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Abstract The current status of child and adolescent

psychiatric genetics appears promising in light of the ini-

tiation of genome-wide association studies (GWAS) for

diverse polygenic disorders and the molecular elucidation

of monogenic Rett syndrome, for which recent functional

studies provide hope for pharmacological treatment strat-

egies. Within the last 50 years, tremendous progress has

been made in linking genetic variation to behavioral phe-

notypes and psychiatric disorders. We summarize the

major findings of the Human Genome Project and dwell on

largely unsuccessful candidate gene and linkage studies.

GWAS for the first time offer the possibility to detect

single nucleotide polymorphisms and copy number variants

without a priori hypotheses as to their molecular etiology.

At the same time it is becoming increasingly clear that very

large sample sizes are required in order to enable genome

wide significant findings, thus necessitating further large-

scaled ascertainment schemes for the successful elucida-

tion of the molecular genetics of childhood and adolescent

psychiatric disorders. We conclude by reflecting on dif-

ferent scenarios for future research into the molecular basis

of early onset psychiatric disorders. This review represents

the introductory article of this special issue of the European

Child and Adolescent Psychiatry.
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Introduction

Over the past 50 years, substantial progress has been made

in linking specific behavioral and psychiatric phenotypes to

chromosomal aberrations or genetic variation at the DNA

level. Prerequisites of this development were significant

conceptual, methodological and technical advances in both

molecular and statistical genetics.

Advances in cytogenetics allowed the identification of

specific syndromes based on quantitative chromosomal

imbalances of complete chromosomes as in trisomy 21 in

1959 [93] and later [94] of chromosomal regions as in the

cri du chat syndrome due to monosomy 5p [94]. Approx-

imately 5 Mb represents the resolution limits of banding

techniques; fluorescent in situ hybridization (FISH) allows

detection of deletions as small as 1.5 Mb. Micro-deletions

can result in syndromes with distinct behavioral features

such as the Prader-Willi syndrome (paternal 15q11),

Angelman syndrome (maternal 15q11), and the velo-

cardiofacial/DiGeorge syndrome (22q11). Because a single

gene on average encompasses 10–15 kb, the phenotypes of

micro-deletion syndromes result from the loss of a number

of genes (partial monosomy). Quantitative imbalances can

functionally result in overexpression (e.g., trisomy or par-

tial trisomy) or underexpression (monosomy or partial

monosomy) of those genes located on a chromosome or

within a specific chromosomal region. Due to the high
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proportion of genes (&80% in mouse brain; [92])

expressed centrally, brain function is almost always per-

turbed in such disorders, thus entailing the cognitive and

behavioral phenotypes.

Findings in Down syndrome have revealed that of the

approximately 200 genes on chromosome 21 only a subset

is responsible for the characteristic phenotype. One well-

known example is the early onset of dementia in subjects

with Down syndrome, which can partially be attributed to

the over-expression of the amyloid-ß precursor protein

gene (APP) located at 21q21-22. In addition to the quan-

titative imbalance, the Down syndrome phenotype is

affected by allelic variation; for example, differences in

length of a tetranucleotide repeat in intron 7 of the APP

locus explain substantial variation in age at onset of

dementia in subjects with trisomy 21 [104].

The first large scaled and systematic genotype–pheno-

type studies with a primary behavioral, psychological and

psychiatric focus centered on sex chromosome (gonosome)

disorders; due to the low frequencies of the X0 (Turner

Syndrome), XXX (Triple X Syndrome), XXY (Klinefelter

Syndrome) and XYY syndromes thousands of newborns

had to be screened to detect low numbers of individuals

with such gonosomal disorders; the long-term follow-up of

their development into adulthood revealed that these dis-

orders are characterized by subtle neuropsychiatric and

neuropsychological symptoms such as an IQ distribution

shifted slightly to the left and elevated rates of attention

problems, speech and reading difficulties and reduced

impulse-control; nevertheless, the dissection of a highly

specific behavioral phenotype associated with any one of

these sex chromosome disorders was not possible [62].

The ability to detect variation at the DNA level formed

the basis for the successful elucidation of the molecular

mechanisms underlying many monogenic disorders, which

can entail more or less specific behavioral phenotypes

(Table 1). Most frequently, such variation is detectable in

exons of genes underlying such disorders and simplistically

either entails that the respective gene product is structurally

altered or not formed at all. For example, missense muta-

tions entail the substitution of the regular amino acid at a

specific position of the protein with another; this alteration

of the amino acid sequence of the respective protein can

have functional implications at the levels of the cell, tissue

and organism. Below, we focus on the Rett syndrome (RS),

because it is the only psychiatric disorder listed in DSM-IV

TR which in the majority of cases results from mutations in

a defined gene. Fascinatingly, within a 10-year period, the

molecular analysis of this disorder is beginning to provide

insight into potential future treatment venues and to con-

tribute to our understanding of pathways involved in per-

vasive developmental disorders, in general.

All other DSM-IV TR psychiatric disorders are most

likely complex implying that they do not at all or only

Table 1 Examples of the influence of single gene disorders on cognition and behavior

Monogenic

disorder

Mode of inheritance Gene Cognitive phenotype Behavioral phenotype Reference

Lesch–Nyhan

syndrome

X-chromosomal

recessive

Hypoxanthine guanine

phosphoribosyl

transferase (HPRT)

Mental retardation Self-mutilative biting of fingers and lips [83]

Tuberous

sclerosis

Autosomal

dominant

Tuberous sclerosis-1 and

-2 (TSC1/-2)

Learning difficulties,

low IQ, mental

retardation

Behavioral problems, autistic disorder [97]

Fragile X

syndrome

X-chromosomal,

triplet repeat

expansion

Fragile X mental

retardation (FMR1)

Mental retardation,

hyperactivity

Autism [32]

Leptin deficiency Autosomal

recessive

Leptin (LEP) Diminished perception of food reward,

decreased response to satiety signals,

hyperphagia

[39]

Chorea

Huntington

Autosomal

dominant, triplet

repeat expansion

Huntingtin (HTT) Dementia Depression, psychosis, personality

change, obsessive–compulsive

behavior

[168]

Phenylketonuria Autosomal

recessive

Phenylalanine

hydroxylase (PAH)

Mental retardation Autism [144]

Wilson’s disease Autosomal

recessive

ATPase, Cu??

transporting, beta

polypeptide (ATP7B)

Psychiatric symptoms (personality

changes, depression, psychosis)

[30]

Neurofibromatosis Autosomal

dominant

Neurofibromin (NF1) Mental retardation

hyperactivity

ADHD [3]
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infrequently result from single gene mutations. Instead, it is

assumed that several gene variants interact in a complex

manner with environmental factors to produce the pheno-

type [86]. Complex disorders typically entail higher con-

cordance rates in monozygotic than dizygotic twins;

concordance rates in monozygotic twins are typically

below 1 implying that environmental factors play a role in

the manifestation of the disorder. Family studies have

shown that complex psychiatric disorders are characterized

by elevated recurrence risks in first and second degree

relatives which are below those expected for classical

monogenic dominant or recessive traits. Moreover, for the

complex psychiatric disorders, a steep decline in recurrence

risks is observable between first and second degree family

members. In third degree relatives recurrence risks are

usually only minimally elevated above population-based

rates of the respective disorder [164].

Within child and adolescent psychiatry, the most twin,

family and adoption studies have been carried out for

attention deficit/hyperactivity disorder (ADHD; [46]).

ADHD is also noteworthy because large population-based

twin studies have analyzed quantitative dimensions of the

disorder; complex gene–environment twin studies have

also been performed. For many personality and behavioral

traits and developmental milestones heritability estimates

based on categorical or dimensional (quantitative) data

indicate that overall approximately half of the variance is

explained by genetic factors [124], the other half by the

environment (Tables 2, 3). In their seminal review, Plomin

and Daniels [125] pointed out that after controlling for

genetic similarity, siblings often appear no more alike than

individuals selected at random from the general population.

