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Introduction and Objectives: Among cochlear implant candidates, an increasing

number of patients are presenting with residual acoustic hearing. To monitor the

postoperative course of structural and functional preservation of the cochlea, a reliable

objective biomarker would be desirable. Recently, impedance telemetry has gained

increasing attention in this field. The aim of this study was to investigate the postoperative

course of the residual acoustic hearing and clinical impedance in patients with long

electrode arrays and to explore the applicability of impedance telemetry for monitoring

residual hearing.

Methods: We retrospectively analyzed records of 42 cochlear implant recipients with

residual hearing covering a median postoperative follow-up of 25 months with repeated

simultaneous pure tone audiometry and impedance telemetry. We used a linear mixed-

effects model to estimate the relation between clinical electrode impedance and residual

hearing. Besides the clinical impedance, the follow-up time, side of implantation, gender,

and age at implantation were included as fixed effects. An interaction term between

impedance and follow-up time, as well as subject-level random intercepts and slopes,

were included.

Results: Loss of residual hearing occurred either during surgery or within the first 6 post-

operative months. Electrode contacts inserted further apically (i.e., deeper) had higher

impedances, independent of residual hearing. The highest impedances were measured

1 month postoperatively and gradually decreased over time. Basal electrodes were

more likely to maintain higher impedance. Follow-up time was significantly associated

with residual hearing. Regardless of the time, we found that a 1 k� increase in clinical

impedance was associated with a 4.4 dB deterioration of residual hearing (p < 0.001).

Conclusion: Pure tone audiometry is the current gold standard for monitoring

postoperative residual hearing. However, the association of clinical impedances with

residual hearing thresholds found in our study could potentially be exploited for objective

monitoring using impedance telemetry. Further analysis including near-field related

impedance components could be performed for improved specificity to local immune

responses.

Keywords: hearing preservation monitoring, cochlear health, impedance telemetry, hearing threshold, electrode

impedance, follow-up
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1. INTRODUCTION

An increasing proportion of patients with residual hearing are
being considered cochlear implant (CI) candidates today. After
implantation, patients with successfully preserved hearing can
perform better in complex listening environments (i.e., speech
comprehension in noise), perceive music more naturally, and
have improved spatial perception (1–3). Approximately 50% of
CI recipients retain their residual hearing for several years (4, 5).
Some of these patients meet the criteria for electro-acoustic
stimulation (EAS). In these cases, the ear can be stimulated
both acoustically (via the hearing aid) and electrically (via the
implant), resulting in even better speech understanding (6, 7). In
case of unsuccessful hearing preservation, intraoperative loss or
residual hearing is thought to be the result of traumatic events
during the insertion and implantation of the electrodes (8–11).
Postoperative hearing loss, on the other hand, is suspected to
be caused by an immune reaction to the electrode array (12),
intracochlear inflammatory responses, e.g., to blood components
entering the inner ear (13), intracochlear scar tissue formation
(14), or a progression of hearing loss independent of the
implanted device (1).

To better understand the postoperative course of inner
ear function and to enable frequent monitoring, an objective
intracochlear biomarker would be most appropriate. Impedance
telemetry could be practicable and recently gained attention in
this context (15, 16). The assessment of impedances is easy and
quickly performed, does not require the active participation of
the patient, is independent of the middle ear status (e.g., also
feasible in case of a haematotympanum), and can be performed
telemetrically or even through telemedical access (17).

Sudden increases in postoperative impedance values (so-
called “impedance spikes”) were linked with inner-ear events
leading to loss of residual hearing and vertigo (18, 19). In an
animal model, Bester et al. (8) reported higher impedances in the
presence of blood clots around the electrode, which could initiate
an inflammatory response that affects the residual function of the
inner ear. However, despite the promising indication, impedance
telemetry remains a non-established monitoring tool. Konrad
et al. (20) performed an analysis in patients implanted with short
electrode arrays and found a correlation between impedance
and threshold changes, but it was too inconsistent to imply
a true relationship. In the context of longer electrode arrays,
whose impedance has been shown to depend on insertion depth
(16), we wanted to investigate whether a relationship could
exist between clinical impedance and residual hearing in the
long term. Therefore, the aim of this study was to extend the
analysis to CI-models with deeper inserted electrode arrays. We
investigated the postoperative courses of (i) residual acoustic
hearing, (ii) clinical impedance, and (iii) we evaluated the
potential of impedance telemetry for residual hearingmonitoring
by assessing the relation between both factors.

