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Abstract: Infection with some mucosal human papillomavirus (HPV) types is the etiological cause
of cervical cancer and of a significant fraction of vaginal, vulvar, anal, penile, and head and neck
carcinomas. DNA repair machinery is essential for both HPV replication and tumor cells survival
suggesting that cellular DNA repair machinery may play a dual role in HPV biology and pathogenesis.
Here, we silenced genes involved in DNA Repair pathways to identify genes that are essential for
the survival of HPV-transformed cells. We identified that inhibition of the ATM/CHK2/BRCA1
axis selectively affects the proliferation of cervical cancer-derived cell lines, without altering normal
primary human keratinocytes (PHK) growth. Silencing or chemical inhibition of ATM/CHK2 reduced
the clonogenic and proliferative capacity of cervical cancer-derived cells. Using PHK transduced with
HPV16 oncogenes we observed that the effect of ATM/CHK2 silencing depends on the expression
of the oncogene E6 and on its ability to induce p53 degradation. Our results show that inhibition
of components of the ATM/CHK2 signaling axis reduces p53-deficient cells proliferation potential,
suggesting the existence of a synthetic lethal association between CHK2 and p53. Altogether, we
present evidence that synthetic lethality using ATM/CHK2 inhibitors can be exploited to treat cervical
cancer and other HPV-associated tumors.

Keywords: HPV; DNA repair; synthetic lethality; ATM; CHK2; BRCA1

1. Introduction

Human Papillomaviruses (HPV) are small, non-enveloped, epitheliotropic, double-
stranded DNA viruses commonly detected in anogenital epithelia, oral cavity mucosa,
and skin. Mucosal HPV types can be classified as low- or high-oncogenic risk according
to the main pathologies caused by these agents. Infection with low-risk HPV types is
associated with the development of genital warts while high-risk types, particularly HPV
type 16 (HPV16) and type 18 (HPV18), are associated with cervical cancer, the fourth most
common cancer in women worldwide [1,2]. Infection with HPV16 has also been associated
with a significant fraction of anal, vulvar, vaginal, penile, and oropharynx carcinomas. At
present, three HPV vaccines have been approved for use in women and men in several
countries. These vaccines effectively reduce the risk of infection by the HPV types included
in their formulations and will undoubtedly contribute to the reduction of HPV-related
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diseases burden in the future. However, these vaccines are prophylactic and not effective
for treating established infections or tumors. Therefore, the development of therapeutic
strategies targeting HPV-related lesions is still a challenge.

Genomic instability is a hallmark of HPV infection [3–5]. During HPV infection, sev-
eral proteins involved in DNA repair are recruited to viral replication centers. These cellular
factors are crucial for viral genome amplification and co-localize with viral replication foci
in the nucleus of the host cell [6,7]. Interestingly, several reports have shown that HPV early
proteins may promote genome instability. For instance, it was observed that the combined
expression of E1 and E2 proteins caused the increase of reactive oxygen species (ROS) levels
and the accumulation of DNA damage [8]. Moreover, results from different groups showed
that sustained E1 and E2 activity may induce the accumulation of DNA lesions through
the replication of episomal and integrated viral genomes [9–11]. The detailed description
of the mechanisms involved are beyond the scope of our study and the reader is referred
to some excellent reviews [12,13]. High-risk HPV express two viral oncogenes, E6 and E7,
which sustained expression is required during malignant transformation. These oncopro-
teins target several host factors to promote a cellular milieu permissive for efficient viral
replication. For instance, E6 and E7 target tumor suppressors p53 and pRB, respectively,
and induce their degradation to promote unscheduled cell proliferation while avoiding
apoptosis [14,15]. It has been observed that expression of the HPV oncogenes induces
abnormal centrosome numbers, aberrant mitotic spindle pole formation and modulates
the cellular response to DNA damage [6,11,16–19]. Interestingly, HPV16 E6 protein ex-
pression has been associated to the loss of p53R2 activation in response to DNA damage
and p53-mediated oxidative stress [20] while fibroblasts expressing HPV16 E6 and/or E7
are deficient in nucleotide excision repair (NER) [21]. Moreover, the expression of both
oncoproteins is associated with the occurrence of DNA breaks facilitating the integration of
exogenous DNA into the genome of the host cell [19,22].

These observations suggest that DNA damage repair machinery may play a dual role in
HPV biology and pathogenesis. First, it is important for efficient viral genome amplification
during HPV infection. Second, the presence of efficient DNA repair mechanisms may be
crucial to maintaining the minimal genome stability necessary for tumor cells to survive
and proliferate [13]. Considering this, we hypothesize that HPV-transformed cells may
be highly dependent on specific DNA damage repair pathways. To test this hypothesis,
we transduced cervical cancer-derived cell lines (HeLa and SiHa) and primary human
keratinocytes (PHK) with specific shRNA targeting 116 genes involved in DNA Repair
pathways. This approach allowed us to identify genes essential for HPV-transformed cells
survival, but not required for normal cells viability. We show that the down-regulation
of ATM, BRCA1, and CHEK2 genes expression selectively affected HPV-positive cervical
cancer-derived cells proliferation/viability. Moreover, we show that gene silencing or
chemical inhibition of the kinases encoded by ATM and CHEK2 reduced the clonogenic
and proliferative capacity of cervical cancer-derived cells. We provide evidence that
this effect is paralleled by an increase in the number of hypodiploid cells. Experiments
conducted using PHK transduced with HPV16 oncogenes show that the effect of ATM,
CHEK2 and BRCA1 silencing depended on the expression of E6 oncogene and on its
ability to induce p53 degradation. Importantly, we provide evidence that treatment of
p53-deficient cells from different origins with ATM/CHK2 inhibitors downregulates cell
proliferation. Our results show that inhibition of components of the ATM signaling axis
reduces p53-deficient cells proliferation potential, suggesting the existence of a synthetic
lethal association between CHEK2 and p53. These preclinical observations may prove
relevant for the development of alternative therapeutic strategies to HPV-positive tumors.
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2. Results
2.1. ATM, BRCA1 and CHEK2 Are Essential for Proliferation/Viability of HPV-Positive Cervical
Cancer-Derived Cell Lines