The source of this dissimilarity is a variance component

termed ‘non-shared environment’. For many traits, the non-

shared environment has been found to be of greater rele-

vance than the shared environment.

For most psychiatric disorders, which are usually assessed

categorically, genetic factors have also been shown to play

an important role (Table 4). Heritability estimates typically

exceed 0.5. ADHD has been shown to be one of the most

highly heritable child and adolescent psychiatric disorders

[18, 46, 64]. Knowledge of the magnitude of the genetic basis

of a particular disorder is valuable for interpreting psychi-

atric findings within a patient’s family and for probing for

specific disorders in relatives of the index patient.

Until recently, candidate gene and linkage studies

dominated the attempts to uncover genetic variation

underlying such complex disorders. However, viewed in

retrospect, it can be concluded that these large-scaled

efforts were largely unsuccessful; progress in the molecular

dissection of complex psychiatric phenotypes proved to be

exceedingly slow for a period of over 20 years (reviewed

in [19]). Candidate gene studies could only be performed

for those genes for which an a priori hypothesis existed as

to their relevance for the respective disorder; obviously for

each disorder this represented only a very limited number

in light of the totally known number of human genes. In

addition, candidate gene studies in different psychiatric

disorders frequently focussed on the same set of genes of a

particular neurotransmitter system, such as dopamine and

serotonin transporters and receptors (e.g., for ADHD,

obsessive compulsive disorder, and eating disorders see [9,

141, 167]). In other words, the candidate gene studies

reflected the paucity of hypotheses as to the underlying

pathways involved in complex psychiatric disorders.

Until recently, molecular genetic analyses of complex

psychiatric disorders were based on low numbers of cases

and controls or families. It has now become evident that for

many complex disorders thousands of cases and controls

are required to pick up gene variants with small effect

sizes. In 1996, Risch and Merikangas [130] had already

calculated that thousands of sib-pairs would be required to

detect linkage if the effect sizes of the relevant gene

variants are small; linkage studies only infrequently

included more than 500 sib-pairs.

In 2006, the first genome-wide association studies

(GWAS) based on DNA chip technology were introduced

(reviewed in [59]; see Table 5 for an overview of GWAS in

selected neuropsychiatric disorders), whereas it is still too

early to judge the total insight that this novel technology will

provide into the pathogenesis of complex disorders, we can

nevertheless already conclude that GWAS have entailed a

paradigm shift, thus justifying the nomination as ‘‘break-

through of the year’’ by Science magazine in 2007 [122]. For

many complex somatic and neuropsychiatric disorders,

novel genes have been detected which provide initial insights

into frequently unknown pathways involved in the respective

disorders. For many disorders, different groups pooled their

GWAS to come up with several thousand cases and controls,

such numbers had almost never been analyzed in the pre-

GWAS era. A major finding has been that the effect sizes of

validated trait or disease-related SNPs are modest to small;

according to a recent synopsis [65], the median odds ratio

was 1.33 with an interquartile range of 1.2–1.61. Despite this

recent progress, the molecular genetic basis for complex

disorders remains largely unknown. For each disorder, the

variance explained by the single newly identified gene

variants is uniformly small.

Developmental aspects represent a key feature of child

and adolescent psychiatry. The unfolding of gene expression

provides virtually all of the information necessary to guide

the orderly succession of events underlying the development

of any organism and the central nervous system, in particular

[91]. A behavioral trait or the symptoms of any given mental

disorder are more uniform for a specific developmental stage

than across all of infancy, childhood and adolescence; in
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addition, comorbidity is dependent on developmental stage

[18]. Because developmental milestones, many traits and

disorders must be viewed in the context of brain develop-

ment, elucidation of the underlying molecular mechanisms

will contribute to the identification of genes involved in

normal development of the central nervous system and its

function. Dyslexia genes, which are involved in global brain-

development processes such as neural migration and axonal

guidance represent just one such example [106, 143]. Par-

tially heritable somatic developmental traits such as age at

menarche [158] and timing of puberty [120] have success-

fully been subjected to GWAS.

Specific disorders run their course during specific

developmental phases. Examples include enuresis nocturna

which at age 7 affects approximately 10% and at 18 only

1% [54]. The frequent reduction of hyperactivity in ADHD

during adolescence is another example. Both anorexia and

bulimia nervosa rarely start in childhood and only infre-

quently persist beyond age 30; in Tourette’s disorder, both

comorbid disorders and the development of the tics show

age-related patterns. It appears probable that alterations in

expression levels of specific genes partially account for

disorder-specific manifestation ages and the symptom

development over time (Tables 2, 3, 4).

The Human Genome Project (HGP), other relevant

international projects and interindividual variation

at the DNA level

The completion of the HGP launched in the late 1980s in

the USA [117] has provided the basis for a more rapid

discovery of novel candidate genes for complex disorders.

The first comprehensive analysis of the human draft

sequence(s) was published in February 2001 by the Inter-

national Human Genome Sequencing Consortium (IHGSC)

in Nature [78] and the private enterprise Celera Genomics

(CG) in Science [166]. Most striking was the small number

of estimated human genes, which had previously been

thought to range up to over 100,000. Also, it became

apparent that only *1.5% of the human genome contains

coding information. About *50% is composed of repeti-

tive elements. Hence, human complexity is based on

diversity and finely tuned interaction of gene products such

as RNA and proteins rather than gene numbers. Consistent

with this, *50% of human protein coding genes exhibit

alternative splicing [13, 111, 112] creating a proteome of

[90,000 proteins [60]. Gene expression is regulated by the

complex interaction of a wide variety of transcription

factors [43, 151].

In April 2003, in the 50th anniversary year of the dis-

covery of the double-helical structure of DNA [171], the

human DNA sequence was virtually completely elucidated.

It represented *99% of the euchromatic portion of the

human genome (2.85 Gb) with 99,999% accuracy [79]. Of

main interest is the identification of all genes and a com-

prehensive genome annotation. Currently, 31,315 genes

(including 9,899 pseudogenes, which are not transcribed)

are listed in the human gene catalogue (Ensemble Database

version 54.36p). The total number of protein coding genes

is estimated at 20,000–25,000, which is consistent with

data from cross species comparisons [115, 132]. The fin-

ished sequence also provides the basis for the identification

of potentially all genes causing or predisposing to disease

Table 2 Selected heritability estimates of personality dimensions

Assessments Heritability estimates Reference

Female (%) Male (%)

Extraversion EPQ-R 57 57 [85]

Neuroticism EPQ-R 54 49 [85]

Lie EPQ-R 44 35 [85]

Psychoticism EPQ-R 39 43 [85]

Harm Avoidance TCI 53 57 [85]

Novelty Seeking TCI 55 55 [85]

Reward depending TCI 56 51 [85]

Persistence TCI 55 55 [85]

The ‘‘Big Five’’

Extraversion NEO-PI-R 53 [82]

Neuroticism NEO-PI-R 41 [82]

Openness NEO-PI-R 61 [82]

Agreeableness NEO-PI-R 41 [82]

Conscientiousness NEO-PI-R 44 [82]

EPQ-R Eysenck Personality Questionaire [37], TCI Temperament and Character Inventory [26], NEO-PI-R NEO Personality Inventory [29]

262 Eur Child Adolesc Psychiatry (2010) 19:259–279

123



as well as genetic variations affecting individual responses

to medication and environmental factors. To detect varia-

tion in a DNA region of interest (e.g., a gene repeatedly or

unambiguously identified in GWAS) in individuals with a

specific disorder, the respective regions are commonly re-

sequenced.

Interspecies comparison is helpful to identify regulatory

regions and functional motifs, and so sequencing of many

prokaryotic as well as eukaryotic organisms including

mammals (mouse, rat, cat, chimpanzee, cow and dog) is

completed or well under way. Comparison of highly

accurate genome sequences enables the study of genome

evolution, i.e., lineage-specific gene birth [35, 116, 121,

135]. Chimpanzee is the closest relative to humans having

DNA sequences 98% identical to each other. Of special

medical interest is the high proportion of recent segmental

duplications [7] and inversions [42] in the human genome.

