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Abstract
Purpose Although treatment planning and individualized dose application for emerging prostate-specific membrane anti-
gen (PSMA)-targeted radioligand therapy (RLT) are generally recommended, it is still difficult to implement in practice at 
the moment. In this study, we aimed to prove the concept of pretherapeutic prediction of dosimetry based on imaging and 
laboratory measurements before the RLT treatment.
Methods Twenty-three patients with metastatic castration-resistant prostate cancer (mCRPC) treated with 177Lu-PSMA I&T 
RLT were included retrospectively. They had available pre-therapy 68 Ga-PSMA-HEBD-CC PET/CT and at least 3 planar 
and 1 SPECT/CT imaging for dosimetry. Overall, 43 cycles of 177Lu-PSMA I&T RLT were applied. Organ-based standard 
uptake values (SUVs) were obtained from pre-therapy PET/CT scans. Patient dosimetry was calculated for the kidney, liver, 
spleen, and salivary glands using Hermes Hybrid Dosimetry 4.0 from the planar and SPECT/CT images. Machine learning 
methods were explored for dose prediction from organ SUVs and laboratory measurements. The uncertainty of these dose 
predictions was compared with the population-based dosimetry estimates. Mean absolute percentage error (MAPE) was 
used to assess the prediction uncertainty of estimated dosimetry.
Results An optimal machine learning method achieved a dosimetry prediction MAPE of 15.8 ± 13.2% for the kidney, 
29.6% ± 13.7% for the liver, 23.8% ± 13.1% for the salivary glands, and 32.1 ± 31.4% for the spleen. In contrast, the prediction 
based on literature population mean has significantly larger MAPE (p < 0.01), 25.5 ± 17.3% for the kidney, 139.1% ± 111.5% 
for the liver, 67.0 ± 58.3% for the salivary glands, and 54.1 ± 215.3% for the spleen.
Conclusion The preliminary results confirmed the feasibility of pretherapeutic estimation of treatment dosimetry and its 
added value to empirical population-based estimation. The exploration of dose prediction may support the implementation 
of treatment planning for RLT.
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Introduction

Radioligand therapy (RLT) is a contemporary approach to 
radiation oncology, aiming to deliver the maximal destruc-
tive radiation dose via cancer-targeting radiopharmaceu-
tical. Radioactive ligands for the prostate-specific mem-
brane antigen (PSMA) have emerged for the treatment of 
metastatic castration-resistant prostate cancer (mCRPC) 
[1–3]. Notably, 177Lu-PSMA-617 was validated recently 
in a phase III randomized clinical trial [4] which led to the 
U.S. Food and Drug Administration (FDA) approval [5].

Despite the early success of RLT, concerns have been 
raised about the risks of inadequate trade-off between 
therapeutic dose and side effects. Currently, the protocols 
for administering the radiopharmaceuticals are assessed 
on a population basis, and the activity to administer was 
determined for a specific patient group based on preced-
ing studies [6]. However, the European Council Directive 
(2013/59 Euratom) mandates that RLT treatments should 
be planned according to the optimal radiation dose tailored 
for individual patients, as has long been the case for exter-
nal beam radiotherapy (EBRT) or brachytherapy [7, 8]. 
An essential requirement of RLT treatment planning is to 
estimate the absorbed dose in advance of therapy [9, 10].

Prior knowledge of the biodistribution of the therapeu-
tic agent via the pre-therapy imaging assists to optimize 
the trade-off between tumor destruction and irradiation 
of healthy tissues [11–15]. Concepts, such as physiologi-
cally based pharmacokinetic (PBPK) modeling, have been 

proposed to estimate the spatiotemporal pharmacokinetics 
of imaging agents and then extrapolate to the treatment 
agents [7, 10, 16, 17]. Normal organ and tumor pharma-
cokinetics can be assessed by a series of cross-sectional 
whole-body SPECT scans [18]. However, these require a 
large amount imaging time and are often not feasible in 
routine clinical practice. An alternative is pharmacokinetic 
modeling based on the activity concentration in the blood 
and a computational model which describes the binding of 
the ligand to its target as well as its metabolism and excre-
tion. However, these models can be numerically unsta-
ble [18], thus presenting a dilemma in making a trade-
off between numerical stability and physiological fidelity 
[19]. Due to these technical limitations, the pre-therapy 
imaging is usually only used in current practice to quali-
tatively select candidates for RLT and to rule out obvious 
risks. The patients are still treated with a fixed radiophar-
maceutical activity and fraction interval protocol [20, 21].

