suspected developmental delay and
cerebral palsy in IVF versus SC singletons. However, the effect
disappeared when only twins were taken into account (Strömberg
et al., 2002). Another study found a significant increase in the risk of
mental retardation in ART children during their first year of life, but
this association disappeared when the analysis was restricted to
singletons (Sandin et al., 2013). There have been broad discussions
about whether the use of ART is associated with the diagnosis of
autism spectrum disorders (ASD) in the offspring. While most
studies were unable to find any associations (Sandin et al., 2013;
Lung et al., 2018; Jenabi et al., 2020; Farhi et al., 2021b), a few studies
reported a significantly higher risk for ASD in ART offspring
(Fountain et al., 2015; reviewed in Liu et al., 2017). However, the
effect was substantially reduced when adverse prenatal and perinatal
outcomes and demographics were taken into account (Fountain
et al., 2015). Remarkably, a further study reported that ART children
had a considerably lower risk of developing infantile autism
compared to SC children (Maimburg and Vaeth, 2007).
Altogether, the mental and sensory health outcomes and
communication skills of children born through ART are
reassuring and like that from SC pregnancies (Figure 2).

EFFECTSOFARTONLONG-TERMHEALTH
(ADOLESCENTS AND YOUNG ADULTS)

Given that the first generation of ART children is now only reaching
their early forties, there are, to date, no studies investigating health
outcomes in adults of older age, i.e., when developmental
programming would be expected to manifest more robustly.
However, a few recent studies reporting on the health of
adolescents and young adults suggest the long-term health
outcomes of ART may be less deleterious than anticipated.
Accordingly, the early-life abnormalities in blood pressure,
reported in ART children, disappeared by the time they reached
adolescence. Fourteen-year-old boys and girls conceived by ICSI had
comparable resting systolic and diastolic blood pressure as SC
controls (Belva et al., 2007; 2012b). A further comprehensive
investigation of metabolic syndrome in a cohort of 18–22-year-
olds conceived through ART found similar outcomes to SC
individuals for both sexes. Only high-density lipoprotein
cholesterol concentrations were lower in ART men (Belva et al.,
2018). Another recent study investigated various cardiovascular and
metabolic outcomes in an ART cohort including 22–35-year-old
men and women (Juonala et al., 2020) and reported no evidence of
an altered risk factors, including markers of subclinical
atherosclerosis. An investigation including 18–28-year-old adults
from ART pregnancies self-reporting on their perceived current
quality of life, BMI, pubertal development, and educational
achievement found no differences when compared to SC adults
(Halliday et al., 2014). Finally, Chen et al reported normal metabolic
parameters in 20–21-year-old ART offspring. However, when
exposed to a 3-day overfeeding protocol,, ART offspring showed
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increased systolic blood pressure and reduced peripheral glucose
sensitivity, suggesting ART offspring may be at increased risk to
develop metabolic diseases when challenged (Chen et al., 2014). In
addition, increased peripheral adiposity (Ceelen et al., 2007) and
higher systolic and diastolic blood pressure levels were reported in
8–18-year-old IVF offspring (Ceelen et al., 2008a).

Male adolescents conceived by ART showed normal endocrine
gonadal function at puberty, but their sperm concentration and
quality were significantly lower (Ceelen et al., 2008b; Belva et al.,
2019). These findings suggest a possible impact of ART on
multigenerational outcomes, which should be further investigated.
Pubertal stage and age at menarche were similar in IVF and SC
female adolescents, but IVF females presented elevated
dehydroepiandrosterone and luteinizing hormone levels (Ceelen
et al., 2008b) particularly if they were also SGA (Sakka et al.,
2010), indicating impaired hypothalamic-pituitary-gonadal axis.

Finally, the risk of developing psychiatric disorders was studied in
a Finish cohort, comparing ART and SC offspring from childhood
until young adulthood (Rissanen et al., 2020). This study showed a
modest increase in the likelihood of a general psychiatric diagnosis.
In addition, ART children received their diagnoses on average
2 years earlier than SC children, probably because ART-treated
individuals/couples might be more likely to seek medical help for
their children. Of note, the reported effect disappeared with time,
and ART young adults ended up displaying a lower cumulative
incidence of psychiatric diagnoses than SC offspring regardless of sex
(Rissanen et al., 2020).

In conclusion, while the knowledge about health outcomes
beyond adolescence for those conceived by ART is still scarce,
most of the findings are encouraging and suggest that the
abnormalities reported in ART babies and children seem
transitory, and are no longer observed when they become older
(Halliday et al., 2014; Rissanen et al., 2020; Magnus et al., 2021)
(Figure 2).