Cellular DNA repair machinery plays a critical role in HPV life cycle [6,7]. Considering
this, we aimed to identify which genes involved in DNA repair pathways are required to
sustain cervical cancer-derived cell lines proliferation and viability. High-risk HPV positive
cell lines HeLa and SiHa were transduced with a commercial lentiviral-based library of
shRNA targeting one hundred and sixteen genes involved in DNA damage repair signaling
pathways. The library is composed of at least five different shRNA clones for each gene to
maximize the possibility of efficient gene silencing. Five days after infection, cell viability
was determined by Alamar Blue assay. The values of Alamar Blue reduction for each
cell line transduced with each shRNA clone were normalized to cells transduced with a
Scrambled control shRNA. Genes were considered as candidates when at least one shRNA
clone was able to reduce proliferation/viability more than 30% in both cervical cancer cell
lines (Supplementary Figure S1). We identified 39 shRNA clones targeting 23 different
genes that met this criterion (Figure 1A). We then sought to determine which of these
genes were essential for cervical cancer cell lines viability, but were not required for normal
primary human keratinocytes (PHK) survival. After transducing PHK, HeLa, and SiHa
cells with shRNA targeting the 23 candidate genes, we identified three members of the
ATM/CHEK2 signaling pathway (ATM, BRCA1, and CHEK2) which silencing reduced
HeLa and SiHa proliferation without affecting normal PHKs (Figure 1B). A similar result
was observed upon HMGB1 silencing and is reported elsewhere [23]. The silencing of all
other 19 genes reduced the viability of both normal PHK and cervical cancer-derived cell
lines (Supplementary Figure S2).
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Figure 1. Screening for genes critical for cervical cancer-derived cell lines viability. A lentiviral shRNA
library targeting 116 genes involved in DNA damage signaling/repair and tumor suppressors were
used to silence specific genes in cervical cancer cell lines and PHK. Cells were seeded in 96 wells
plates (2000 cells/well) and infected with lentiviral particles expressing specific shRNAs after 24 h.
Alamar Blue was added (10 µL/well) after 72 h and its reduction was determined after four hours by
absorbance measuring at 570 and 600 nm. Viability/proliferation inhibition values are presented as
relative to those observed in control cells (each parental cell line transduced with scramble shRNA).
(A) Candidate genes were arbitrary, defined as those which silenced reduced SiHa and HeLa cells
proliferation by 30% or more. (B) Genes identified were further validated in PHK to determine those
that induced inhibition of cell viability/proliferation preferentially in SiHa and HeLa cells (Student
t-test p < 0.05 [*] for all comparisons between PHK and tumor cells).

2.2. Gene Silencing or Chemical Inhibition of ATM and CHEK2 Reduces the Proliferation and
Clonogenic Capacity of Cervical Cancer-Derived Cells Lines

To further demonstrate the dependence of cervical cancer-derived cells lines on the
identified genes, we analyzed the effect of gene silencing using different shRNA on PHK,
HeLa and SiHa cells proliferation and clonogenic potential. Immunoblots against ATM and
CHK2 confirmed that two shRNA targeting ATM and three shRNA targeting CHEK2 were
able to strongly repress the expression of the target protein in the three cell lines (HeLa,
SiHa, and PHK) (Figure 2A). Growth curves indicate that the tumor-derived cell lines
expressing different shRNAs against ATM and CHEK2 had their proliferation potential
dramatically reduced, but that silencing of these genes did not affect the proliferation of
PHK (Figure 2B). Tumor cells (HeLa and SiHa) also exhibit reduced colony formation and
anchorage-independent growth potential upon ATM and CHEK2 silencing when compared
to cells expressing only scrambled shRNA (Figure 2C,D; Supplementary Figures S3 and S4).
Similar results were observed in cells expressing shRNAs against BRCA1 (Supplementary
Figure S5). These results indicate that ATM/CHK2 signaling pathway is important for
HPV-positive cells proliferation and may play a role in sustaining cervical cancer-derived
cells transformed phenotype.
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cervical cancer-derived cell lines. The expression of these genes in HeLa, SiHa, and PHK was silenced
using specific shRNAs. (A) Gene silencing was confirmed by analyzing the levels of the encoded
proteins by immunoblot. Cell growth curves, clonogenic and anchorage independent growth assays
were performed to determine the effect of gene silencing on cell proliferation. (B) For growth curves
cells were seeded in 24-wells plates (1000 cells/well) and counted daily for 8 days. For clonogenic
potential analysis (C) cells were seeded in 6-wells plates (100 cells/well) and allowed to grow for
two weeks, fixed, stained with crystal violet, and counted. For anchorage independent growth assays
(D), cells were seeded in 24-wells plates (500 cells/well) and allowed to grow for 30 days. Colonies
were stained with MTT and counted. Results presented are representative of three independent
experiments (Student t-test p < 0.05 [*] for all comparisons between control and treated cells).