As illustrated in Fig. 1, our study aimed to prove the con-
cept of dosimetry prediction based on pre-therapy PET imag-
ing and blood test results by providing an alternative solution 
with machine learning (ML) technique. We aimed to evaluate 
the feasibility to obtain estimation of the pharmacokinetics 
of PSMA ligands over several days from a single time point 
PET scan acquired after 1 h. Such concept would help to 
avoid a series of whole-body imaging with long procedure 
scans. Furthermore, it could be directly implemented in the 
current routine clinical protocol, which may provide a practi-
cal solution for dosimetry-based treatment planning for RLT.

Fig. 1  Illustration of our proposed method; our study aims to prove the concept of individual dosimetry prediction based on pre-therapy imaging 
and laboratory measurements, by providing an alternative solution with machine learning (ML) technique
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Materials and methods

Patient cohorts

Patients with metastatic castration-resistant prostate cancer 
(mCRPC) who (i) were treated with 177Lu-PSMA I&T RLT at 
Klinikum rechts der Isar between December 2014 and August 
2017, (ii) received pretherapeutic 68 Ga-PSMA-HEBD-CC 
(PSMA-11) PET/CT within 2 months of treatment initiation, 
and (iii) received at least 3 post-therapeutic planar imaging in 
conjunction with 1 SPECT/CT were screened retrospectively 
for inclusion. Twenty-three patients met the eligibility criteria 
and were included. After image review, 1 patient with invisible 
liver and spleen on planar PET scan was excluded. Overall, 43 
cycles of 177Lu-PSMA I&T RLT were applied (21 first, 11 s, 5 
third, and 6 fourth or further cycles). For each cycle, the patients 
referred to 68 Ga-PMSA-HEBD-CC PET/CT for pre-therapy 
imaging, and less than 2 months later underwent 3–5 planar 
whole-body scans and SPECT/CT after injecting approximately 
7.4 GBq (7.3 ± 0.3 GBq) 177Lu-PSMA I&T, for the purpose of 
dosimetry investigation. For all subjects, anterior and posterior 
whole-body scintigraphy was performed at least at three time 
points, which are 30–150 min, 24 h, and 6–8 days after injection. 
The retrospective analysis was conducted in accordance with 
the requirements of the respective local ethics committees in 
Germany, the institutional review board (IRB) of the Technische 
Universität München approved this study (IRB reference no: 
115/18). All patients signed written informed consent prior to 
the use of Lu-PSMA as part of a compassionate use application. 
177Lu-PSMA I&T was administered in compliance with 
The German Medicinal Products Act, AMG §13 2b, and in 
accordance with the responsible regulatory body (Government 
of Oberbayern).

Image analysis and dosimetry estimation

Our proposed ML-based dose estimation method was 
designed as a supervised learning approach, which 
requires labeled training datasets. As shown in Fig. 1, both 
clinical information of patients and PET imaging data are 
the inputs to the model, and the corresponding organ-level 
dosimetry is used as the ground truth for training.

As shown in Table 1, both quantities derived from pre-
therapy imaging and blood test results were collected as 
input for the development of the prediction model. Among 
them, 11 blood tests results were included such as creatinine, 
albumin, and lactate dehydrogenase (LDH). As for the 
features from PET imaging, targeted organs (whole body, 
kidneys, spleen, liver, parotid glands, and submandibular 
glands) were delineated manually and reviewed by 

board-certified nuclear medicine physicians. Imaging 
parameters including volume-related features and voxel 
intensity-related features, as well as standard uptake value 
(SUV)-related features, were calculated from the targeted 
organs.

We used Hermes [22] to calculate organ-level dosimetry. 
Hermes Medical Solutions (HERMES, Stockholm, Sweden) 
markets a suite of dosimetry tools, including Hybrid Viewer 
Dosimetry (HVD) and Olinda/EXM, which provides organ-
level dosimetry calculation using medical internal radia-
tion dose (MIRD) schema [23]. As shown in Fig. 2, planar 
whole-body images of five time points as well as one of the 
SPECT/CT images were loaded into HVD first, and targeted 
organs were then delineated by 2 board-certified nuclear 
medicine physicians. Time-integrated activity coefficient 
(TIAC) was performed by HVD, and residence time was 
input into the linked Olinda/EXM for dose calculation [24].