The respective chromosomal regions are prone to rear-

rangements and/or deletions potentially resulting in phe-

notypic effects and can now be reliably analyzed [24, 108].

To systematically identify all genetic variations in the

human population, the international HapMap Project was

initiated in 2002 [77]. Populations with African, Asian, and

European ancestry are studied to identify and catalogue

genetic similarities and differences in humans. Genotyping

a subset of these in the three populations generates an

invaluable resource for the discovery of genes related to

complex disorders via GWAS.

The Human Epigenome Project [74] aims to identify,

catalogue and study genome-wide DNA methylation pat-

terns. DNA methylation is a natural modification of the

nucleotide cytosine via which gene expression is con-

trolled. It is tissue-specific and changes over time in

response to environmental factors. DNA methylation thus

represents a direct link between environment and an indi-

vidual’s state. Epigenetic differences between monozygous

twins potentially account for phenotypical variation despite

an identical genome at the DNA level. Although twins

have been found to be epigenetically indistinguishable

during the early years of life, older monozygous twins

exhibited remarkable differences in their overall content

and genomic distribution of 5-methylcytosine DNA and

histone acetylation, affecting their gene-expression portrait

[45]. These findings indicate how an appreciation of epi-

genetics is currently largely missing from our understand-

ing of the origin of different phenotypes from the same

genotype.

The international Human Brain Proteome Organization

Project (HBPP) is concerned with the brain proteome in

health, aging and neuropsychiatric disorders [109]. The

Encyclopedia of DNA Elements Project (ENCODE) aims

at identifying all functional elements in the human genome

[36]. Together with these and future initiatives, the HGP

Table 4 Heritability estimates of selected psychiatric disorders

Disorder Heritability estimates (%) Reference

PDD 90 [139]

Enuresis 67–70 [54]

Conduct disorder 53 [51]

OCD 47 [25]

Anxiety disorders 30–40 [33]

ADHD 60–80 [64]

Anorexia nervosa 48–88 [141]

Bulimia nervosa 28–83 [141]

Schizophrenia 73–90 [160]

Bipolar disorder 60–85 [149]

Major depression 31–42 [159]

OCD Obsessive Compulsive Disorder; PDD Pervasive Develop-

mental Disorders (including autistic disorder, Asperger disorder,

disintegrative disorder, and PDD not otherwise specified); ADHD
Attention Deficit/Hyperactivity Disorder

Table 3 Heritability estimates of selected behaviors and develop-

mental milestones

Assessments Heritability

estimates (%)

Reference

Behaviors

Dieting EAT 42 [134]

Body

dissatisfaction

EDI 52 [134]

Drive for thinness EDI 44 [134]

Disinhibition of

eating

TFEQ 40 [155]

Restrained eating TFEQ 28 [155]

Hunger TFEQ 28 [155]

Obsessive

compulsive

behav.

CBCL 45–58 [71]

Developmental milestones

Motor

development

Crawling, sitting

standing, walking

90 [53]

Crawling, sitting,

walking

22–33 [123]

Standing 0 [123]

Heritability

estimates (%)

Female Male

Expressive

language

‘‘vocabulary’’

MCD-I-R 8 20 [73]

‘‘Two-word-

combination-use’’

MCD-I-R 28 10 [73]

EAT Eating Attitudes Test [49], EDI Eating Disorder Inventory [50],

MCD-I-R MacArthur Communicative Development Inventories-short

form [40], CBCL Child Behavior Checklist [2], TFEQ Three Factor

Eating Questionnaire [157]
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Table 5 Examples of single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) detected in genome wide association studies

(GWAS) for selected neuropsychiatric disorders

Disorder Gene(s) or region Marker-risk allele P value Sample (cases/controls) Reference

Restless legs syndrome

GWAS PTPRD rs4626664-A 6 9 10-10 628/1,644; replication in 1,835/3,111 [142]

rs1975197-T 6 9 10-9

BTBD9 rs3923809-A 3 9 10-14 306/15,633; replication in 311/1,895 [152]

MEIS1 rs2300478-G 3 9 10-28 401/1,644; replication in 1,158/1,178 [176]

BTBD9 rs9296249-T 4 9 10-18

MAP2K5, LBXCOR1 rs12593813-G 1 9 10-15

ADHD

CNV CTNND2, GRM5, GRM7, PARK2 Deletions 9.48 9 10-3 335 parent–child trios/2,026 [34]

Schizophrenia

GWAS ZNF804A rs3923809-A 1.61 9 10-7 479/2,937; replication in 6,666/

19,897

[118]

CSF2RA, IL3RA rs4129148-C 4 9 10-7 178/144 [95]

MHC/HIST1H2BJ rs6913660-C 1.1 9 10-9 2,663/13,498; follow-up in 4,999/

15,555

[154]

MHC/PRSS16 rs13219354-T 1.3 9 10-10

rs6932590-T 1.4 9 10-12

MHC/PGBD1 rs13211507-T 8.3 9 10-11

MHC/NOTCH4 rs3131296-G 2.3 9 10-10

NRGN rs12807809-T 2.4 9 10-9

TCF4 rs9960767-C 4.11 9 10-9

MHC class 1 region rs13194053-C 9.5 9 10-9 3,322/3,587; meta-analysis with

8,008/19,077

[80]

6p22.1 9.54 9 10-9 Meta-analysis of 8,008/19,077 [147]

CNV 1q21.1 2.9 9 10-5 1,433/33,250; replication in 3,285/

7,951

[153]

15q11.2 6 9 10-4

15q13.3 5.3 9 10-4

Bipolar disorder

GWAS ANK3 rs10994336-T 9 9 10-9 4,387/6,209 [41]

CACNA1C rs1006737-A 7 9 10-8

DGKH rs1012053-A 2 9 10-8 461/563 [10]

PALB2, NDUFAB1, DCTN5 rs420259-A 6 9 10-8 1,868/2,938 [173]

Autism

GWAS CDH10, CDH9 rs4307059-T 2 9 10-10 1,204/6,491; 3,101 family members;

replication in 1,390 family

members;

108/540

[170]

CNV MDGA2 Exonic deletions 1.3 9 10-4 912 families/1,488; replication in

859/1051

[17]

BZRAP1 Exonic deletions and duplications 2.3 9 10-5

AK123120 Duplication 3.57 9 10-6 859/1,409; replication in 1,336/

1,110 cc1
[52]

PARK2, UBE3A, RFWD2, FBXO40 Duplication or deletion 3.3 9 10-3

NLGN1, ASTN2 Duplication or deletion 9.5 9 10-3

16p11.2 Microdeletions/microduplications 751 families/4,234; replication in

811/19,268

[172]

PTPRD protein tyrosine phosphatase, receptor type, D; BTBD9 BTB (POZ) domain containing 9; MEIS1 Meis homeobox 1; MAP2K5 mitogen-activated

protein kinase kinase 5; LBXCOR1 LBXCOR1 homolog; CTNND2 catenin delta-2; GRM5 glutamate receptor metabotropic 5; GRM7 glutamate receptor

metabotropic 7; ZNF804A zinc finger protein 804A; RELN reelin; CSF2RA colony stimulating factor, receptor 2 alpha; IL3RA interleukin-3 receptor

subunit alpha; MHC major histocompatibility complex; HIST1H2BJ histone cluster 1 H2bj; PRSS16 thymus-specific serine protease; HIST1H2BJ histone

H2B type 1-J; PGBD1 PiggyBac transposable element-derived protein 1; NOTCH4 notch homolog 4; NRGN neurogranin; NLGN1 neuroligin 1; TCF4
neurogranin, transcription factor 4; ANK3 ankyrin 3; CACNA1C calcium channel, voltage-dependent, L type, alpha 1C subunit; DGKH diacylglycerol

kinase eta; PALB2 partner and localizer of BRCA2; NDUFAB1 NADH dehydrogenase (ubiquinone) 1, alpha/beta subcomplex, 1; DCTN5 dynactin subunit

5; CDH10 Cadherin-10 precursor; CDH9 cadherin-9 precursor; MDGA2 MAM domain containing glycosylphosphatiddylinositol anchor 2; BZRAP1
benzodiazapine receptor (peripheral) associated protein 1; AK123120 cDNA; PARK2 Parkinson disease 2; RFWD2 ring finger and WD repeat domain 2;

UBE3A ubiquitin-protein ligase E3A; FBXO40 F-box protein 40; ASTN2 astrotactin 2
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demonstrates the immense power lying in coordinated

efforts to provide the foundation of biological and bio-

medical research at a new, more global but at the same time

intertwined level. More recently, the 1,000 Genomes Pro-

ject was initiated to re-sequence the genomes of at least

1,000 individuals from around the world to create the most

detailed and medically useful picture to date of human

genetic variation [162].

