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Psychiatric disorders share an excess of seasonal birth in winter and spring, suggesting
an increase of neurodevelopmental risks. Evidence suggests season of birth can
serve as a proxy of harmful environmental factors. Given that prenatal exposure of
these factors may trigger pathologic processes in the neurodevelopment, they may
consequently lead to brain volume alterations. Here we tested the effects of season of
birth on gray matter volume in a transdiagnostic sample of patients with schizophrenia
and depression compared to healthy controls (n = 192). We found a significant effect
of season of birth on gray matter volume with reduced right hippocampal volume
in summer-born compared to winter-born patients with depression. In addition, the
volume of the right hippocampus was reduced independent from season of birth
in schizophrenia. Our results support the potential impact of season of birth on
hippocampal volume in depression.
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INTRODUCTION

Severe mental illness is associated with shared antenatal and early neurodevelopmental risk,
while later on, distinct trajectories convey heterotypic risk for disorders such as schizophrenia or
depression (Damme et al., 2022). Epidemiological studies indicate that individuals who are winter-
and spring-born have an increased risk of up to 8% to develop schizophrenia (Torrey et al., 1997).
In fact, except for known infectious diseases, for no other diseases seasonal birth excesses was
described as clearly as those for schizophrenia and bipolar disorder (Torrey et al., 1997). Likewise,
an excess of up to 5.5% of depression cases was shown in spring- born subjects (Torrey et al., 1996;
Disanto et al., 2012). In addition, one study demonstrated that spring-born individuals had a higher
risk of suicidality (Joiner et al., 2002) pointing to an effect of season of birth on this severe and
disabling symptom. Although a seasonal birth-excess in psychiatric disorders has been repeatedly
reported, the reason for this excess is unclear.

Season of birth acts as a valuable proxy, to study the impact of harmful environmental factors
during fetal maturation. Because most infectious agents have seasonal shifts in their incidence, they
form a possible explanation for the winter- and spring birth excess in psychiatric disorders. In fact,
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incidences of prenatal bacterial and viral infections change
throughout the year, with a rise during the fall and winter months
and decline during spring and summer. Moreover, prenatal
infections and inflammation are associated with an elevated
risk for psychiatric disorders (Al-Haddad et al., 2019a,b). Early
research focused primarily on the identification of pathogens
such as toxoplasma gondii, rubella virus, cytomegalovirus, and
herpes simplex as possible explanations for the winter–spring
birth excess in psychiatric disorders. However, accumulating
evidence now suggests that a wide variety of viral and
bacterial infections—possibly including COVID-19 (Zaigham
and Andersson, 2020; Pantelis et al., 2021) can lead to an increase
of psychiatric disorders (see 7 for review). These findings are also
in line with the neurodevelopmental hypothesis of schizophrenia
(Fatemi and Folsom, 2009) and the fetal-origin hypothesis of
mood disorder (Barker, 1998) respectively, suggesting prenatal
inflammation to act as a first hit leading to neurodevelopmental
abnormalities, which will hamper adaptive brain development
and thus increase the risk for major psychiatric disorders.

Depression as well as schizophrenia go along with significant
(Shah et al., 2017; Brandl et al., 2019; Hellewell et al., 2019; Huang
et al., 2021; Liloia et al., 2021; Serra-Blasco et al., 2021; Gutman
et al., 2022), progressive (Vita et al., 2012) transdiagnostic
(Goodkind et al., 2015) as well as diagnosis and symptom specific
(Horn et al., 2010; Stegmayer et al., 2014, 2016; Walther et al.,
2017; Viher et al., 2018; Kindler et al., 2019; Schoretsanitis et al.,
2019; Dean et al., 2020; Mertse et al., 2022) patterns of gray
matter loss which may represent a hallmark of both disorders.
Given the evidence for winter– and spring-birth excesses for
schizophrenia, and major depression, and, as already mentioned,
the suggested link with neurodevelopmental abnormalities, the
question arises as to whether this seasonal birth pattern is
associated with alterations in the brain. In fact, animal studies
using mouse models of schizophrenia or depression point
to alterations in particular within the hippocampus, frontal
cortex and the cerebellum following prenatal infections and
inflammation (Cotter et al., 1995; Fatemi et al., 1998a,b, 1999,
2002a,b, 2008; Meyer et al., 2008; Ratnayake et al., 2012).
This is consistent with the fact that reduced hippocampus
volume was confirmed, and alterations within the hippocampus
have been largely suggested as relevant for the development
of schizophrenia (Nelson et al., 1998; Wright et al., 2000;
Heckers, 2001; Honea et al., 2005; Steen et al., 2006; Vita et al.,
2006; Heckers and Konradi, 2010; Tamminga et al., 2010) and
depression (Sheline et al., 2002; Campbell and MacQueen, 2004;
Videbech, 2004; Koolschijn et al., 2009; McKinnon et al., 2009;
Cole et al., 2011; Kempton et al., 2011; Bora et al., 2012a,b; Du
et al., 2012, 2014; Sacher et al., 2012; Lai, 2013; Sexton et al.,
2013; Zhao et al., 2014; Schmaal et al., 2016; Zhang et al., 2016).
Effects of season of birth on brain structure were shown in both,
depression and schizophrenia. Patients with schizophrenia and
depression who are winter-born show a decrease in brain volume,
and altered white matter connectivity compared to summer-born
patients. In detail, studies confirm ventricular enlargements for
winter- and spring-births in schizophrenia (Sacchetti et al., 1987,
1992; Zipursky and Schulz, 1987; Degreef et al., 1988; d’Amato
et al., 1994), with some conflicting results (Wilms et al., 1992;