2.3. Chemical Inhibition ATM Reduces Growth Potential and Viability of Cervical Cancer-Derived
Cell Lines

ATM protein kinase is activated by DNA damage. Once activated it triggers phospho-
rylation of its downstream targets leading to cell cycle arrest, DNA repair, or apoptosis.
Among its downstream targets there are several tumor suppressors proteins including
CHK2, BRCA1, p53, and histone H2AX [24]. ATM inhibition can be achieved by treatment
with caffeine (an ATM/ATR inhibitor) or, more specifically, by KU-55933 (an ATM spe-
cific inhibitor; supplementary Figure S6A), not interfering with endogenous levels of this
kinase [24]. Therefore, in order to confirm if ATM is critical for maintaining cervical cancer-
derived cell lines proliferation, we treated HeLa and SiHa cell lines, as well as normal PHK,
with 2 mM caffeine and 10 µM KU-55933. Our results show that, upon ATM inhibition with
caffeine or KU-55933, proliferation is strongly impaired in both cervical cancer cell lines,
but not in PHK (Figure 3A,B). Interestingly, HeLa and SiHa cells proliferation was also
impaired by treatment with 100 µM CHK2 inhibitor while normal PHKs were only slightly
affected by the treatment (Figure 3C; Supplementary Figure S6B). To further investigate
the effect of ATM and CHK2 inhibition on HPV-transformed cells, we performed a cell
cycle analysis by flow cytometry. We found that the treatment of SiHa and HeLa cells
with caffeine or KU-55933 decreased cell viability as demonstrated by the accumulation
of cells in sub-G1. The same was not observed or was observed to a much lesser extend
for PHK (Figure 3D). Viability dropped even more in HeLa and SiHa cells treated with a
CHK2-specific inhibitor. Once more, the effect of this inhibition was much less apparent
in PHK. Altogether, these data indicate that HPV-positive cervical carcinoma cell lines are
strongly dependent on ATM/CHK2 pathway for their survival.

Pathogens 2021, 10, x FOR PEER REVIEW 6 of 20 
 

 

Figure 2. ATM and CHEK2 are essential for the proliferation and clonogenic potential of HPV-
positive cervical cancer-derived cell lines. The expression of these genes in HeLa, SiHa, and PHK 
was silenced using specific shRNAs. (A) Gene silencing was confirmed by analyzing the levels of 
the encoded proteins by immunoblot. Cell growth curves, clonogenic and anchorage independent 
growth assays were performed to determine the effect of gene silencing on cell proliferation. (B) For 
growth curves cells were seeded in 24-wells plates (1000 cells/well) and counted daily for 8 days. 
For clonogenic potential analysis (C) cells were seeded in 6-wells plates (100 cells/well) and allowed 
to grow for two weeks, fixed, stained with crystal violet, and counted. For anchorage independent 
growth assays (D), cells were seeded in 24-wells plates (500 cells/well) and allowed to grow for 30 
days. Colonies were stained with MTT and counted. Results presented are representative of three 
independent experiments (Student t-test p < 0.05 [*] for all comparisons between control and treated 
cells). 

2.3. Chemical Inhibition ATM Reduces Growth Potential and Viability of Cervical Cancer-
Derived Cell Lines 

ATM protein kinase is activated by DNA damage. Once activated it triggers 
phosphorylation of its downstream targets leading to cell cycle arrest, DNA repair, or 
apoptosis. Among its downstream targets there are several tumor suppressors proteins 
including CHK2, BRCA1, p53, and histone H2AX [24]. ATM inhibition can be achieved 
by treatment with caffeine (an ATM/ATR inhibitor) or, more specifically, by KU-55933 (an 
ATM specific inhibitor; supplementary Figure S6A), not interfering with endogenous 
levels of this kinase [24]. Therefore, in order to confirm if ATM is critical for maintaining 
cervical cancer-derived cell lines proliferation, we treated HeLa and SiHa cell lines, as well 
as normal PHK, with 2 mM caffeine and 10 μM KU-55933. Our results show that, upon 
ATM inhibition with caffeine or KU-55933, proliferation is strongly impaired in both 
cervical cancer cell lines, but not in PHK (Figure 3A,B). Interestingly, HeLa and SiHa cells 
proliferation was also impaired by treatment with 100 μM CHK2 inhibitor while normal 
PHKs were only slightly affected by the treatment (Figure 3C; Supplementary Figure S6B). 
To further investigate the effect of ATM and CHK2 inhibition on HPV-transformed cells, 
we performed a cell cycle analysis by flow cytometry. We found that the treatment of SiHa 
and HeLa cells with caffeine or KU-55933 decreased cell viability as demonstrated by the 
accumulation of cells in sub-G1. The same was not observed or was observed to a much 
lesser extend for PHK (Figure 3D). Viability dropped even more in HeLa and SiHa cells 
treated with a CHK2-specific inhibitor. Once more, the effect of this inhibition was much 
less apparent in PHK. Altogether, these data indicate that HPV-positive cervical 
carcinoma cell lines are strongly dependent on ATM/CHK2 pathway for their survival. 

  
(A) (B) 

0

20

40

60

80

100

120

140 DMSO
KU55933

PHK HeLa SiHa

**** ****n.s.

Figure 3. Cont.



Pathogens 2022, 11, 637 7 of 19Pathogens 2021, 10, x FOR PEER REVIEW 7 of 20 
 

 

 
(C) 

 
(D) 

Figure 3. Inhibition of ATM and CHK2 reduces the proliferation/viability of HPV-positive cervical 
cancer-derived cell lines and induces the accumulation of sub-G1 cells. The activity of ATM and 
CHK2 kinases was inhibited using (A) caffeine (an inhibitor of ATM and ATR), (B) a specific 
inhibitor ATM and (C) a specific inhibitor of CHK2. Cells were seeded in 96 wells plates (5000 
cells/well). Cells were treated with the inhibitors for 72 h and their proliferation was assessed by 
Alamar Blue reduction. (D) The distribution of cells populations in the different phases of the cell 
cycle was determined by flow cytometry. Results presented are representative of three independent 
experiments (Student t-test p < 0.05 [*], p < 0.01 [**], p < 0.001 [***], p < 0.0001 [****] for comparisons 
between control and treated cells). 