The comparison of whole genome sequences between

individuals has allowed the detection of substantially more

variation than expected [96, 169]. It had been assumed that

most variation is due to single nucleotide polymorphisms

(SNPs; exchanges at the level of a single base). Any two

individuals differ by only one in 1,000 DNA bases or at

approximately 3 million bases out of the total of 3 billion

in the human genome. However, the comparison of a single

sequenced genome (that of Craig Venter) with the National

Center for Biotechnology Information human reference

assembly identified more than 4 million variants (almost

1.3 million were novel) encompassing more than 12 Mb;

roughly 1 million variants were not due to SNPs; instead

these variants encompassed block substitutions, insertion/

deletion events (indels), 90 inversions, as well as numerous

segmental duplications and copy number variation (CNV)

regions. In total, non-SNP DNA variation accounted for

22% of all events identified in the genome of Craig Venter,

which however accounted for 74% of all variant bases,

suggesting an important role for non-SNP genetic altera-

tions in defining the diploid genome structure [96]. 44% of

Venter’s genes were heterozygous for one or more variants.

Due to their importance in neuropsychiatric genetics

[28], CNVs deserve particular notice. These are defined as

segments of DNA as large as several megabases in which

copy number differences due to genomic rearrangements

such as inversions, deletions, duplications and transloca-

tions have been found via representational oligonucleotide

microarray analysis [145] and comparison of genomes

(e.g., [88, 96]); CNVs are either inherited or de novo. It is

estimated that approximately 0.4% of the genomes of

unrelated people typically differ with respect to copy

number [88].

RS as a monogenic psychiatric disorder

Originally, Rett [128] delineated the features of this serious

neuropsychiatric disorder in three females; 17 years later,

Hagberg et al. [58] reported on 35 females with ‘progres-

sive autism, loss of purposeful hand movements, ataxia,

and acquired microcephaly’, which represent the cardinal

symptoms of the disorder with an incidence of approxi-

mately 1 out of 10,000 female live births. After apparently

normal development for 6–18 months, girls with RS lose

acquired cognitive, social, and motor skills and develop

autistic behavior accompanied by stereotypic hand move-

ments. As the disorder progresses severe mental retardation

and motor impairments, including ataxia, apraxia, and

tremors ensue. Seizures, hyperventilation, apnea and

feeding difficulties are also common. The disorder is spo-

radic in 99% of all cases [22]. The RS brain is small for age

and height of the patient. Dendritic trees in pyramidal

neurons of layers III and V in selected lobes are small. The

RS brain has small neurons with an increased neuronal

packing density; it exhibits a changing pattern of neuro-

transmitter receptors with an apparent reduction in many

neurotransmitters [5].

In 1999, different mutations in the methyl-CpG binding

protein 2 gene (MECP2; human genes are commonly

abbreviated in italic capital letters) were detected in RS

females [4]. This discovery marked a turning point in

psychiatric genetics: a DSM-IV (and ICD-10) psychiatric

disorder was found to be due to mutations within a single

gene. About 95% of classical RS patients have one of[300

known pathogenic MECP2 mutations, the spectrum of

which includes missense, nonsense, and frameshift muta-

tions and deletions [22], the last three entailing a more

severe phenotype. The X-chromosomal location (Xq28) of

MECP2 explains why mostly only females are affected:

males, who have only one copy of MECP2, are frequently

not viable, if the gene is mutated. In those alive at birth, a

much more severe clinical phenotype results; death mostly

occurs prior to age 2.

Seemingly, both a reduced and an elevated expression of

MECP2 lead to a similar phenotype: duplications of Xq28

including MECP2 were detected in males with clinical

features similar to RS. Transgenic mice that express wild-

type Mecp2 (only the first letter of murine genes is capi-

talized) at twice the normal level also have a progressive

neurological phenotype similar to that observed in human

patients [27].

MECP2 and the RS phenotype

MECP2 is expressed in all tissues. In the adult mouse,

Mecp2 (protein encoded by Mecp2) is high in brain, lung

and spleen, lower in heart and kidney, and barely detect-

able in liver, stomach and small intestine. The timing of the

expression of murine Mecp2 and human MECP2 in humans

has been shown to correlate with the maturation of the

central nervous system, with the ontogenetically older

structures such as the spinal cord and brainstem becoming

positive before newer structures such as the hippocampus

and cerebral cortex. In the cortex, MeCP2 first appears in

the Cajal-Retzius cells, then in the neurons of the deeper,

more mature cortical layers, and finally in the neurons of

the more superficial layers [146]. Both timing and
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localization of MECP2 expression should explain devel-

opmental aspects of the RS phenotype.

MECP2 is subject to alternative splicing (different

processing of the mRNA results in proteins of different

sizes with partially identical domains). The B isoform has

the highest expression in brain, and mutations specific

to the exons encoding this isoform are sufficient to cause

RS. The respective protein MeCP2 includes four functional

domains, one of which is the methyl-CpG binding domain

(MBD). This protein domain binds to symmetrically

methylated CpGs located in the upstream region of many

genes; binding of MeCP2 to methylated CpGs has an

influence on the transcription rate of such a gene and is thus

an important epigenetic mechanism in the regulation

of distinct genes. The three other functional domains

include an arginine-glycine repeat RNA-binding domain, a

transcriptional repression domain that interacts with a

co-repressor complex involving mSin3A and histone

deacetylases and a RNA splicing factor binding region [165].

MeCP2 seemingly influences the transcription of a

limited number of specific genes as either a repressor or

activator, which is not only due to MeCP2 binding to CpG-

islands but also to periodic MeCP2 binding outside gene

boundaries, entailing the organization of chromatin into

functionally important domains or loops of imprinted

regions [70, 178], which, in turn, modulate gene expres-

sion. If due to a non-functional (or over-expression of)

MeCP2, the expression of target genes continues or is not

initiated, more and more RS symptoms ensue over time

[11]. Future research will potentially reveal which RS

symptoms are related to activation or repression of specific

genes due to the loss of function of MeCP2. For example,

the frequent feeding problems in RS might be related to the

persistent expression of brain-derived neurotrophic factor

(BDNF), which aside from being involved in the regulation

of neural survival, development, function, and plasticity in

the brain also has an influence on feeding behavior and

body weight regulation [61].

Transgenic and knockout mice models and comparative

sequence analysis [127] have helped considerably to elu-

cidate the function of MeCP2, to assess the effect of spe-

cific mutations on the phenotype and to enable the

identification of evolutionary conserved regions. If Mecp2

is completely knocked out in male mice, a mild RS-like

phenotype ensues (female mice remain healthy into

adulthood). A conditional knockout of Mecp2 in postnatal

neurons of restricted regions in the brain leads to a similar

although delayed neuronal phenotype, suggesting that the

gene plays a role in post-mitotic neurons. Abnormalities in

social interaction and home-cage behavior were identified

in mice, in which a mutation similar to common RS

causing alleles had been introduced [113]. The resultant

phenotype was reminiscent of the sleep/wake dysfunction

and autistic features of RS patients. Interestingly, trans-

genic expression of Mecp2 in Mecp2 knockout mice lar-

gely rescues the RS phenotype [101].