INTRAUTERINE
MECHANISMS–PLACENTAL
PROGRAMMING IN ART
Placental Morphology, Gene Expression
and Function
In the case of ART, there are limited data available regarding
morphological changes in the human placenta (Figure 1). Some
studies reported increased placental weight along with reduced
birthweight and, thus, an increased placental weight to
birthweight ratio in ART compared to SC pregnancies (Daniel
et al., 1999; Haavaldsen et al., 2012; Eskild et al., 2013). Increased
placental thickness and elevated rate of abnormal cord insertion
were also reported after ART (Daniel et al., 1999; Cochrane et al.,
2020). In contrast, other groups were unable to detect any placental
differences when comparing IVF and SC newborns (Yanaihara et al.,
2018). Of note, many studies investigating morphological changes in
the placenta after ART were performed using murine models. The
outcomes of these studies with regard to the effects of ART on fetal
and placental development have been discussed elsewhere
(Hemberger et al., 2020).

Beyondmorphological changes, abnormalities in gene expression
that could reflect alterations in placental function have also been
reported in ART. Using a selective twin-to-singleton fetal reduction
strategy and collection of first-trimester placentas in vivo, Zhao et al
showed that 1910 and 1,495 genes were up- and down-regulated,
respectively in the placenta by IVF (Zhao et al., 2019). This included
alterations in genes involved in biological pathways, like the immune
response, transmembrane signaling, carbon, fatty acid and amino
acid metabolism, cell cycle, stress control, invasion, and
vascularization (Zhao et al., 2019). A second study investigated
first-trimester samples from chorionic villus sampling and
included a non-IVF fertility treatment group in addition to the
IVF and SC groups. Herein the authors reported modest differences
in the transcriptome and suggested that underlying infertility, in
addition to treatment-related factors, might be key contributors to
the observed gene expression abnormalities in the IVF group (Lee
et al., 2019). Similarly, a recent study that compared first-trimester
maternal plasma metabolomic profiles in women undergoing IVF,
non-IVF fertility treatment, and SC (Sun et al., 2019) found elevated
circulating levels of several lipid and lipid-related components (e.g.,
steroidmetabolites, and lipids with docosahexaenoyl acyl chains, and
acylcholines) in the infertile groups of women, especially when IVF
was performed. Such changes may have consequences for placental
lipid transfer and steroid hormone production, and may contribute
to the adverse fetal outcomes associated with ART and infertility
(Sun et al., 2019).

At term, IVF placentas show altered global gene expression,
leading to an over-representation of certain biological pathways as
observed in the first-trimester samples, such as immune response,
transmembrane transport, cell cycle control, stress control, invasion,
vascularization, and amino acid and cholesterol metabolism (Zhang
et al., 2010). Several of the genes whose expression differed the most
between IVF and the control groups have been implicated in chronic
metabolic disorders like obesity and T2DM, supporting the theory
that ART induces fetal programming of metabolic diseases and may
do so via alterations in the placenta (Katari et al., 2009). In contrast,
another study reported modest effects in the expression of 108
imprinted genes in the placenta (Litzky et al., 2017) and suggested
that differences in gene expression are more likely associated with
infertility rather than the IVF procedure itself.