2. MATERIALS AND METHODS

2.1. Study Design and Subjects
This retrospective study was conducted with the approval of
the local institutional review board (approval number: Basec

ID 2020-02978). We reviewed all adult patients who received
a CI at our tertiary referral hospital between January 2009 and
June 2021 (N = 704). Of these, only cases were included, who
(i) received a MED-EL (Innsbruck, Austria) implant, (ii) had a
measurable residual hearing of at least 5 dB between 125 and
1,000 Hz in the preoperative pure tone audiogram, and (iii) had a
well-documented postoperative follow-up with two or more pure
tone audiograms and concurrent impedance telemetry for at least
6 months.

2.2. Audiometric Assessment and Residual
Hearing
All audiological assessments were performed in routine practice
in an acoustic chamber with a clinical audiometer. Pure
tone air conduction hearing thresholds were measured in dB
hearing level (HL) at 125, 250, 500, 1,000, 2,000, 4,000, and
8,000 Hz using either headphone or insert earphones. Figure 1
summarizes the preoperative, 3-, and 6-month postoperative
air conduction hearing thresholds of the subjects. The residual
hearing was defined in absolute values as the difference between
the maximum detectable levels (i.e., 90 dB HL at 125 Hz, 110 dB
HL at 250 Hz, and 120 dB HL for the other frequencies) and
the hearing thresholds. In addition to the absolute PTA, we
computed relative values of residual hearing according to (21).

2.3. Electrode Impedances
Impedance telemetry was performed during the same sessions
as pure tone audiometry, according to the clinical standard
procedure at our institution. For the analysis, we exported the
clinical impedance (in k�) from the manufacturer’s telemetry
software (Maestro, MED-EL). The clinical electrode impedance
includes near-field interface impedance and far-field tissue
resistance and can be found from the diagonal elements of the
measured voltage matrix (16). In addition, to analyze impedance
progression over time for all subjects, the clinical impedance
values were extracted at defined intervals according to clinical
routine, i.e., preoperatively (month 0), first activation (month
1), and consecutive fitting sessions (months 3, 6, 12, and 24).
Extracochlear electrodes, as indicated by surgical and radiological
reports, were excluded from the analysis (refer to Table 1).

2.4. Statistical Analysis
Descriptive statistics were used to summarize demographic data
and functional outcomes.We used linear mixed-effects models to
assess the relation between CI electrode impedance and residual
hearing over time. We calculated separate models accounting
for the impedance of all active electrodes as well as only the
apical (contacts 1–4), middle (contacts 5–8), and basal electrodes
(contacts 9–12). The models employed residual hearing (in dB
HL) as the dependent variable and electrode impedance (in k�)
as the independent variable. The follow-up time (inmonths), side
of implantation, gender, and age were additionally included as
fixed effect variables. An interaction term between impedance
and follow-up time was also included to account for time-
dependent variations of the impedance. Subject-level random
intercepts were used to account for repeated measurements.
Random slopes of impedance were included to enable varying
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FIGURE 1 | Preoperative, 3-month postoperative, and 6-months or the next later follow-up session air conduction hearing thresholds (left, center, and right

audiograms, respectively). The red line indicates the average hearing thresholds, the gray dashed line shows the preoperative reference.

effects for individual subjects. Using the random slope mixed-
effects model, subjects may have individual intercepts (random
intercept) and individual slopes (i.e., differently strong effects;
random slope) around common effects in the association
between residual hearing and impedance. We used the R
environment (v4.0.3) and the lme4 package (v1.1) for the
statistical analysis (22). Audiograms were generated using the
audiometry package (v0.3.).