2.4. Sensitivity of Cervical Cancer-Derived Cell Lines to ATM and CHK2 Inhibition Depends on 
the Ability of HPV E6 to Induce p53 Degradation 

Sustained expression of high-risk HPV oncogenes E6 and E7 is necessary to maintain 
the transformed phenotype of cervical cancer-derived cell lines [14,25]. Together, E6 and 
E7 proteins are able to interfere with cellular proliferation and apoptosis, especially due 
to their ability to induce p53 and pRb degradation, respectively [15]. Considering this, we 
aimed to investigate if the expression of these oncoproteins could play a role in the 
sensitivity of cervical cancer-derived cell lines to ATM and CHK2 inhibition. Our results 
indicate that PHK expressing HPV–16 oncoproteins were differentially affected by ATM 

Pr
ol

ife
ra

tio
n 

re
la

tiv
e 

to
 c

on
tro

l (
10

0%
)

Figure 3. Inhibition of ATM and CHK2 reduces the proliferation/viability of HPV-positive cervical
cancer-derived cell lines and induces the accumulation of sub-G1 cells. The activity of ATM and CHK2
kinases was inhibited using (A) caffeine (an inhibitor of ATM and ATR), (B) a specific inhibitor ATM
and (C) a specific inhibitor of CHK2. Cells were seeded in 96 wells plates (5000 cells/well). Cells were
treated with the inhibitors for 72 h and their proliferation was assessed by Alamar Blue reduction.
(D) The distribution of cells populations in the different phases of the cell cycle was determined by
flow cytometry. Results presented are representative of three independent experiments (Student
t-test p < 0.05 [*], p < 0.01 [**], p < 0.001 [***], p < 0.0001 [****] for comparisons between control and
treated cells).

2.4. Sensitivity of Cervical Cancer-Derived Cell Lines to ATM and CHK2 Inhibition Depends on
the Ability of HPV E6 to Induce p53 Degradation

Sustained expression of high-risk HPV oncogenes E6 and E7 is necessary to maintain
the transformed phenotype of cervical cancer-derived cell lines [14,25]. Together, E6 and
E7 proteins are able to interfere with cellular proliferation and apoptosis, especially due
to their ability to induce p53 and pRb degradation, respectively [15]. Considering this,
we aimed to investigate if the expression of these oncoproteins could play a role in the
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sensitivity of cervical cancer-derived cell lines to ATM and CHK2 inhibition. Our results
indicate that PHK expressing HPV–16 oncoproteins were differentially affected by ATM
and CHEK2 gene silencing (Supplementary Figure S7). PHK expressing HPV–16 E6 and
E7 or only HPV–16 E6 had their proliferation remarkably affected by ATM and CHEK2
downregulation. Control PHK and PHK expressing only HPV–16 E7 were not affected by
gene silencing (Figure 4A,B). Similar results were found after depletion of BRCA1 in PHK
(Supplementary Figure S8). The inhibition of ATM kinase with caffeine or KU-55933, as
well as CHK2 inhibition, also led to a decrease in proliferation of cells expressing HPV–16
E6 (Figure 4C–E). Moreover, CHK2 inhibition also caused a decrease in proliferation of
cells expressing HPV–16 E7 alone, although to a lesser extent than that observed in cells
expressing the oncogene E6. Interestingly, the decrease in proliferation observed in PHK
expressing E6 was much less effective in PHK transduced with HPV–16 E68S9A10T unable to
induce p53 degradation (16∆E6). Similarly, PHK expressing shRNA against the ubiquitin
ligase responsible for p53 degradation in the presence of E6, E6-associated protein (E6-AP),
did not have proliferation strongly affected by ATM or CHK2 inhibition (Figure 4C–E;
Supplementary Figure S9) [26]. These results indicate that the sensitivity of cervical cancer-
derived cell lines to ATM and CHK2 inhibition is dependent, at least in part, on the ability
of HPV E6 to induce p53 degradation.
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Figure 4. HPV16 E6 ability to induce p53 degradation is critical to sensitize primary human keratino-
cytes to ATM and CHEK2 silencing or kinase activity inhibition. PHK were transduced with retroviral
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vectors expressing wild type HPV-16 E6 and/or E7, or an HPV-16 mutant E6 unable to induce
p53 degradation (16∆E6). The expression of (A) ATM and (B) CHEK2 was silenced using specific
shRNAs. Cells were seeded in 96-wells plates (5000 cells/well) and after 72 h their viability was
assessed by Alamar Blue reduction. The activity of ATM and CHK2 kinases was inhibited using
(C) caffeine (an inhibitor of ATM and ATR), (D) a specific inhibitor ATM and (E) a specific inhibitor of
CHK2. Cells were seeded in 96-wells plates (5000 cells/well). Cells were treated with the inhibitors for
72 h and their viability was assessed by Alamar Blue reduction. The proliferation of PHK expressing
HPV-16 E6 and transduced with a shRNA against the ubiquitin ligase responsible for p53 degradation
in the presence of E6 (E6-AP) was not strongly affected by ATM or CHK2 inhibition (C–E). Results
presented are representative of three independent experiments (Student t-test p < 0.05 [*] for all
comparisons between control and treated cells).