Although it is thought that the primary cause of RS

results from a lack of functional MeCP2 in neurons (cell

autonomous), non-cell autonomous factors also contribute

to the disease. Thus, loss of MeCP2 also occurs in glial

cells of RS brains [8, 102]. Because mutant astrocytes from

a RS mouse model, and their conditioned medium, failed to

support normal dendritic morphology of either wild-type or

mutant hippocampal neurons, astrocytes in the RS brain

carrying MECP2 mutations may have a non-cell autono-

mous effect on neuronal properties, probably as a result of

aberrant secretion of a soluble factor(s) [8].

MeCP2 deficiency in astrocytes causes significant

abnormalities in BDNF regulation, cytokine production,

and neuronal dendritic induction, which may contribute to

abnormal neurodevelopment. In addition, the MeCP2

deficiency state can progressively spread at least in part via

gap junction communications between mosaic Mecp2-/?

astrocytes in a novel non-cell-autonomous mechanism,

which may lead to the pronounced loss of MeCP2 observed

selectively in astrocytes in mouse Mecp2-/? brain, which

is coincident with phenotypic regression characteristic of

RS. Based on these findings, Maezawa et al. [102] suggest

that astrocytes are viable therapeutic targets for RS and

perhaps regressive forms of autism.

A broader role of MECP2 in neurodevelopmental

disorders

Significant differences in MeCP2 expression have been

detected between brain samples of individuals with related

neurodevelopmental disorders, including autism, pervasive

developmental disorder, Prader-Willi and Angelman syn-

dromes and age-matched controls [136, 137]. Hence, the

elucidation of the molecular mechanisms underlying RS

has led to the theory that multiple pathways regulate the

complex developmental expression of MECP2 and are not

only defective in RS but also in other autism spectrum

disorders. The common features of human neuro-develop-

mental disorders caused by loss or increase of MeCP2

function suggest that even modest alterations of MeCP2

levels result in neurodevelopmental problems. In support of

this hypothesis, a 50% reduction of the level of wild-type

MeCP2 in mice was shown to result in a spectrum of subtle

abnormalities such as learning and motor deficits,

decreased anxiety, altered social behavior and nest build-

ing, decreased pain recognition and disrupted breathing

patterns [138]. Seemingly, the precise control of MeCP2

expression level is critical for normal behavior.

A series of studies have aimed at assessing the role of

MECP2 and related genes in autistic disorder and mental
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retardation. MECP2, MBD1, MBD2, MBD3, and MBD4

comprise a nuclear protein family sharing the methyl-CpG

binding domain (MBD) and are related to transcriptional

repression. However, mutations in MECP2 have only

infrequently been detected in patients with autistic features;

mutations in the other genes have not systematically been

found to play a role in the etiology of autistic disorders

[98]. Future candidate gene studies in autism spectrum

disorders can focus on those genes whose expression levels

are regulated by MeCP2 (see, e.g., [165]). The investiga-

tion of the role of frequent MECP2 polymorphisms in

polygenic autism also merits consideration: in two family

samples a three-marker SNP haplotype was associated with

autism and autism spectrum disorders suggesting that one

or more functional variants of MECP2 existing at signifi-

cant frequencies in the population may confer increased

risk [100].

Therapeutic implications

The finding that transgenic expression of Mecp2 in Mecp2

knockout mice largely rescues the RS phenotype [101]

suggests that RS might be amenable to treatment. Because

treatment would typically only be possible after the diag-

nosis of RS and thus after development of clinical symp-

toms, this rescue in the mouse model appears promising for

the treatment of RS patients. As systemic treatment of

MeCP2 mutant mice with an active peptide fragment of

Insulin-like Growth Factor 1 (IGF-1) extends life span,

improves locomotor function, ameliorates breathing pat-

terns, and reduces irregularity in heart rate IGF-1 has been

suggested as a prime candidate for pharmacological treat-

ment of RS and other disorders caused by a deficit in

synapse maturation in the brain [163]. Treatment with IGF-

1 peptide was also shown to increase brain weight of the

mutant mice; additionally, IGF-1 partially restored spine

density and stabilized cortical plasticity to wild-type levels

[163]. In Mecp2 mutants, BDNF overexpression extended

the lifespan, rescued a locomotor defect, and reversed an

electrophysiological deficit [23].

Histone deacetylases (HDACs) are enzymes that affect

the acetylation status of histones and other cellular pro-

teins. Pharmacological manipulations using small-mole-

cule HDAC inhibitors, which may restore transcriptional

balance to neurons, modulate cytoskeletal function, affect

immune responses and enhance protein degradation path-

ways, have proven beneficial in various experimental

models of brain diseases [84] and could thus prove bene-

ficial in diverse neurodevelopmental disorders including

RS. In other genetic disorders, it has been shown that

aminoglycosides can cause a read-through of nonsense

mutations with an efficiency of up to 20%. Brendel et al.

[12] showed that this read-through of MECP2 nonsense

mutations can be achieved in vitro with efficiency com-

parable to that seen in other disorders.

Identification of predisposing alleles

in complex disorders

In conclusion, within a ten year period, substantial progress

has been made in elucidating the molecular mechanisms

underlying RS and deducing strategies for potential treat-

ment. The situation in polygenic disorders is obviously

much more complex. In the following, we examine how

gene variation can be picked up in complex disorders.

Association studies

The comparison of genetic variants between cases and

controls is the most common approach taken to identify

variants predisposing to the respective disorder. In associ-

ation studies, a familial loading is per se not required for

classification as a case. However, requirement of such a

loading would be expected to increase the probability that

genetic factors indeed contribute to the disorder of the

index patient. Controls are frequently screened for the

respective disorder; a positive screen entails exclusion of

the proband as a control. Use of controls with a phenotype

that quantitatively differs as much as possible from cases

can theoretically enhance the probability of detecting

genes. Controls should be matched to cases for well-

established, strong risk factors (e.g., ethnic group, sex,

socio-economic status and intelligence) to ensure that sig-

nificant results are not caused by a confounding risk factor

differing between the two groups other than the trait of

interest [89]. Such confounders would bias the study if they

interact with the considered candidate gene. Overmatching,

on the other hand, e.g., for many potential, small risk

factors, will lead to substantial loss of efficiency. Matching

has to be accounted for in the analysis as well.

One of the most important confounders in genetic

studies could be ethnicity in ethnically admixed or struc-

tured populations [90]. This will cause serious bias if the

studied candidate gene differs in allele frequencies between

ethnically defined sub-populations (population stratifica-

tion). It has been proposed to genotype several markers that

are thought to bear no relationship to the disorder of

interest in both cases and controls to potentially enable

adjustment for systematic genetic differences [31, 126];

this has become a standard requirement for GWAS (see

below, [6]).

Another popular approach to circumvent the potential

confounding population stratification effects of case–con-

trol studies are family-based association studies, which

include family members of the cases to use as (ethnically)
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matched controls. These can be unaffected sibs or pseudo-

controls constructed from non-transmitted parental alleles.

The first statistical tests for such case-parent trios were the

haplotype relative risk method (HRR; [38]) and the hap-

lotype-based haplotype relative risk method (HHRR;

[161]). These tests influenced the development of the most

widespread test—the transmission disequilibrium test

(TDT; [150]) which is unaffected by population stratifica-

tion phenomena and a valid test for both association and

linkage. The TDT test statistic is based on the comparison

of the number of times the allele of interest is transmitted

versus non-transmitted by heterozygous parents to an

affected child. The ascertainment of parents is usually

readily possible in disorders with a childhood onset.

Family-based association studies have certain disad-

vantages; in particular, they are less efficient than case–

control studies. Sibs share on average one allele identical

by descent, so there is effectively only one allele that can

differ instead of two for unrelated cases and controls. Also,

sibs tend to be more similar in many possible risk factors

which imply over-matching with its associated loss in

efficiency. In the trio design, three subjects have to be

genotyped to yield approximately the similar information

as two subjects in the case–control design. And finally, for

diseases with a later age-of-onset, it will be difficult to

ascertain parents of cases. Therefore, family-based

association studies are more expensive and complex than

case–control studies.