3. RESULTS

3.1. Demographics
Of the 704 entries in our database, 119 patients had a post-
operative audiogram available and measurable residual hearing
of at least 5 dB between 125 and 1,000 Hz. Among these, 79
were implanted with a MED-EL device. Forty-two patients had
two or more pure tone audiograms with concurrent impedance
telemetry for at least 6 months and were included in our analysis
(21 men and 21 women, mean age at implantation of 54 years).
Most commonly, CIs with Flex28 electrode arrays were implanted
(N = 26). Eight patients had a partial electrode insertion, with up
to three extracochlear electrodes. Six months post activation, the
median word recognition score in quiet was 58% (interquartile
range [40, 73%]) for the German Freiburg monosyllabic word
test and 100% (interquartile range [90, 100%]) for the German
Freiburg numbers test. Patients had a median follow-up over 25
months (interquartile range [13 months, 46 months]) with pure
tone audiograms and simultaneous impedance telemetry.

3.2. Residual Hearing Progression Over
Time
Onemonth post-operatively, seven patients had complete hearing
preservation (category 1), 20 patients had partial hearing
preservation (category 2), 10 patients presented minimal hearing
preservation (category 3), and five patients had complete loss of
residual hearing (category 4). Most commonly, the transition
from categories 1–2 occurred within the first 3 months
after surgery. On average, cochlear implantation worsened the
unaided hearing thresholds by 13.6 dB HL after 3 months and

by 19.5 dB HL after 6 months (Figure 1). The categorization of
hearing preservation after 6 months according to (21) is shown
in Table 1. The individual course of residual hearing over time is
illustrated in Figure 2.

In general, all linear mixed-effects models used (i.e.,
models including all electrodes, or only basal, middle, and
apical electrodes) showed comparable results and significance.
The most prominent effects, which are presented herein,
were observed for the model including basal electrodes
(i.e., 9–12). The results for the additional models including
either all, middle, or apical electrodes are summarized in
the Supplementary Material. No dependence of gender and
implantation side on residual hearing was found (Table 2).
For the model including all electrodes, age at implantation
showed a small association with decreased residual hearing
(refer to Supplementary Material). The follow-up time after
implantation was related to a statistically significant decrease in
residual hearing (−0.7 dB HL per month or 8.4 dB HL per year;
p < 0.001).

3.3. Clinical Impedance Progression Over
Time
We found no dependence of the electrode impedance on
gender, age, or implantation side. However, there was a time
dependence of impedance, with the lowest values observable
immediately after the insertion (month 0; Figure 3). Impedances
were highest at the first activation session, i.e., 1 month post-
operatively. After this peak, the impedances of apical electrodes
decreased toward the intraoperative values, whereas the basal
electrodes stabilized at higher levels, resulting in a U-shaped
distribution. Finally, the dispersion of impedance values was
smallest for intraoperative measurement (month 0), with an
average interquartile range of 1.2 k�. At successive measurement
points, the distribution of impedance values gradually increased,
with an average interquartile range of 1.3 and 1.9 k� at the 1
and 24 month sessions, respectively. During the intraoperative
measurements, the direct influence of the electrode insertion
depth on impedances can be observed (16). On average,
intraoperatively, the highest impedances occurred on apical
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TABLE 1 | Subject demographics and functional outcomes, sorted by relative preservation of residual hearing after 6 months. F, female; M, male; R, right; L, left.