Model setup

The dosimetry prediction model was developed with the 
input of both PET imaging features and clinical features, 
and the corresponding dosimetry of targeted organ as ground 
truth. During the training of the model, we tend to optimize 
the mean squared error loss

where ŷi is the predicted absorbed dose that the network 
assigns to the label i , yi is the ground truth of each input, 
and n is the number of input data. ML techniques were 
recruited for the dose prediction. More information on the 
model setup is attached in the corresponding part of Sup-
plementary material.

Evaluation

To evaluate the prediction uncertainty of our ML-based 
model, we compared our estimations with population-based 
dose using mean absolute percentage error (MAPE). Popu-
lation-based dose may be estimated empirically before the 
treatment based on published data. In this study, we con-
sidered the mean dosimetry results from population-based 
dosimetry estimations published previously [25] as a refer-
ence. We used a mean absorbed dose of 0.72 Gy/GBq for 
the kidney and 0.12 Gy/GBq for the liver and the absorbed 
dose for salivary glands (0.59 Gy/GBq) was averaged over 
the parotid and submandibular glands. Due to the absence 
of spleen dose [25], we adopted the average absorbed dose 
from our own dataset, which was 0.31 Gy/GBq.

MSE =

n
∑

i=1 (yi − ŷi)
2

n
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Results

Time activity curve (TAC) and dosimetry

We used Hermes software to generate the TAC and 
absorbed dose of each target organ based on planar 
whole-body and SPECT/CT images. Figure 3 shows an 
example of a TAC, the left panel shows the change of 
fraction of injected activity over time of each organ, and 
the right panel shows the change of fraction of injected 
activity over time of the whole body. Complete statistics 
including absorbed dose for all subjects can be found in 
Table 2. According to both the TAC and Table 2, kidneys 
represent the critical organ with a mean absorbed dose of 
0.65 Gy/GBq. Liver accounts for the largest percentage 

of cumulated activity in the entire body and decays at 
the fastest rate compared to any other organ. In contrast, 
salivary gland activity remained the smallest proportion 
of the whole body and decayed more slowly. All curves 
showed a similar trend of decay after 100 h. Additionally, 
Supplementary Fig. 4 shows that the greater time interval 
between each treatment cycle, the absorbed dose of each 
organ tended to be less correlated.

Model performance

Results of the comparison between ML-based dose esti-
mation with population-based model are shown in Fig. 4. 
MAPE was used to assess the prediction uncertainty of esti-
mated dosimetry. For kidney, the mean MAPE and standard 

Table 1  Recruited clinical features (blood test) and PET features (volume, voxel intensity, and SUV) for the development of our proposed 
machine learning algorithm

Type of feature Name of feature Description

Volume-related features Vol Volume of targeted organ
V40 Percentage volume with at least 40% intensity
V70 Percentage volume with at least 70% intensity
V90 Percentage volume with at least 90% intensity

Voxel intensity-related features Total Voxel Total amount of voxel
Mean Mean intensity value
Min Minimum intensity value
Max Maximum intensity value
Sum Summation of intensity value
Std. Dev Standard deviation of intensity value
Skewness Measure of the symmetry of the intensity distribution
Kurtosis Measure of the shape of the peak of the intensity distribution
Median Median intensity value

SUV-related features SUV peak Average activity concentration within a 1  cm3 spherical VOI centered 
on the “hottest focus” within the tumor image multiplied by the ratio 
of lean body mass (LBM) to injected activity decayed to time of scan

SUV mean Mean SUV value
SUV min Minimum SUV value
SUV max Maximum SUV value
SUV TLG The product of SUV mean and metabolic tumor volume (MTV)
SUV std. Dev Standard deviation of SUV value
SUV median Median SUV value

Blood tests Interval
Creatinine clearance (ml/min)
Alkaline phosphate (ALP) (U/L)
Total bilirubin (mg/dL)
Lactate dehydrogenase (LDH) (U/L)
Albumin (g/L)
Prothrombin time (min)
Leukocyte count (/L)
Hemoglobin (g/L)
Thrombocyte count (/L)
PSA (μg/L)
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deviation is 15.8% ± 13.2%. In contrast, population-based 
MAPE achieved 29.6% ± 42.8%. For the rest of the organs, 
the prediction of the liver, spleen, and salivary gland dosime-
try achieved 25.5 ± 17.3%, 32.1 ± 31.4%, and 23.8% ± 13.1% 
with ML-based model, and the population-based MAPE is 
139.1% ± 111.5% for the liver, 54.1 ± 215.3% for the spleen, 
and 67.0 ± 58.3% for the salivary glands. Paired t test showed 
significant difference between AI prediction and population-
based estimation (p < 0.01). However, when combining PET 
imaging features with clinical blood test features, the predic-
tion uncertainty of our model tends to increase in each target 

organ, probably for the reason that these features are non-
organ-specific. More details of model performance can be 
found in the corresponding part of Supplementary material.