Roy et al., 1995). Contrary, summer-born schizophrenia patients
had significantly lower fractional anisotropy in widespread
white matter regions (i.e., the corpus callosum, internal and
external capsule, corona radiata, posterior thalamic radiation,
sagittal stratum, and superior longitudinal fasciculus) compared
to patients born in the remainder of the year (Giezendanner
et al., 2013). Likewise, winter-born patients with bipolar affective
depression had more subcortical and periventricular white matter
lesions compared to summer-born patients (Moore et al., 2001).
Thus, there is evidence of structural alterations in the brain
associated with season of birth and schizophrenia as well as
depression. However, the distribution of brain alterations as effect
of season of birth and whether summer-born or winter-born
patients show alterations in brain structure is still unclear. So
far, no study assessed transdiagnostic differences in gray matter
volume associated with season of birth.

Here we therefore aim to detect effects of season of birth on
gray matter volume in a transdiagnostic sample of patients with
schizophrenia and depression, compared to healthy controls.
Specifically, we hypothesized a relationship between gray matter
volume and season of birth in patients with depression as
well as patients with schizophrenia and that this association
would not be observed in healthy controls. In particular, we
suggest decreased volume within the hippocampus in winter-
born patients.

MATERIALS AND METHODS

Participants
In total, we included 192 participants, 87 patients with
schizophrenia (SZ; 53 winter-born: WB, 34 summer-born: SB),
39 patients with depression (DP; 19 WB; 20 SB), and 66 healthy
controls (HC; 42 WB, 24 SB). To stratify participants into
seasonal groups, we applied the same cut-off criterion used
in previous studies (i.e., winter-born: November through May;
summer-born: June through October; Giezendanner et al., 2013).
We recruited in- and outpatients at the University Hospital of
Psychiatry and Psychotherapy in Bern and healthy controls via
advertisement and among staff. Patients and controls were the
same as in our previous reports (Horn et al., 2010; Walther
et al., 2011, Walther et al., 2012a,b; Orosz et al., 2012; Stegmayer
et al., 2013, 2014, 2016; Cantisani et al., 2016). Patients were
diagnosed according to DSM-IV criteria, while current symptom
severity was assessed with the Beck Depression Inventory (Beck,
1961), the Hamilton Depression Inventory (Hamilton, 1986) and
the Positive and Negative Syndrome Scale (Kay et al., 1987).
Additionally, all participants completed the Mini International
Neuropsychiatric Interview (MINI; Sheehan et al., 1998).

Exclusion criteria were substance abuse or dependence
(except nicotine), history of head trauma with concurrent
loss of consciousness, history of electroconvulsive treatment, a
severe medical condition or left-handedness (according to the
Edinburgh handedness inventory; Oldfield, 1971). Additional
exclusion criteria for controls were history of any psychiatric
disorder or a first-degree relative with a schizophrenia spectrum
disorder or depression. The local ethics committee (Kantonale
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Ethikkommission Bern: KEK Bern) approved the study protocol
and all participants provided written informed consent.

Neuroimaging
For structural imaging, a 3D-T1-weighted Modified Driven
Equilibrium Fourier Transform Pulse (MDEFT) Sequence
(Deichmann et al., 2004) was acquired on a 3-T Siemens
Magnetom TrioTim Scanner System, equipped with a standard
12-channel radio frequency head coil (Siemens Vision, Erlangen,
Germany). This sequence provided 176 sagittal slices with
256 × 256 matrix points, a 256 × 256 field of view (FOV), and
a nominal isotopic resolution of 1 mm × 1 mm × 1 mm. Further
scan parameters were 7.92 ms repetition time (TR), 2.48 ms echo
time (TE) and a flip angle (FA) of 16◦. We preprocessed all
resulting high-resolution images with the SPM 12 (Ashburner
and Friston, 2000; Wellcome Trust Center for Neuroimaging,
London1). All preprocessing steps were conducted using standard
procedures as implemented in SPM 12, in particular the voxel-
based morphometry (VBM) toolbox. Default settings were used.
The images have been normalized and modulated. Structural
images were bias-corrected, tissue-classified and normalized to
Montreal Neurological Institute space using linear (12-parameter
affine) and non-linear transformations. Gray matter volume
per voxel was calculated by applying an absolute threshold
masking of 0.1 and modulating the normalized segmented
images with a non-linear only warping. For quality check of the
procedures, the normalized, bias-corrected images were visually
inspected. MRI images with artifacts, anatomical abnormalities
as well as neurodegenerative changes were excluded. Finally the
normalized, segmented and modulated volumes were smoothed
with an 8 mm full width at half maximum (FWHM) Gaussian
kernel (Honea et al., 2005).