ID Gender Age Side Etiology Follow-up Electrode array Insertion Word recognition scores* Hearing preservation**

(years) (months) Monosyllables Numbers Absolute Relative Category

(%) (%) (dB HL) (%)

5 F 57 R Progressive 49 FLEX24 Partial (11 of 12) 100 100 −5 86 1

36 M 60 R Progressive 41 FLEX24 Full 40 90 −4 83 1

18 F 56 L Progressive 15 FLEX28 Full 50 100 −8 82 1

15 M 69 L Progressive 47 FLEX24 Full 70 100 −13 80 1

11 F 61 R Progressive 6 FLEX24 Full 50 90 −15 65 2

23 F 67 L Progressive 58 FLEX28 Full 65 100 −20 65 2

2 F 55 L Progressive 84 FLEX24 Full 95 100 −19 63 2

42 F 53 R Progressive 94 FLEX24 Full 100 100 −23 61 2

16 F 59 L N/A 28 FLEX28 Full 85 100 −24 59 2

40 F 24 L Progressive 13 FLEX28 Full 45 100 -10 59 2

17 M 70 R Progressive 14 FLEX28 Full 80 100 −14 58 2

26 F 26 L Progressive 49 FLEX28 Full 95 100 −8 56 2

6 F 43 R Progressive 56 FLEX24 Full 10 100 −10 56 2

30 F 39 L Progressive 8 FLEX24 Full 75 100 −13 55 2

21 F 80 R Progressive 13 FLEX28 Full 40 100 −16 55 2

13 M 74 L Sudden 13 FLEX28 Partial (11 of 12) 100 100 −17 48 2

8 M 60 R Progressive 13 FLEX24 Full 65 100 −31 48 2

28 F 43 L Progressive 25 FLEX28 Full 40 40 −19 40 2

33 F 52 R Progressive 41 FLEX24 Partial (9 of 12) 70 90 −41 31 2

41 F 73 R Hydrops 22 FLEX28 Full 20 80 −19 25 2

31 F 32 R Progressive 21 FLEX28 Partial (11 of 12) 45 80 -6 23 3

37 F 40 L Progressive 13 FLEX28 Full 45 80 −25 23 3

32 F 39 R Progressive 7 FLEXSoft Full 75 100 −14 22 3

25 M 26 L Progressive 104 FLEX24 Full 85 90 −49 16 3

10 F 61 R Progressive 42 FLEX28 Full 65 100 −41 15 3

7 M 71 L Progressive 88 FLEX24 Full 25 100 −43 13 3

24 F 62 L Progressive 31 FLEXSoft Full 65 100 −29 10 3

12 F 70 R Sudden 39 FLEX28 Partial (9 of 12) 50 80 −48 10 3

29 F 44 R Progressive 15 FLEX28 Full 40 60 −30 9 3

35 M 69 R Progressive 42 FLEX28 Full 85 100 −19 5 3

1 M 61 R Progressive 10 FLEX28 Full 45 90 −34 5 3

20 M 63 R Sudden 20 FLEX28 Full 25 90 −50 3 3

4 M 71 L Progressive 52 FLEX28 Full 20 40 −49 2 3

39 M 45 L Progressive 48 FLEX28 Full 0 20 −19 1 3

34 M 52 L Trauma 35 Standard Full 80 100 −10 0 4

22 M 64 R Hydrops 13 FLEXSoft Full 75 100 −33 0 4

38 M 42 R Trauma 6 FLEX28 Full 70 100 −9 0 4

9 M 46 R Progressive 25 FLEX28 Full 70 100 −38 0 4

3 M 59 L Progressive 13 FLEX28 Full 50 100 −15 0 4

27 F 35 L Progressive 42 FLEX28 Partial (9 of 12) 50 100 −19 0 4

19 M 52 L Hydrops 13 FLEX28 Partial (10 of 12) 20 50 −39 0 4

14 F 61 L Meningitis 7 FLEX28 Partial (11 of 12) 0 60 −23 0 4

*German Freiburg monosyllabic word lists at 65 dB sound pressure level (SPL) and German Freiburg numbers at 60 dB SPL after 6 months.

**Residual hearing category according to (21) after 6 months.

contacts (4.3 k�; electrodes 1–4), monotonically decreasing
toward the middle (3.2 k�; electrodes 5–8) and basal contacts
(2.9 k� average for electrodes 9–12).