2.5. ATM/CHEK2 Inhibition Potentiates the Effect of Doxorubicin and Cisplatin in a
p53-Dependent Manner

Doxorubicin is a chemotherapeutic drug used to treat several types of cancer. It
interacts with DNA and stops the progression of topoisomerase II, blocking cell division by
inhibiting DNA duplication. It is also known to induce ATM-dependent phosphorylation
of several downstream targets [27,28]. Cisplatin is also used as a chemotherapeutic agent
and crosslinks DNA impairing cell division by mitosis [29]. DNA damage induced by both
drugs elicits DNA damage repair machinery blocking proliferation or inducing apoptosis
when repair proves impossible. To verify the cervical cancer cell lines dependency on
ATM/CHK2 signaling pathway upon DNA damage we treated HeLa and SiHa cells with
doxorubicin and/or cisplatin. We observed that both cell lines had proliferation/viability
slightly decreased by the treatment with doxorubicin (1 µM) or cisplatin (1 µM). This
decrease was not significant and was not intensified by the combination of both drugs
(Figure 5A). As observed before, ATM inhibition led to a drop in cell viability. Moreover,
the combined treatment with ATM inhibitors (KU-55933 or caffeine) with doxorubicin
promoted a stronger drop of (~60%) in cell viability. Interestingly, the combination of the
specific ATM inhibitor KU-55933 with cisplatin did not affect cell survival. Only caffeine,
an inhibitor of both ATM and ATR, promoted a drop in cell viability when combined
with cisplatin. Surprisingly, the combination of KU-55933 with doxorubicin and cisplatin
led to a significant drop in viability, with only 20% of cells surviving after treatment.
We next investigated the response of PHK expressing HPV-16 E6 or E7 oncoproteins to
the combined treatment of ATM inhibitors with doxorubicin and cisplatin. The results
indicate that ATM/CHK2 inhibition potentiates the effect of doxorubicin and cisplatin
in cells expressing HPV-16 E6 (Figure 5B). Again, the integrity of E6 sequences required
to mediate p53 degradation by E6 seems to play a major role in this phenomenon. This
is supported by the fact that PHK expressing the mutant form E68S9A10T, unable to bind
p53, or shRNA against E6-AP were only mildly affected by the combined treatment of
doxorubicin and cisplatin with ATM inhibitors (Figure 5C; Supplementary Figure S8).
The specific inhibition of CHK2 also turned PHK expressing E6 extremely sensitive to
doxorubicin or cisplatin treatment (Figure 5D). Moreover, p53 inactivation also played an
important role in sensitizing PHK expressing E6 to the combined inhibition of CHK2 with
doxorubicin and/or cisplatin (Figure 5E). Finally, we investigated if p53 inactivation, by
deletion or mutation, could sensitize cells to ATM inhibition. Therefore, we treated HaCat,
(immortalized keratinocyte; p53mutH179Y/R282W) and C33 (HPV-negative cervical cancer
cell line; p53R273C) with ATM inhibitors in combination with doxorubicin and/or cisplatin.
Our results show that HaCat immortalized keratinocytes and C33 cells are as sensitive to
ATM inhibition as they are to doxorubicin, with proliferation decreasing to 60% compared to
the untreated control (Figure 5F). Cisplatin alone did not affect HaCat viability. Moreover, in
HaCaT we did not observe additive or potentializing effect of ATM inhibitor in combination
with doxorubicin and/or cisplatin. On the other hand, we observed that C33 cells, in which
wild type p53 activity is not detected due to a R273C mutation, had viability dropping to
20% after combined treatment of ATM inhibitor with doxorubicin and cisplatin. Altogether,



Pathogens 2022, 11, 637 10 of 19

our results indicate that p53 deletion or inactivation by HPV-16E6 expression makes cells
more prone to die when ATM is inhibited in combination with drugs that induce DNA
damage or affect cell division, such as doxorubicin and cisplatin.
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Figure 5. ATM and CHK2 inhibition sensitize cells expressing high-risk HPV E6 to DNA damage.
(A) HeLa, SiHa cells; and PHK transduced with retroviral vectors expressing wild type (B,D) HPV-16
E6 and/or E7; (C,E) an HPV-16 mutant E6 unable to induce p53 degradation (16∆E6); (F) and HPV-
negative cells harboring mutations in p53 gene were seeded in 96 wells plates (5000 cells/well). The
activity of ATM and CHK2 kinases was inhibited using caffeine (an inhibitor of ATM and ATR), a
specific inhibitor ATM and a specific inhibitor of CHK2 in the presence of doxorubicin (1 µM) or
cisplatin (1 µM). Cells were seeded in 96-wells plates (5000 cells/well). Cells were treated with the
inhibitors for 72 h and their viability was assessed by Alamar Blue reduction. Results presented
are representative of three independent experiments (Student t-test p < 0.05 [*] for all comparisons
between control and treated cells).
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2.6. CHEK2 and BRCA1 Expression Is Higher in Precursor Lesions and Cervical Cancer

Finally, we evaluated the mRNA expression of ATM, CHEK2, and BRCA1 genes
on clinical cervical tissues from GEO public platform. We retrieved normalized mRNA
expression results and clinical data from four datasets that included normal cervix tissue,
cervical intraepithelial neoplasias (CIN) of different grades and cervical cancer. The four
datasets presented different experimental designs and criteria for normal cervix tissue, as
GSE39001 and GSE52904 included HPV negative normal cervix samples from patients un-
dergoing hysterectomy, while GSE63514 and GSE138080 considered normal-HPV positive
epithelium as controls [30–33]. Overall, we observed higher mRNA levels of CHEK2 and
BRCA1 genes in CIN and cervical cancer samples when compared to normal cervix tissue
(Figure 6A–H). The results presented here show that the increased expression of CHEK2
and BRCA1 is a common event in the natural history of cervical cancer. It is noteworthy
that ATM mRNA expression was not altered in any of the datasets analyzed in this study.
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(CIN) and invasive carcinomas. BRCA1 (A,C,E,G) and CHEK2 (B,D,F,H) gene expression is upregu-
lated in CIN3 and cervical cancer (CC) when compared with normal cervical tissues. (A,B) GSE63514:
Normal–n = 24; CIN1–n = 14; CIN2–n = 22; CIN3–n = 40; CC–n = 28. (C,D) GSE138080: Normal–n = 10;
CIN–n = 15; CC–n = 10. (E,F) GSE52904: Normal–n = 17; CC–n = 55. (G,H) GSE39001: Normal–n = 5;
CC–n = 19. p < 0.05 [*] by 1 way ANOVA (A,D), Kruskal–Wallis (B,C), unpaired t test (H) or Mann
Whitney (E–G) test.