Statistical Analyses
We analyzed structural images with SPM 12 (Wellcome
Trust Centre for NeuroImaging, University College London,
United Kingdom) and demographic and clinical data with SPSS
for windows (IBM, version 26.0). Univariate analyses, two-
sample t-tests and chi-square tests (χ2) were used, respectively.

Our main investigative interest was the effect of patient
status (SZ, DP, HC) and season of birth (WB, SB) on whole
brain gray matter volume. We therefore performed a one-way
analysis of covariation (ANCOVA) over six groups (SZWB, SZSB,
DPWB, DPSB, HCWB, and HCSB). To control for trend-level
gender differences between summer- and winter-born subjects
as well as variability in head sizes, we added total gray matter
volume and gender as covariates into the main model. We then
performed an outlier-analyses of the ANCOVA over the six
groups extracting gray matter values of the significant clusters.
We considered a value to be an outlier, if it lied either below or
above the following ranges: The 1st quartile—1.5 × interquartile
range, or the 3rd quartile + 1.5 × interquartile range. Three
potential outlier were identified and subsequently removed from
all further analyses—two within the schizophrenia- summer-
born group and one within the healthy control summer-born

1http://www.fil.ion.ucl.ac.uk/spm

group. No outlier were identified within either of the depression
groups. Furthermore, as patient groups differed in education and
age, we provide the results of the whole-brain ANCOVA with
education and age as additional covariates of no interest in the
Supplementary Material.

In addition, we plotted extracted mean gray matter values
for the six groups and performed post hoc comparisons of
extracted GM values between patient groups and summer- and
winter-born subjects applying univariate analyses and t-tests,
respectively. To examine a group × season interaction effect
on hippocampal volume, we calculated a two-way ANOVA on
hippocampal volume [with factors season of birth (SB vs WB)
and patient status (SZ vs HC vs DP)] (Supplementary Table 4
and Supplementary Figure 3). We corrected post hoc group
comparisons with Sidak-correction for multiple testing.

Finally, we assessed the season-of-birth effect on whole
brain GM volume for the patient status groups separately
(DP, SZ and HC). We therefore performed t-tests within the
ANCOVA, comparing mean gray matter values of WB and SB
individuals within SZ, DP and HC participants, respectively. We
report imaging results yielding significance at p < 0.05 (FWE-
corrected). For illustration purposes, all images are displayed
at a threshold of p < 0.001, cluster sizes k > 50 voxels,
uncorrected. To provide additional information, we show the
results of the whole brain contrasts at a lower threshold (p < 0.001
uncorrected, cluster sizes k > 50 voxels) in the Supplementary
Material. We calculated effect sizes for F-tests: ηp

2 (eta2), based
on F-value, df-1 and df-2, for t-tests: d (Cohen’s D), based on
t-value and df and for χ2-test: ϕ (phi) calculated based on
χ2-value, and sample size.

RESULTS

WB patients with schizophrenia and depression, as well as WB
healthy controls, did not differ in age, gender and education from
their SB counterparts. Likewise, WB subjects over all groups did
not differ significantly in age and education from SB individuals.
As expected, patients with schizophrenia included more male
and patients with depression more female participants. In
addition, patients with depression were older than patients with
schizophrenia. Demographic and clinical variables are provided
in Table 1.

Lower Hippocampal Volume in
Summer-Born Patients With Depression
The whole-brain analysis revealed a group effect within the right
hippocampus, pFWE-corr = 0.015; F (Joiner et al., 2002) = 8.47;
ηp

2 = 0.190; k = 11 voxels; x = 26, y = −24, z = −12
(Figure 1). Lowering the threshold (p < 0.001, cluster sizes:
k > 50 voxels; uncorrected) revealed additional frontal and
orbital clusters (see Supplementary Material Supplementary
Figure 1 and Supplementary Table 1). Including education and
age as additional covariates yielded substantially the same results
(see Supplementary Table 2).