Effect size

In polygenic disorders, each gene variant (subsequently

also referred to as an allele) has only a minor to minimal

effect. Typically the effect size of a particular allele or

genotype is indicated via its relative risk or the odds ratio

in case–control designs. In diploid cells, humans have two

copies of every gene (with the exception of most genes

located on the X and Y chromosomes in males); in this

context, the term genotype refers to both gene variants;

typically the genotype relative risk is given for heterozy-

gotes (AB) and homozygotes (BB) for the predisposing

allele, it is set to 1 in individuals homozygous for the wild-

type allele (AA). Low relative risks imply that (1) the

variant (or genotype) in itself is by no means sufficient to

explain the disorder of an affected individual and (2) many

individuals without the respective disorder harbor the same

allele (or genotype).

Given a limited number of cases and controls (e.g.,

1,000 each), detection of predisposing alleles becomes

more difficult (a) the lower the population frequency of

such a variant and (b) the lower its effect size. A study is

underpowered if a significant difference cannot reliably be

detected between cases and controls. Recent GWAS for

height, weight and body mass index (BMI in kg/m2) based

on ten thousands of individuals have picked up single

variants which in the heterozygous state on average entail a

3 mm increased height [57] and a 180 g heavier weight

[175], respectively. Because presumably only those gene

variants with the most pronounced effects have currently

been detected, effect sizes of most as yet undetected alleles

may well be below 2 mm or 100 g. The implications for

psychiatric disorders are evident: whereas previous

molecular genetic studies frequently at best included only a

few hundred individuals, current studies already include

thousands of cases and controls. Many more are needed to

confirm initial true positive or to rule out false negative

findings in independent samples.

Common variants versus private mutations

The common disease—common variant hypothesis pre-

dicts that specific common alleles or variants predispose

to common disorders and that such alleles/variants will be

found in all human populations, in which the respective

disease occurs. Indeed, for several complex traits and

disorders common variants, mostly SNPs, have been

detected in coding and regulatory sequences of genes

(e.g., [65, 76]); however, in many cases the localization of

such a SNP does not allow any conclusions as to how this

variation affects the function of the gene; it appears likely

that in many cases, the respective SNP in itself merely

tags a functionally relevant SNP or variant (linkage dis-

equilibrium) in close proximity. In addition, because such

SNPs can be located far from a gene it frequently is not

even possible to definitely determine which gene (e.g., 30

or 50) is altered in its function. It appears likely that many

of the functional variants influence gene expression

levels.

The identification of variants with moderate effect sizes

has been successful in single non-psychiatric disorders with

complex inheritance such as Crohn’s disease [72, 119],

breast cancer [110, 177], and type 2 diabetes mellitus [56].

However, for complex psychiatric disorders, common gene

variants with modest and robust effect sizes have not been

detected. Even upon use of large-scaled GWAS (see

below), the total number of validated common variants is

rather low and their effect sizes are uniformly small.

Despite the recent advances, the explained variance of a

quantitative phenotype remains low even if heritability

estimates are high. Thus, even though heritability estimates

exceed 0.8 for body height, less than 5% of the total var-

iation in height has been uncovered despite the detection of

over 40 validated gene variants [57, 69]. Similarly, only

about 1% of the variance in BMI has currently been found

to be due to about 20 common variants [67, 68, 175]

despite heritability estimates of roughly 0.4–0.8.
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The common disease—common variant hypothesis has

been challenged. Based on molecular genetic findings, a

recent discussion has focused on the relevance of ‘‘private’’

mutations defined as rare mutations found only in single

families in whom a specific complex disorder occurs.

Particularly for disorders with reduced fecundity, associ-

ated with severe mental disorders, a negative selection

pressure conceivably acts on risk alleles, thus potentially

explaining why common variants have not been readily

detected in disorders such as autism, schizophrenia and

mental retardation. Accordingly, rare variants may account

for a larger fraction of the overall genetic risk than previ-

ously assumed. Indeed, rare CNVs have been detected in

schizophrenia [153], autism (reviewed in [47]) and mental

retardation [107]. For example, Stefansson et al. in a

genome-wide search for CNVs associating with schizo-

phrenia used a population-based sample to identify de novo

CNVs by analyzing 9,878 transmissions from parents to

offspring. The 66 de novo CNVs identified were tested for

association in a sample of 1,433 schizophrenia cases and

33,250 controls. Three deletions at chromosomes 1q21.1,

15q11.2 and 15q13.3 showing a nominally significant

association with schizophrenia in the first sample were

followed up in a second sample of 3,285 cases and 7,951

controls. All three deletions were significantly associated

with schizophrenia and related psychoses in the combined

sample.

In complex disorders, different sets of gene variants are

operative in different affected individuals. Assume that 100

genes each occurring as the two alleles A and B in the

population in total account for all genes predisposing to a

particular disorder; all of these variants would have the

same effect size and would act in an additive manner. Let

us also assume that at least 50 predisposing alleles must be

present in an individual for the disorder to break out, if

predisposing environmental factors are abundant—more

predisposing alleles would be necessary if only a limited

number of negative environmental factors are operative.

Accordingly, an affected subject could theoretically be

homozygous for the predisposing variant at 25 loci, another

could be heterozygous at 50 loci. Most affected individuals

would be heterozygous at some loci and homozygous at

others. Clearly in this scenario, any two affected individ-

uals would not necessarily share a single predisposing

variant; there is substantial genetic heterogeneity.

In reality, the frequencies and effect sizes of such alleles

differ. Despite the fact that for the two quantitative phe-

notypes height and BMI effect sizes of currently detected

variants have been shown to be additive, non-additive

effects appear likely in complex disorders. Also consider

that complex interactions of specific sets of gene variants

presumably occur with environmental factors. Thus, a

particular (set of) environmental factor(s) might only be

relevant for a subgroup of individuals characterized by

specific genotypes at diverse loci. Yet in current studies, all

the individuals of such subgroups are analyzed as if they

were a homogeneous sample.

We briefly dwell on the different strategies to detect

gene variants in complex disorders.

Candidate gene studies

For many years, the candidate gene approach formed the

most frequent attempt to discover genetic variation

underlying psychiatric disorders. The choice of a specific

candidate gene was commonly based on pharmacological,

physiological, biochemical, anatomical and/or genetic data

such as chromosomal localization within a linkage region

or chromosomal breakpoints in chromosome aberrations in

individuals with a psychiatric phenotype. However, in light

of the estimated 21,000 human genes and our poor

knowledge of the molecular basis of any psychiatric dis-

order, the a priori probability for the involvement of a

particular gene is low, unless the underlying hypothesis is

well founded. Most of the respective genes were originally

selected because they belong to neurotransmitter systems

assumed to be involved in psychiatric disorders (e.g.,

dopaminergic or serotonergic system). Typically, originally

positive findings were not unequivocally confirmed in

subsequent independent association studies; meta-analyses

have been used to assess such conflicting findings. While

meta-analyses may be useful to circumvent the problem of

limited statistical power due to small samples, they are no

means to cope with poor study quality (e.g., [99]). The

advent of GWAS has led to an almost complete halt of

classical candidate gene studies; in retrospect, their con-

tribution to the elucidation of genetic mechanisms in psy-

chiatric disorders has been minimal. Because, as has been

pointed out, case numbers were frequently low, it remains

to be seen if some classical candidate genes for diverse

psychiatric disorders will be picked up in large GWAS.

To illustrate the candidate gene approach we refer to a

study conducted by Abelson et al. [1], who identified a

patient presenting with Tourette’s disorder (TD) and

ADHD carrying a de novo chromosome 13 inversion.