3. Discussion

In HPV-transformed cells, the oncoproteins E6 and E7 are constitutively expressed
and impair multiple DNA repair pathways such as those regulated by p53 and pRb.
This promotes cell cycle progression, avoids apoptosis, and consequently causes genomic
instability [19,34–36]. Due to the redundant nature of these pathways, many tumors are
able to efficiently repair different DNA lesions and survive in the presence of partially
damaged DNA repair machinery. This fact makes the tumor completely dependent to
alternative ways of DNA repair that can be exploited to develop specific toxicity for the
tumor, contributing to the implementation of new therapeutic strategies. Based in these
insights we screened several DNA repair pathways, by gene RNA silencing, which could be
required for survival of HPV transformed cell during the tumor progression. The main idea
was to establish potential synthetic lethality strategies to target HPV-associated tumors.
Synthetic lethality describes a cellular condition in which two or more non-allelic and
non-essential mutations, which are not lethal on their own, become deadly when present
within the same cell. The synthetic lethality can also occur when a gene is inactivated
by viral protein expression and, another gene, is inactivated by specific inhibitors. This
principle has been used to determine the effect of synthetic lethality between p53 and PAK3
and SGK2 kinases in HPV transformed cells. In the presence of the HPV E6 oncoprotein
these cells required these kinases to survive [37]. In addition, many studies have been
conducted with the systematically silencing of tumor suppressors or oncogenes to exploit
synthetic lethality in the study of cancer [38–40].

As a result of our screening, we identified that the signaling pathway controlled by
ATM, CHEK2, and possibly BRCA1 is important to maintain the proliferation and viability
of HPV-transformed cells. Moreover, we showed that down-regulation of these pathways
affected the oncogenic potential of these cells in vitro. Additional experiments showed
that the effect observed depended on the expression of HPV16 E6 and on the integrity of
sequences required to mediate p53 degradation. In fact, we demonstrated that the effect of
ATM/CHEK2 silencing or chemical inhibition of the proteins encoded by these genes was
not observed in cells expressing an HPV-16 E6 mutant unable to degrade p53. This was also
true in cells where E6-AP, a factor required for E6-mediated p53 degradation, was silenced
by shRNA. The existence of a synthetic lethal relationship between ATM and p53 has been
reported before in different systems and has been revised elsewhere [41,42]. Our results
further extend these observations and support the existence of synthetic lethality between
p53 and CHEK2, and possibly BRCA1 in HPV-transformed cells. Being downstream in ATM
signaling, our observation brings an interesting piece of information that, hopefully, could
contribute to fully understand the molecular mechanisms underlying this phenomenon.

Active HPV DNA amplification requires the phosphorylation of several ATM sub-
strates, such as BRCA1, RAD51, and CHK2 [7,43,44]. Furthermore, it was reported that
HPV induces breaks into cellular DNA and viral genome and that the preferential repair of
lesions in viral episomes is critical for viral genome amplification [45]. It is possible that
in HPV-infected cells, the reduction is p53 levels together with other alterations in factors
controlling cell cycle caused by viral oncogenes may enhance the effects of spontaneous
DNA damage leading to more deleterious lesions, such as DSBs. The ATM/CHK2/BRCA1
axis, as well as DSB repair, alleviates the effects of these lesions allowing the cells to survive.
We can speculate that the silencing or inhibition of this pathway, in the absence of viral
replication as occurs in HPV-transformed cells or cells transduced with HPV-16 E6, may
result in the accumulation of DNA lesions that may trigger death signals leading to the
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reduction of cell survival. This is supported by our observation that ATM and CHK2
inhibition induces the accumulation of a sub-G1 cell population. Moreover, the interference
of HPV oncoproteins in ATM/CHK2/BRCA1 signaling axis has been described by oth-
ers [7,46]. In particular, it was observed that DNA damage may induce E6 phosphorylation
through CHK1 and CHK2 increasing the ability of this viral oncoprotein to inhibit p53 tran-
scriptional activity [47]. This is consistent with our observation that ATM, CHK2, and
BRCA1 silencing/inhibition preferentially affect cells expressing wild-type E6 (Figure 7).
Moreover, sensitivity to ATM, CHK2, and BRCA1 silencing/inhibition was reverted in
cells expressing an E6 gene with mutations in a domain required for p53 degradation or
cells where E6-AP was silenced. Interestingly, we analyzed different expression data series
and showed that mRNA levels of CHEK2 and BRCA1 steadily increased from normal
cervical tissue to CIN2, CIN3, and invasive squamous carcinoma samples. This observation
suggests that upregulation of these factors plays a role in cervical cancer onset/progression
and may explain, at least in part, the dependence of HPV-transformed cells on their contin-
uous expression as shown in our study. We have previously demonstrated that cervical
cancer-derived cell lines viability depends on specific components of the DNA repair ma-
chinery and DNA damage signaling [23,48]. Finally, we also show that treatment with
chemotherapeutic drugs that induce DNA damage, such as cisplatin and doxorubicin, have
their effect augmented when ATM kinase activity is inhibited. This effect is much more
evident in cells depleted of p53 expression, such as HPV-positive cells and HPV-negative
cells in which p53 is inactivated by mutation.
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Figure 7. E6 expressing cells depend on ATM/CHK2/BRCA1 axis for survival. HPV E6 induces
p53 degradation avoiding cell cycle arrest and apoptosis. Double strand breaks are processed
by BRCA1 and other proteins warranting minimal genome stability. CHK2 signaling reinforces
E6 inhibitory effect on p53. Silencing or inhibition of ATM/CHK2/BRCA1 shifts the balance inducing
the accumulation of DNA lesions that reduce cell viability.
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In the present study we show that cells expressing HPV E6 oncogene are highly
dependent on the ATM/CHK2/BRCA1 signaling axis. Due to the direct involvement of
this axis in DBSs repair, and the sensitization caused by doxorubicin and cisplatin, that
cause DSBs, it is likely that this type of lesions and associated repair mechanisms play an
important role in the effects described above. This is further supported by the fact that
many genes identified in our screening as essential for HPV-transformed cells viability are
involved in DSBs repair (Supplementary Figure S2). Importantly, our results also point to
an important role of p53, a central factor in dealing with DSBs and determining the fate
of cells suffering DNA damage [49]. The higher sensitivity of HPV-transformed cells to
ATM/CHK2/BRCA1 signaling axis inhibition, both in the presence and absence of DNA
damage induction, may be explained by the fact that these cells divide at higher rates
than normal PHKs. Therefore, we can assume that they are subjected to a higher degree
of DNA replication stress and accumulation of DNA lesions. However, at this point we
do not believe that differences in cell replication rate can fully explain our observations.
For instance, we observed a similar dependence on ATM/CHK2/BRCA1 signaling axis
in PHKs expressing only HPV16 E6. The doubling time of these cells is similar to that
observed for normal PHKs (data nor shown). On the other hand, PHKs expressing only
HPV-16 E7 proliferate at higher rates than normal PHKs. However, they are as resistant to
ATM specific inhibition and to caffeine as normal PHKs (Figure 4C,D). Interestingly, the
proliferation of these cells was affected by CHK2 inhibition, but to a lesser extent than that
observed in cells expressing the oncogene E6. We are currently investigating the molecular
mechanisms underlying the effects described above in our laboratory.