Figure 4 shows the individual, postoperative courses of
clinical impedance expressed as the median value over all

electrodes. Insertion of the electrode array leads to a steep
average increase in electrode impedance by 3.1 k�, range (1.2–
5.0 k�), visible for all patients. Subsequently and in most cases,
impedances decreased again and, compared to intraoperative
measurements, stabilized at a higher level. In four cases, there
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FIGURE 2 | Residual hearing progression over time and association with clinical electrode impedance for basal electrodes (i.e., contacts 9–12) with regression lines.

was a long-term impedance increase beyond the 1-month peak
(subjects 19, 24, 33, and 37). In our cohort, a prominent spike
response in median impedances was only found in subject 12
after 6 months.

3.4. Association of Residual Hearing and
Impedance
Loss of residual hearing was significantly correlated with
impedance changes on basal electrodes, independently
of the follow-up time (Table 2). The association was also

observed in the other linear mixed-effects models (including
all electrodes, only middle, or only apical electrodes; refer to
Supplementary Material). Figure 2 illustrates the relationship
between impedance and residual hearing for individual subjects.
The majority of subjects expose a negative association (i.e., the
slope of the change) between impedance and residual hearing.
The association is less pronounced in subjects 15, 16, 17, 21,
26, and 36, and anti-correlated in subject 38. Patients, who
maintained lower impedances over time, were more likely to
preserve residual hearing. In contrast, higher impedance values
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TABLE 2 | Linear mixed-effects model summary table for residual hearing (in dB

HL) including basal electrodes (i.e., 9–12).

Coefficient 95% CI p-value

Intercept 56.5 [39.9, 73.1] <0.001

Time (months) −0.7 [−0.8, −0.6] <0.001

Impedance (k�) −4.4 [−5.3, −3.5] <0.001

Interaction of time with impedance 0.08 [0.06, 0.09] <0.001

Side 0.4 [-9.0,9.8] 0.94

Gender −0.4 [−2.3, 1.4] 0.64

Age at implantation (years) −0.2 [−0.5, 0.1] 0.18

were related to residual hearing loss, with an impedance increase
of 1 k� being associated with a loss of residual hearing of 4.4 dB
HL (p < 0.001).

4. DISCUSSION

Pure tone audiometry is state-of-the-art when assessing
residual hearing. As a subjective, behavioral measurement
method, it requires the active participation of the patient
and inconsistent responses can occur. In contrast, objective
measures could provide additional information independent
of the patient’s behavior. This attribute would be desirable for
postoperative monitoring of the residual inner ear function.
Thereby, impedance telemetry could be a promising objective
measurement tool, as it can be performed with little effort and
can even be self-initiated by the patient. Furthermore, impedance
measurements could still be informative in patients with absent
residual hearing, e.g., impedance spikes as a surrogate marker of
inner-ear events (18).

In our study sample, 64% of the study participants had full
or partial hearing preservation at implant activation, 1 month
after surgery. This number was further decreased to 48% at the 6-
month follow-up. Consequently, most losses of residual hearing
occurred intraoperatively or in the early postoperative phase.
Reasons can be a traumatic electrode insertion (9, 23, 24) or
an inflammatory response with resulting scar tissue formation
(12–14). In addition, the presence of the electrode array can
influence the mechanical properties of the cochlea and, thus,
residual hearing thresholds (25, 26). Our results are in line with
previously published literature (1, 27). In general, there was a
dependence of residual hearing on both age and follow-up time
after implantation. The average reduction of 0.5 dB HL per year
of age at surgery (only statistically significant for the model with
all electrodes) could be explained by age-related hearing loss,
whereas we attribute the decrease in low frequency hearing of 8.4
dB HL per year of postoperative follow-up to the progression of
foreign body reaction, inflammation, and wound healing (1, 28).