Discussion

Dose plays a key role in the application of RLT. Current 
practice of PSMA-directed RLT applies fixed activity to 
patients. Similar to pharmaceutical practice, the efficacy and 
risk assessment generally follow the empirical experience 

Fig. 2  Planar whole-body 
images of five time points as 
well as one of the SPECT/CT 
images. Regions of interest were 
labeled on the liver, kidneys, 
spleen, parotid glands, subman-
dibular glands, lacrimal glands, 
and bladder
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[6]. The post-therapy dose distribution can be explicitly or 
implicitly estimated from cohorts of patients treated with 
the same protocol in previous studies. These empirical 
methods function well in clinical practice [26–28]. They 
enable efficient and economic RLT application and acceler-
ate the clinical translation of novel RLT development. On 
the other side, RLT is still considered to be an approach 
to radiation oncology. The experience of external beam 
radiotherapy recommends the treatment planning to iden-
tify the optimal trade-off between therapeutic dose and side 
effects. Although treatment planning and dose application 

for RLT are generally recommended by regulatory agencies 
or scientific societies, no practical solution is available at the 
moment. Tumor sink effect in 68 Ga-PSMA-11 PET imag-
ing was demonstrated previously [29]. These results suggest 
that candidates for PSMA-RLT with high tumor volume on 
pretherapeutic PSMA PET might benefit from increased 
therapeutic activity without exceeding the radiation dose 
limit for organs at risk.

Pretherapeutic dosimetry estimation is essential to the 
realization of treatment planning. However, the relationship 
between pre-therapy imaging and post-therapy dosimetry is 

Fig. 3  Example of time activ-
ity curve (TAC) generated by 
Hermes software

Table 2  Absorbed dose for all 
subjects of each organ as well as 
the whole body (in Gy/GBq)

Cycles investigated Whole body Kidneys Liver Salivary glands Spleen

Overall (n = 43)
 Mean ± SD 0.031 ± 0.017 0.648 ± 0.165 0.067 ± 0.035 0.565 ± 0.389 0.306 ± 0.227
 Range 0.012–0.078 0.236–1.041 0.019–0.151 0.150–1.869 0.033–0.918

First cycle (n = 21)
 Mean ± SD 0.031 ± 0.016 0.572 ± 0.167 0.060 ± 0.035 0.480 ± 0.269 0.231 ± 0.20
 Range 0.012–0.078 0.236–0.820 0.019–0.145 0.150–1.047 0.039–0.715

Second cycle (n = 11)
 Mean ± SD 0.033 ± 0.023 0.676 ± 0.266 0.068 ± 0.030 0.596 ± 0.464 0.337 ± 0.395
 Range 0.015–0.076 0.314–1.159 0.036–0.128 0.257–1.359 0.033–1.341

Third cycle (n = 5)
 Mean ± SD 0.038 ± 0.029 0.753 ± 0.219 0.079 ± 0.033 0.775 ± 0.739 0.570 ± 0.258
 Range 0.017–0.059 0.514–1.041 0.048–0.123 0.257–1.869 0.320–0.918