Our results may contribute to the improvement of therapeutic protocols for tumors
with alterations in p53. In particular, for those associated with HPV infection. Altogether
we present evidence that synthetic lethality using ATM/CHK2 inhibitors can be exploited
to treat cervical cancer and other tumors in which p53 expression is inactivated by gene
mutation or deletion.

4. Materials and Methods
4.1. Cell Lines and Retroviruses

Cervical cancer-derived cell lines SiHa (HPV16; ATCC® HTB-35™, ATCC, Manassas,
VA, USA), HeLa (HPV18; ATCC® CCL-2™), and C33A (HPV-negative; ATCC® CRM-
HTB-31™) were cultured in MEM (Invitrogen, Thermo Fisher, Carlsbad, CA, USA) and
HEK293T (ATCC® CRL-3216™) and HaCaT cells were cultured in DMEM (Invitrogen),
both supplemented with 10% FCS (Cultilab, Campinas, SP, Brazil) and maintained at 37 ◦C
and 5% CO2. Primary Human Keratinocytes (PHK) (Lonza Walkersville, Inc., Walkersville,
MD, USA) were grown in serum-free medium (Invitrogen) supplemented with recombinant
epidermal growth factor (5 ng/mL) and bovine pituitary extract (50 mg/mL). PHK were
transduced with recombinant retroviruses carrying the control vector (pLXSN) or vectors
encoding HPV16 E6 and/or E7 or HPV16 E6 mutant, E6–8S9A10T, which cannot degrade
p53 [50–52]. After 24 h, cells were selected with 300 µg/mL of G418 for 2 days, when 100%
of mocked infected controls were dead. Surviving cells were expanded and used to seed
monolayers cultures.

4.2. Library Manipulation and DNA Purification

Bacteria glycerol stocks of sequenced-verified MISSION® shRNA lentiviral plasmids
(Sigma-Aldrich, St. Louis, MO, USA) targeting tumor suppressors (SH0511) and DNA
Repair Pathway (SH1811) were grown in the complex medium Luria Broth Medium (Sigma-
Aldrich) with 75 µg/mL of ampicillin and incubated at 37 ◦C shaking at 200 rpm overnight.
Plasmids were isolated with GenElute™ Plasmid Miniprep Kit (Sigma-Aldrich) and used
to generate lentiviral virion production.
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4.3. Lentiviral Virion Production and Quantification

A total of 1111 shRNA constructs cloned into pLKO1-puro plasmid backbone deficient
viral vectors were cotransfected with the necessary helper plasmids for virus production
(MISSION® Lentiviral Packaging Mix, Sigma-Aldrich) using FuGENE® HD Transfection
Reagent (Promega, Madison, WI, USA) in HEK293T packaging cells. Culture medium was
changed after 24 h, and supernatants containing lentivirus were collected after 48 and 72 h
after transfection. Virus-containing supernatant was analyzed with an HIV-1 p24 antigen
enzyme-linked immunosorbent assay (ELISA) kit (ZeptoMetrix Corporation, Buffalo, NY,
USA) to estimate lentiviral vector titer.

4.4. Infection and Viability Assay

HeLa, SiHa, and PHK cell lines were seeded between 2000 and 3000 cells per well by
using a 96-well format in a final volume of 100 µL per well. Twenty-four h after plating, cells
were infected in triplicate with supernatants containing 10 MOI of lentivirus in the presence
of 4 µg/mL hexadimethrine bromide (Polybrene; Sigma-Aldrich). Plates were centrifuged
at 1200× g for 22 min. Media was replaced 24 h after infection and 2 µg/mL puromycin
was added to one of the triplicate infected wells 72 h post infection. Viability was estimated
five days after infection. For this, 10 µL of Alamar blue (Invitrogen) were added per well
and cells were incubated at 37 ◦C for 4 h before absorbance measurement at 560 and 600 nm
in in an Epoch Microplate Spectrophotometer (Bio-Tek, Winooski, VT, USA).