4.1. Development of Impedance Values
Over Time
Our measurements showed a noticeable time dependence of the
impedance values. Intraoperatively, impedances were lowest; 1
month after implantation, the impedances reached peak values

and subsequently decreased in most cases. Parreño et al. (17)
showed with daily measurements that maximum values are
reached after 18 days. A similar pattern with a peak after a
few weeks and subsequent stabilization at a lower level can be
observed in the humoral immune response to infection processes
(29). Since the implanted electrode acts like a foreign body
(12, 13), it can be speculated that the measured impedance values
may reflect this immune response.

Besides follow-up time, the position of the electrode
inside the cochlea has a substantial influence on impedance
values. In the intraoperative measurements, impedances
decreased from apical toward basal electrode positions.
This is a well-known finding, that can even be exploited
to estimate the linear and angular insertion depth of the
electrode contacts (16) and potentially at later postoperative
stages. Over time, impedances of basal electrodes remained
high, whereas impedances of apical electrodes decreased
again, ultimately, leading to a long-term observable U-
shaped distribution of impedances. This is an interesting
observation that was not specifically made in patients with
shorter electrodes (19, 20). We hypothesize that these basal
impedance increases could indicate post-operative tissue
changes within the cochlea.

With regard to impedance spikes, in our cohort, only
one noteworthy event could be observed in our data
(subject 12 after 6 months). According to the medical
record, this impedance spike was not related to a clinical
symptom (i.e., hearing loss, vertigo, or tinnitus). However,
most often, the previously described phenomenon usually
occurs at a later stage after implantation and only
in a subset of patients (according to the authors, in
17%) (18).

4.2. Correlation of Residual Hearing and
Impedance
We could observe a significant association between the course of
residual hearing and impedance values. The highest impedance
values and at the same time the most frequent loss of acoustic
hearing was in the first three months after implantation. Jia
et al. (30) demonstrated that the surgical technique influences
postoperative impedances. Impedance increases are probably
caused by scar formation in the inner ear, which also leads
to a deterioration of residual cochlear function (28, 31).
Heutink et al. (32) showed in ultra-high-resolution computed
tomography images that impedance changes are associated with
new bone formation in the inner ear. However, ossification
was observed mainly in the basal part of the cochlea. Residual
hearing, on the other hand, is more likely to be found in
the low frequency range and, thus, in more apical cochlear
regions. Nevertheless, the mechanical properties and the tissue
present in the basal part of the cochlea might influence the
residual hearing thresholds in the more apical regions of
the cochlea.

4.3. Limitations
Our study population is too small to draw general conclusions.
The choice of a linear model represents a simplification of the
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FIGURE 3 | The clinical impedance of all electrodes for the intraoperative measurement (month 0), first activation session (month 1), and follow-up fitting sessions

(months 3–24).

FIGURE 4 | Individual progression of clinical electrode impedances (median value of all electrodes) over time.
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more complex hidden processes caused by implantation. In
particular, we expect the postoperative short-term responses
to exhibit nonlinear behavior. However, in the longer term,
individual associations, as shown in Figure 2, suggest that
a linear model seems reasonable and an allows intuitive
interpretation of the results given the exploratory nature of
this study. In this context, a further limitation is that we
considered only clinical electrode impedances. Analysis of
near-field related subcomponents of the clinical impedance,
which can be estimated from the voltage matrix (16),
could enable higher specificity in the estimation of local
tissue characteristics (33, 34). Depending on the implant
manufacturer, impedance telemetry is performed differently and
may include contributions of the polarization impedance.
For these reasons, our findings need to be confirmed
with larger sample sizes, including implant systems of
other manufacturers.

5. CONCLUSION

The pure tone audiogram remains the gold standard for
measuring postoperative residual hearing. Additional
objective bio-markers would be desirable to complement
these measurements with information about the inner ear
independent of the patients’ performance. In our study
sample, we found an association of residual hearing with
clinical impedances indicating its potential use. As this study
is exploratory, our results need to be confirmed in larger
samples. Analysis of near-field related subcomponents
of the electrode impedance could further improve the
applicability of impedance telemetry for residual hearing
monitoring.
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