Fourth cycle and further (n = 6)
 Mean ± SD 0.033 ± 0.008 0.614 ± 0.172 0.080 ± 0.044 0.602 ± 0.304 0.322 ± 0.272
 Range 0.024–0.039 0.328–0.780 0.024–0.151 0.323–1.134 0.046–0.732
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complex. The pre-therapy SUV is a single time point uptake 
measurement after 1 h, while the post-therapy dosimetry is 
an integration of radiation time course of a similar but not 
identical tracer over several days. Furthermore, therapeu-
tic tracers (177Lu-PSMA I&T) are injected at several-fold 
higher activity than imaging tracers (68 Ga-PSMA-11), and 
their ligands are similar but not identical. The theranostic 
principle of similar pharmacokinetics between the imag-
ing and therapy tracers (PSMA-11 [30] and PSMA I&T 
[25]) enables the qualitative assessment of the post-therapy 
dose before the treatment [31]. Previous studies revealed 
that SUV values of pre-therapy imaging correlate with the 
post-therapy dose distribution [32, 33]. These correlations 
confirmed taking into account the pre-treatment informa-
tion may assist the estimation of the post-therapy dosimetry 
[34] and reduce the possibilities of under- or over-estimation 
of different biodistributions [35]. Our preliminary results 
showed that ML can decrease the uncertainty of this pre-
therapeutic dose assessment compared with empirical pop-
ulation-based estimation. The developed ML model took 
multivariate input and learned quantitative principles from 
the training data with the regularizations of their underly-
ing interrelations such as multi-organ relative relations [36], 
which can complement the missing data in prediction. Fur-
thermore, the key question of dosimetry prediction is sort of 
implicit estimation of the biological half-lives of the therapy 
tracer from imaging. Previous studies have achieved single 
time point estimation by assuming that the tissue-specific 
radioligand uptake curves for different patients are identi-
cal [37, 38]. However, as shown in Supplementary Fig. 5, 
our results showed that the variation of these biological 

half-lives between individuals is although relatively small 
but not negligible (11.2 ± 6.0  h). Our data-driven ML 
approach modeled for each target organ will better consider 
the individual variation in the estimation of the absorbed 
dose. Additionally, Supplementary Fig. 6 shows that of the 
features extracted from pre-treatment PET imaging,  SUVmax 
and tumor volume are most relevant to dose estimation.

Dosimetry methods have been established in the last 
decades to calculate the dose distribution of the applied 
therapeutic agents based on a series of planar or 3D images 
[39–47], which can be used to quantify the whole-body 
dosimetry of the therapeutic agent. The series of scintigra-
phy were taken at different time points to sufficiently cover 
the kinetics of the radiopharmaceutical. The Hermes tool 
recruited in our study was developed based on MIRD system 
[23, 39, 48], which is recommended by the European Asso-
ciation of Nuclear Medicine Dosimetry Committee Guide-
lines. In addition to a series of scintigraphy, we included 
at least one SPECT/CT for the reason of determining the 
overall calibration factor of the system sensitivity, which 
helped to convert the counts of scintigraphy (cts) to the 
activity concentration of Bq (per voxel). The recommenda-
tion of MIRD committee for calibration required extra phan-
tom acquisitions [49], which was not feasible in our study. 
Inspired by Halty et al. [50], the fraction of activity in each 
organ was proposed to compute the calibration factor as the 
total number of counts in the SPECT image divided by this 
activity derived from the TAC.

There are several limitations of our study. The first is the 
inherent bias in the limited datasets, and the inclusion of 
additional subjects may further improve the generalizability 
and robustness of the developed model. Although the devel-
oped ML methods have demonstrated the potential to dissect 
the complex relation behind the correlation for dosimetry 
prediction, the limited data for training may limit its predic-
tion power. Training and validation with additional data is 
necessary to improve the trustworthiness of the dose estima-
tion based on ML. However, to the best of our knowledge, 
we are the first group to explore the feasibility of estimation 
of post-therapy dosimetry for 177Lu-PSMA I&T therapy; 
hence, the availability of these datasets is rather limited at 
this stage. For the second limitation, the S values applied by 
organ-level dose calculation tools like Olinda/EXM were 
obtained based on reference phantoms, which were not 
intended for individualized estimation, which would then 
result in the inclusion of inaccurate absorbed dose values in 
our ML model development. Potential uncertainty can occur 
both for volumetric assessment and SUV measurement for 
organs. Another limitation of our study is the absence of 
dose prediction for tumor lesions, which is due to the una-
vailability of the lesion phantom in the current version of 
Hermes tool. A similar problem occurred in the attempt to 
delineate the parotid and submandibular glands separately, 

Fig. 4  Comparison of prediction performance between individualized 
dose estimation with population-based model
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which failed due to the absence of the corresponding phan-
tom. We solved this problem by treating the parotid and sub-
mandibular glands as two parts of the salivary gland, which 
was provided as a phantom in Hermes.

Conclusion

The preliminary results confirmed the feasibility of prethera-
peutic dose estimation before the PSMA-RLT and its added 
value compared with empirical population-based estimation 
(p < 0.01); ML may decrease the estimation uncertainty of 
post-therapy dosimetry, with an average MAPE of 15.76% 
for critical dose-absorbing organs (i.e., kidneys). The explo-
ration of dose prediction may support the identification of 
the role of treatment planning for RLT.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00259- 022- 05883-w.
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