Because the Slit and Trk-like family member 1 gene

(SLITRK1) is one of three genes located within 500 kb of

the two breakpoints, this gene was considered as a candi-

date gene for TD. Accordingly, SLITRK1 was screened in

174 patients with TD. One subject with TD and ADHD

harbored a frameshift mutation; two unrelated patients with

TD and obsessive–compulsive symptoms had an identical

non-coding variant. Both this variant and the frameshift

mutation were absent in 4,926 and 3,600 control chromo-

somes, respectively. Abelson et al. concluded that SLIT-

RK1 mutations underlie TD in a small subgroup of patients
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affected with this tic disorder. However, caution is war-

ranted because in contrast to the 174 TD patients, SLITRK1

was not screened for mutations in controls; hence, it cannot

be excluded that healthy controls might also harbor other

infrequent mutations.

Genome-wide linkage studies

DNA sequences at specific loci are inherited together as a

consequence of their physical proximity on a single chro-

mosome. The closer the loci are to each other at the DNA

level, the lower the probability that they will be separated

during meiosis, and hence the greater the probability that

they will be inherited together. By analyzing genetic mei-

otic recombination frequencies between specific loci,

genetic linkage analysis can be used to localize suscepti-

bility genes within a framework map of genetic markers

with known positions in the genome. Genome scans have

typically been based on 350–1,000 microsatellite markers

spaced rather evenly throughout the genome with marker

distances of about 10–3 cM [114]. Fine mapping with

additional markers is frequently performed in an attempt to

narrow in the chromosomal region which initially can span

over a large region of a chromosome encompassing several

genes. A priori hypotheses as to functional candidate genes

that could influence the phenotype are not required. In

addition, no a priori assumptions about mode of inheri-

tance, frequency of the disease allele in the general popu-

lation and penetrance are required; such analyses are also

termed non-parametric or model-free. For parametric

linkage analyses, the search space is usually restricted to

for instance specific modes of inheritance; thus, a priori

assumptions are made.

Linkage studies proved to be very successful for

monogenic Mendelian disorders; nevertheless, progress

usually was slow: for example, it took from 1983 to 1993 to

proceed from the initial linkage finding on chromosome 4p

in large pedigrees to the identification of the Huntingtin

gene and the molecular mechanism underlying Hunting-

ton’s disease [75]. In complex disorders, linkage studies

were originally also based on large, multiply affected

pedigrees based on the (potentially incorrect) assumption

that a single or only a small number of disease genes

segregate in each of these families. Sibling pairs and small

nuclear families formed the basis of more recent linkage

studies [129].

With single exceptions (e.g., see [143], for linkage

findings in dyslexia leading to the detection of doublecortin

domain containing 2 gene) linkage scans for psychiatric

disorders have failed. Potential explanations include: (1)

sample sizes typically ranged well below 500 sib-pairs and

thus had (very) low power. Meta-analyses of linkage

studies have been performed in an attempt to cope with the

small number of sib-pairs investigated in single studies; for

example, for ADHD a genome-wide significant linkage

was detected on chromosome 16 [179], in contrast no

significant linkage finding was detected for obesity [140].

(2) If infrequent/rare gene variants (private mutations) with

large effect sizes (major genes) exist in psychiatric disor-

ders, their detection via linkage studies is exceedingly

difficult or impossible. It remains to be seen to what extent

GWAS will pick up genes located within linkage peaks

detected via previous linkage studies; we are aware of one

such example [140].

Genome-wide association studies (GWAS)

The possibility to place hundreds of thousand oliogonu-

cleotides on small chips in combination with the advances

of the Human Genome and related projects has revolu-

tionized molecular genetic studies of complex traits and

disorders. This transition to SNP-based technology has

been rendered possible by the construction of a map of

naturally occurring polymorphisms [81]: 1.4 million

unique SNPs were built in a *2-kb-resolution map placing

*2–4 SNPs per human gene. Currently, there are

*79 million submitted, 18 million referenced and

6.6 million validated SNPs known (latest update: 30 April

2009 [148]). Furthermore, the construction of a haplotype

map of the human genome has greatly facilitated com-

prehensive genetic association studies of human disease

[48, 55, 103].

SNP associations are currently being detected at an

unprecedented pace for many neuropsychiatric disorders

[65, 66, 87, 103; see also Table 5). The chips allow the

determination of genotypes for the number of SNPs that

are detected with the respective oligonucleotides; cur-

rently, determination of 1 million SNP genotypes in every

individual tested is feasible; only very small amounts of

DNA are required. If 2,000 cases and 2,000 controls are

analyzed in an association study, a total of 2 9 2,000 9

1 million genotypes are generated. Both allele and geno-

type frequencies for every single SNP can be compared;

P values of 0.05 divided by 106 (simple Bonferroni cor-

rection for the 1 million tests), i.e., P values smaller than

0.00000005 (5 9 10-8), indicate genome-wide significant

differences between cases and controls for the respective

SNP. However, a Bonferroni correction is too conserva-

tive because many SNPs are in linkage disequilibrium

with other SNPs implying that the respective alleles are

not independent. Nevertheless, in light of the hypothe-

sized small effect sizes of variants underlying complex

disorders the necessity to analyze very large samples of

both cases and controls is readily evident. Thus, the

absence of significant findings in ADHD GWAS most

likely reflects the too low number of cases and controls or
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trios (index patient and both parents) in the currently

published studies (see [9]).

The future and a word of caution

What can realistically be expected for the future? Two

extreme scenarios appear possible: (1) only a limited

number of novel gene variants are unambiguously identi-

fied within the next 5 years. This finding would imply that

the effect sizes of most predisposing alleles are so small

that they cannot be picked up. The ultimate step would be

to re-sequence the whole genome (or at least all known

genes) in a substantial number of cases and controls in an

attempt to statistically identify those loci in which varia-

tions cluster in cases [105]. Genome-wide re-sequencing is

currently, however, not yet feasible in a large number of

individuals. Moreover, special statistical methodology for

this data is still in its infancy. The accumulating costs for

the search for alleles with very small effect sizes at some

time point will need to be put into perspective to the

expected outcome. (2) GWAS lead to the identification of

at least ten novel gene variants for each analyzed psychi-

atric disorder. These genetic results are robust, implying

that there is a consensus that indeed the respective genes

contribute to the etiology of the respective disorder;

(repeated) replications of each single finding are the pre-

requisite for the attainment of such a consensus. This

knowledge will allow us to identify (a) the molecular

genetic mechanisms relevant for psychiatric disorders (e.g.,

variation primarily within regulatory versus coding

regions), (b) novel systems and pathways relevant in spe-

cific disorders, which may or may not include pharmaco-

logical targets, (c) the extent of overlap in the genetic

predisposition to different psychiatric disorders (e.g.,

identification of genetic variation predisposing to both

ADHD and autism; see [133]), (d) gene–gene and gene-

environment interactions and (e) developmental relation-

ships between genotype and phenotype.

The crucial prerequisite for the use of sophisticated

molecular technology is that several large and well-char-

acterized samples of patients with a given disorder exist to

allow repeated confirmations of a single finding and sub-

sequent meta-analyses. By large, we imply that the

respective samples should encompass well over 1,000

cases and an equal number of controls, thus providing

sufficient power to detect alleles with a modest to weak

effect. Undoubtedly, the need to analyze large samples and

to confirm original findings will lead to extensive collab-

orations which need to also address ethnic aspects; the

contribution of single researchers and groups to novel

results will become small; thus, a total of 146 authors

contributed to a recent GWAS for BMI [175]. Family-

based association and linkage studies will also be helpful in

specific situations such as the involvement of imprinted

genes in the etiology of a given disorder.

As the field of molecular genetics of psychiatric disor-

ders advances, we as child and adolescent psychiatrists

need to stay at the forefront of these developments. To

achieve our goals we depend on an interdisciplinary

approach also encompassing molecular geneticists and

biologists, biostatisticians, and several other specialists.

We will profit by extensively integrating these disciplines

into our research; a fundamental issue is to establish a

sufficient amount of cross-talk to ensure that the full

potential of this interdisciplinary approach can bear full

profit. We as psychiatrists will also be responsible for the

integration of novel molecular findings into our clinical

routine. We need to be aware of ethical and societal

implications of molecular genetic findings. We need to

have training programs which provide us with the capa-

bility to grasp the molecular findings and to integrate them

into novel research (e.g., analysis of gene–environment

interactions) and even more important into our daily clin-

ical routine if the evidence is strong enough. If a suffi-

ciently large number of predisposing alleles for a given

disorder become known, genetic analyses will most likely

for the first time provide us with genetic markers useful for

diagnostic purposes, prediction of the clinical course of a

disorder and its treatment (personalized medicine). We will

learn that the elucidation of the molecular puzzle of psy-

chiatric disorders has the potential to alter our current

phenomenological basis for the definition of neuropsychi-

atric disorders.