4.5. Cell Proliferation, Clonogenic and Anchorage Independent Growth Assays

Transduced cells were seeded in a density of 100 cells per well in 6-well plates. After
two weeks in culture, clonogenic potential was evaluated. Colonies were fixed with 1%
ethanol and stained with 0.5% crystal violet (Fisher, Waltham, MA, USA) in 10% ethanol.
Cell proliferation was evaluated by cell counting. Briefly, transduced cells were seeded
in a density of 1000 cells per well in 24-well plates. Cells were counted in triplicates on
a hemocytometer from the first to the eighth day. For anchorage-independent growth
analysis assay, 500 cells were suspended in 500 µL of D10 medium with 0.6% agarose. Cells
were seeded in 24-well plates previously coated with the 1% agarose, and covered with
D10 medium. After 30 days, colonies were stained with 50 µL of 5 mg/mL MTT (3-(4,5-150
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and counted.

4.6. Pharmacological Inhibition ATM and CHK2 and DNA Damage Induction

HeLa, SiHa, and PHK expressing E6 (PHKE6) and/or E7 (PHKE7) or E68S9A10T
(PHKE6mut) were seeded in 96-wells plates (5.000 cells/well) and after 24 h cells were
treated with 2 mM ATM/ATR inhibitor Caffeine, or 10 µM of the specific ATM inhibitor
KU-55933, or with 100 µM of the specific CHK2 inhibitor 2-(4-(4-Chlorophenoxy)phenyl)-
1H-benzimidazole-5-carboxamide hydrate (CHK2 Inhibitor II hydrate) in the presence of
1 µM doxorubicin and/or 1 µM of cisplatin. All inhibitors and DNA damage inducers were
purchased from Sigma-Aldrich. All treatments were performed in octuplicates. After 72 h,
cell viability was estimated by Alamar Blue (Invitrogen) assay as described above.

4.7. Cell Cycle Analysis

The effect of ATM and Chk2 inhibition on the progression of HPV-transformed cell
lines and normal keratinocytes through the cell cycle was determined by flow cytometry.
Basically, cells were treated and described above. After 72 h, supernatant and attached
cells were harvested, washed with PBS and fixed with ethanol 70%. DNA was labeled
with propidium iodine (20 µg/mL, PI, Sigma-Aldrich) in PBS with RNAse (200 µg/mL)
and 0.1% Triton X100. Finally, at least 10,000 events per sample were acquired using a
FACSCalibur (BD Biosciences, Franklin Lakes, NJ, USA). Data obtained were analyzed with
FlowJo software (FlowJo Enterprise, Ashland, OR, USA).
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4.8. Protein Extraction and Immunoblotting

Total protein extracts were obtained from sub-confluent cell cultures of the cell lines
described above. Cell cultures were incubated with 500 µL of cold lysis buffer (150 mM
NaCl, 50 mM Tris-HCl [pH 7.5], 0,5% NP-40) in the presence of protease inhibitors (Com-
pleteTM, Roche Diagnostics, Basel, Switzerland) and phosphatase inhibitors (PhosSTOP,
Sigma-Aldrich). Extracts were cleared from debris by centrifugation (10,000× g for 20 min)
at 4 ◦C, transferred to fresh tubes and sored at −80 ◦C until use. Protein concentrations were
determined using the Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA, USA).
Thirty µg of proteins were resolved by electrophoresis through sodium dodecyl sulfate
(10 to 12%) polyacrylamide gels and transferred to polyvinylidene difluoride membranes
(Amersham Pharmacia Biotech, Piscataway, NJ, USA). The membranes were blocked for
1 h in 5% nonfat milk, probed with primary antibodies against ATM (Ab78), ATM (phospho
S1981) (Ab81292), CHK2 (Ab47433), γH2AX (ab22551) from Abcam (Cambridge, MA,
UK); and tubulin (sc-25259) from Santa Cruz Biotechnology (Santa Cruz, CA, USA), ac-
cording to the manufacturer’s instructions. Membranes were reprobed with horseradish
peroxidase (HRP)-conjugated secondary antibodies and revealed using enhanced chemi-
luminescence procedures according to the manufacturer’s recommendations (Amersham
Pharmacia Biotech).

4.9. In Silico Gene Expression Analysis

Global mRNA expression and clinical data from cervical samples named GSE39001,
GSE52904, GSE63514, GSE138080 were retrieved from the Gene Expression Omnibus public
online platform (GEO http://www.ncbi.nlm.nih.gov/geo, accessed on 1 October 2021).
All datasets were investigated for possible outliers using the site https://graphpad.com/
quickcalcs/grubbs1/, accessed on 1 October 2021.

4.10. Statistical Analysis

Data were analyzed using unpaired t, Mann Whitney, one way ANOVA or Kruskal–
Wallis tests. All statistical analyses were performed with GraphPad Prism version 5.00 for
Windows (GraphPad Software, La Jolla, California, USA). A p-value of less than 0.05 was
considered statistically significant.
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10.3390/pathogens11060637/s1; Figure S1: Screening for genes essential to cervical cancer-derived
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Figure S3: Effect of ATM and CHEK2 silencing on the clonogenic potential of cervical cancer-derived
cell lines; Figure S4: Effect of ATM and chek2 silencing on the anchorage independent growth potential
of cervical cancer-derived cell lines; Figure S5: BRCA1 is essential for the proliferation/viability of
HPV-positive cervical cancer-derived cell lines; Figure S6: Effect of ATM inhibitor KU-55933 on ATM
activation; Figure S7: HPV16 E6 ability to induce p53 degradation is critical to sensitize primary
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