Placental Epigenetics
ART procedures occur during a developmental time that is critical
for epigenetic reprogramming.Hence, perturbations due to technical
manipulations during this sensitive time may lead to changes in the
epigenetic profile of the conceptus (Monk et al., 2019). This is
relevant for the finely-tuned expression of imprinted genes, of which
about 100 have been identified in humans. These genes are
stimulated by fetal signals and have an impact on transplacental
nutrient allocation, placental growth, and vascularization, directly
affecting fetal growth and long-term health (Reik et al., 2003;
Morison et al., 2005). They are a subset of epigenetically-
regulated genes that are selectively expressed from the maternal
or paternal allele (Thamban et al., 2020). Imprinted genes are, by
definition, functionally haploid and are thereby potentially more
susceptible to mutations (Fowden et al., 2011). Epigenetic
modifications might occur either at the DNA level via
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methylation/hydroxymethylation, at the protein level via histone
modifications, or at the mRNA level via short and long non-coding
RNAs (Ghai and Kader, 2021). Imprinted genes are abundantly
expressed in fetal and placental tissues, and DNA methylation of
imprinted genes is established in a parent-specific manner during
gametogenesis. Several studies highlighted an altered epigenetic
status in gametes from infertile couples, raising the possibility of
a heightened risk of imprinting defects and somatic epigenetic
changes in ART-conceived children (Van Montfoort et al., 2012;
Lazaraviciute et al., 2014; Choux et al., 2015, 2018; Cortessis et al.,
2018). Specifically, the DNA methylation level of several imprinted
genes was altered in ART compared to SC placentas (VanMontfoort
et al., 2012; Choux et al., 2015, 2018). Furthermore, these differences
were associated with gene expression differences at both imprinted
and non-imprinted genes (Katari et al., 2009). Thus, aberrant
methylation of imprinted genes may be an indicator of more
global epigenetic instability (Denomme and Mann, 2012).
Specifically, H19/IGF2, LINE-1Hs, ERVFRD-1, and KCNQ1OT1
are affected in ART through changes in placental DNA
methylation (Turan et al., 2010; Nelissen et al., 2013; Choux
et al., 2018; Dong et al., 2019). Expression of H19 is linked with
fetal and placental growth suppression (Gao et al., 2012) and was
significantly higher (Turan et al., 2010; Nelissen et al., 2013, 2014;
Sakian et al., 2015; Chi et al., 2020), while IGF2 expression, which
increases fetal and placental growth (Sakian et al., 2015; Chi et al.,
2020) was significantly lower in ART compared with SC placentas
(Nelissen et al., 2014; Sakian et al., 2015; Chi et al., 2020). However,
changes in DNA methylation do not always correlate with
alterations in transcriptional levels (Rancourt et al., 2012). A
further study reported no significant differences in gene
expression despite methylation changes between placentas from
ART and SC pregnancies (Litzky et al., 2017). Finally, a recent
longitudinal study that assessed genome-wide changes in DNA
methylation in blood collected from newborns and adults
conceived by ART showed that variations observed at birth
largely resolved by the time offspring reached adulthood and
found no evidence of any impact on development and general
health (Novakovic et al., 2019).

An additional factor to consider when assessing impacts of ART
is the medium used during embryo culture, since using media that
lacks essential amino acids may affect placental DNA methylation
and can cause aberrant imprinting in the embryo (Menezo et al.,
2010; Eskild et al., 2013). Moreover, the available evidence further
indicates that subfertility itself is a risk factor for imprinting diseases
and that methylation errors are already present in sperm and
oocytes. Thus, the unequivocal proof of a causal relationship
between imprinted diseases and IVF or ICSI treatments is still
lacking (Vermeiden and Bernardus, 2013) (Figure 1).

CONCLUSION

In the current review, we aimed to examine the latest available
findings examining the effects of ART on behavioral and health
related outcomes in the offspring throughout the lifespan, including
the potential contribution of the placenta. It is hypothesized that
ART may affect the development of gametes and embryo, and

epigenetic adaptations aiming to protect the fetus may exacerbate
vulnerability to diseases in the offspring. In fact, a combination of
genetics, the intergenerational and the current environments in
addition to the ART procedure are all involved in disease
causation (Hochberg et al., 2011). The long-term effects remain
to be seen once the first-generation of ART offspring reaches an
older age (i.e. > 65), a time-point where fetal programming effects
may still emerge.

Depending on later life outcomes, the need to identify those at risk
from an early stage will be imperative to treat and prevent their
development throughout the lifespan in individuals conceived by
ART. Though it is difficult to establish themechanisms underlying the
changes observed among ART newborns and children, it is plausible
that the placenta could play a key role in the process. Since placental
size and shape are indicative of its efficiency and function, and the
imprinted genes in the placenta appear to regulate nutrient allocation,
the observed changes could cause potential epigenetic adaptations in
the fetus that may further exacerbate disease susceptibility.

In addition, each step utilized in ART (i.e. ovarian stimulation,
in vitro culture, culture media, cryopreservation technique) could
represent a risk for the pregnancy (Palomba et al., 2016) and in turn,
the placental response to environmental stress can further define the
outcome for the offspring (Litzky and Marsit, 2019). E.g., the use of
fresh versus thawed embryos in IVF can affect weight, height, and
circulating growth factor and lipid profiles in the resulting children
(Green et al., 2013). In addition, evolving laboratory procedures used
forART, and sometimes inappropriate choice of control groups,make
comparisons between studies difficult. Since ART is predominantly
used on infertile couples, distinguishing between the effects of ART
procedures and those of underlying infertility is challenging. Further
disregarded aspects that should be considered when assessing the
long-term impacts of ART include, e.g. differences in lifestyle and the
high anxiety and stress levels experienced by couples that are unable to
conceive naturally (Litzky and Marsit, 2019).

Altogether, our work highlights the need for further study into the
role of potential confounding factors when assessing the short- and
long-term effects of ART for the offspring, and whether these effects
could be passed to the next generation. While there is a need for
additional studies to investigate the effects of ART on the offspring
when they are >65 years, based on the currently available literature,
ART offspring until around 40 years of age do not appear to be at
greater risk of developing persistent life-long health complications.
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