Despite these exiting potential implications of the dis-

covery of predisposing alleles, we nevertheless should

remain critical. Due to the necessity to reach a diagnosis

via explicit diagnostic criteria, we as psychiatrists have

become extremely critical of our own research work; with

good reason we have come to expect a solid diagnostic

procedure based on standard criteria. We would recom-

mend that this critical approach is extended to the field of

psychiatric genetics, where at times novel results are either

extended beyond the evidence or are uncritically taken for

granted.

For example, in 1993, Brunner and co-workers [15, 16]

reported that a mutation in the MAO-A gene underlies a

phenotype characterized by ‘borderline mental retardation’

and ‘aggression’. This study is widely held to indicate that

human aggression can be caused by a mutation in a single

gene. However, the phenotype depicted in the respective

publications is anything but straight forward: the mutation

carriers were reported to have been involved in voyeurism,

exhibitionism, arson and/or rape. The affected males were

described as ‘…withdrawn and shy, being often without

friends. All have shown aggressive outbursts of some sort,
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usually with little or no provocation. A number of males

exhibit sexually aberrant behavior… Aggressive behavior

tended to cluster in periods of 1–3 days, during which the

affected male would sleep very little and would experience

frequent night terrors.’ No attempt was made to classify the

symptoms according to a psychiatric classification scheme.

The common trait appears to be ‘aggressive outbursts of

some sort’, which without further specification could well

apply to a substantial minority of the general population.

This criticism all the more applies because the investigators

deduced the presence of borderline mental retardation in

nine males of the pedigree from information compiled

30 years ago by an unaffected family member. The only

information provided for those mutation carriers whom the

investigators themselves were able to phenotypically assess

was as follows: ‘A typically affected male showed a full-

scale IQ of 85’. It was not specified how many of the males

were psychologically tested and what IQ test was used (for

a more detailed critical evaluation of the Brunner et al.

studies [15, 16], see [63], and the response of Brunner et al.

[14]). Conceivably, the MAOA mutation entails symptoms

compatible with the diagnosis of a personality disorder,

which, in turn, could be associated with aggressive

behavior in specific circumstances. In our opinion, there is

no reason for us to be lenient when molecular geneticists

uncover genetic variation underlying interindividual dif-

ferences in behavioral phenotypes, particularly if they are

as complex as aggression or intelligence. This is particu-

larly important because the media frequently simplify and

exploit such findings, thus conveying false or largely

imprecise information to the lay public.

The delineation of the ‘aggression gene’ (term used by

the media; see e.g., [156]) paved the way for another

sensational finding, which pertains to a genotype–envi-

ronment interaction, only few of which have been studied

in psychiatry. MAO-A alleles can be classified as leading to

low or high activity of its gene product; a study published

in Science in 2003 [21], which was purportedly indepen-

dently confirmed [44], showed that maltreated children

with a genotype conferring low levels of MAO-A were less

likely to develop conduct disorders.

Why should such an exciting finding be subjected to a

critical evaluation? Critical issues include (for a more

detailed and general discussion of gene 9 environment

interactions see also [174]): (1) solid molecular genetic

findings in complex disorders are as yet scarce. There is no

a priori evidence to indicate that a switch to gene–envi-

ronment interactions will make the elucidation of predis-

posing alleles easier. (2) The delineation of a single

specific hypothesis pertaining to a gene–environment

interaction implies that just this one out of very many

different possible ones is tested; both the gene (e.g., MAO-

A) and the environmental condition (e.g., maltreatment)

must be selected. If, however, different gene–environment

interactions are tested, the effects of multiple testing need

to be considered. (3) The quality of the underlying

hypothesis needs to be assessed. The investigation of

MAO-A in conduct disorders to a considerable extent rests

on the aforementioned study of Brunner et al. [15, 16],

which as delineated above was not satisfactory in defining

a psychiatric phenotype. (4) Confirmatory studies in gene–

environment analyses become almost impossible if the

original assessment procedure for the relevant environ-

mental factor is not employed in subsequent studies. Foley

et al. [44], who used different variables to construct a

maltreatment index than Caspi et al. [20], elegantly discuss

this problem by speculating that their own positive

molecular genetic results suggest that the measures used by

the two different groups are ‘intercorrelated and they may

indicate an overlapping set of environmental risks’. A

direct comparison of the variables assessed in the two

studies is not too convincing to make this circular rea-

soning plausible. To the contrary, it seems probable that the

two distinct sets of variables used to construct the mal-

treatment indices tap on different environmental and

genetic factors; the extent of overlapping is subject to

debate. (5) Finally, as Foley and co-workers [44] note,

most of the power to detect the interaction stemmed from

the extremes of the distribution. Only 15 and 5 subjects out

of a total of 514 were ranked to be in the second highest

and highest level of exposure to childhood adversity. The

genotypes of these 20 subjects in total accounted for the

significant effect of the genotype–environment interaction

and thus for the confirmation of the original Caspi et al.

[21] study.

In the context of such gene–environment interactions, a

recent meta-analysis deserves notice: despite previous

reports to the contrary, the serotonin transporter genotype

alone or in interaction with stressful life events was not

found to be associated with an elevated risk of depression

in men alone, women alone, or in both sexes combined; the

number of stressful life events was however associated

with depression [131].

There are no easy solutions to these problems. The

complexity of the issues at hand requires that psychiatrists

apply all their knowledge to adequately conduct genetic

studies and to assess novel genetic findings. We believe

that the elucidation of genes involved in psychiatric dis-

orders has a tremendous potential to advance our under-

standing of their aetiologies and to contribute to future

therapies. At the same time we need to remain humble in

light of the complexity inherent to genetic and environ-

mental factors in psychiatric disorders.
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Sonka K, Nevsimalova S, Montplaisir J, Turecki G, Rouleau G,

Gieger C, Illig T, Wichmann HE, Holsboer F, Müller-Myhsok

B, Meitinger T, Winkelmann J (2008) PTPRD (protein tyrosine

phosphatase receptor type delta) is associated with restless legs

syndrome. Nat Genet 40:946–948

143. Schulte-Körne G, Scerri TS (2010) Genetics of developmental

dyslexia. Eur Child Adolesc Psychiatry (this issue)

144. Scriver CR (2007) The PAH gene, phenylketonuria, and a par-

adigm shift. Hum Mutat 28:831–845

145. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P,
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L, Collier DA, St Clair D, Stefansson K (2008) Large recurrent

microdeletions associated with schizophrenia. Nature 455:232–

236

154. Stefansson H, Ophoff RA, Steinberg S, Andreassen OA, Cichon

S, Rujescu D, Werge T, Pietiläinen OP, Mors O, Mortensen PB,
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eisen M, Bitter I, Réthelyi JM, Magnusdottir BB, Sigmundsson

T, Olason P, Masson G, Gulcher JR, Haraldsson M, Fossdal R,

Thorgeirsson TE, Thorsteinsdottir U, Ruggeri M, Tosato S,

Franke B, Strengman E, Kiemeney LA, Genetic Risk Outcome

in Psychosis (GROUP), Melle I, Djurovic S, Abramova L,

Kaleda V, Sanjuan J, de Frutos R, Bramon E, Vassos E, Fraser

G, Ettinger U, Picchioni M, Walker N, Toulopoulou T, Need

AC, Ge D, Yoon JL, Shianna KV, Freimer NB, Cantor RM,

Murray R, Kong A, Golimbet V, Carracedo A, Arango C, Costas

J, Jönsson EG, Terenius L, Agartz I, Petursson H, Nöthen MM,
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