Post hoc comparisons of extracted gray-matter values showed
a decrease of right hippocampal volume in summer-born
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TABLE 1 | Demographic and clinical variables.

Schizophrenia WB (n = 53) SB (n = 34) df t/X2 p d/ϕ

Age (M/SD) 37.6 (11.1) 34.9 (11.4) 85 1.086 0.281 0.235

Gender (male%) 30 (56.6%) 23 (67.6%) 1 1.061 0.303 0.112

Education (M/SD) 13.2 (3.8) 13.0 (3.0) 85 0.244 0.808 0.053

Nr. of episodes (M/SD) 4.8 (5.2) 6.5 (7.9) 85 −1.230 0.222 −0.267

PANSS total (M/SD) 64.4 (18.3) 68.2 (18.4) 85 −0.950 0.345 −0.206

PANSS pos (M/SD) 15.9 (6.5) 17.7 (6.6) 85 −1.281 0.204 −0.277

PANSS neg (M/SD) 16.5 (6.3) 16.8 (5.8) 85 −0.198 0.843 −0.043

CPZ (M/SD) 429.5 (342.5) 416.4 (347.0) 85 0.173 0.863 0.038

Depression WB (n = 19) SB (n = 20) df t/X2 p d/ϕ

Age (M/SD) 44.4 (11.4) 43.5 (14.5) 37 0.207 0.837 0.068

Gender (male%) 6 (31.6%) 10 (50.0%) 1 1.367 0.242 0.189

Education (M/SD) 15.5 (5.5) 13.6 (2.5) 37 1.373 0.178 0.451

Nr. of episodes (M/SD) 8.3 (9.1) 12.2 (22.3) 37 −0.716 0.479 −0.235

HAMD total (M/SD) 22.6 (7.4) 24.3 (5.6) 37 −0.765 0.450 −0.251

BDI total (M/SD) 22.0 (11.1) 27.2 (10.9) 37 −1.425 0.163 −0.469

Healthy Controls WB (n = 42) SB (n = 24) df t/X2 p d/ϕ

Age (M/SD) 40.3 (15.2) 37.3 (12.9) 64 0.802 0.426 0.201

Gender (male%) 21 (50.0%) 16 (66.7%) 1 1.722 0.189 0.160

Education (M/SD) 14.8 (3.3) 14.0 (2.8) 64 0.960 0.341 0.240

All subjects WB (n = 114) SB (n = 78) df t/X2 p d/ϕ

Age 39.7 (12.9) 37.9 (13.0) 190 0.975 0.331 0.143

Gender (male%) 57 (50.0%) 49 (62.8%) 1 3.078 0.079 0.127

Education 14.2 (4.0) 13.5 (2.8) 190 1.308 0.192 0.190

Patient Status Groups SZ (n = 87) DP (n = 39) HC (n = 66) df F/X2 p d/ϕ

Age 36.57 (11.25) 43.92 (12.91) 39.21 (14.35) 2 4.508 0.012 0.046

Gender (male%) 53 (60.9%) 16 (41.0%) 37 (56.1%) 2 4.339 0.114 0.150

Education 13.14 (3.5) 14.51 (4.3) 14.48 (3.1) 2 3.467 0.033 0.035

WB = winter-born; SB = summer-born; SZ = schizophrenia; DP = depression; HC = healthy controls; PANSS = Positive and Negative Syndrome Scale; pos = positive
symptoms; neg = negative symptoms; HAMD = Hamilton rating scale for depression; BDI = Beck Depression Inventory; CPZ = Chlorpromazine equivalent dosage;
df = degrees of freedom; M = Mean; SD = Standard deviation; IQR = interquartile range; X2 = Chi-squared test.

FIGURE 1 | Regions with differences in GM volume in summer- and winter-born patients with depression, schizophrenia and healthy controls; for illustration purpose
threshold was set at p < 0.001, cluster sizes: k > 50 voxels; uncorrected.

DP, when compared to winter-born DP. Furthermore, SZ
patients had a decreased hippocampal volume compared to
HC participants and DP patients, independent of season of

birth (Figure 2). Finally, summer-born subjects, independent of
group showed lower hippocampal volume compared to winter-
born subjects.
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FIGURE 2 | Post hoc comparisons of extracted GM values show decreased volume of the hippocampus in DPSB vs. DPWB patients, in SZ patients vs. HC
participants, in SZ patients vs DP patients and in WB vs SB individuals. WB = Winter-born; SB = Summer-born; SZ = Schizophrenia; DP = Depression;
HC = Healthy Control; ∗∗p < 0.01, ∗p < 0.05.

Likewise whole brain t-tests within the ANCOVA revealed
a decreased volume within the hippocampus in DPSB
(pFWE−corr = 0.003; t = 5.48; x = 26, y = −22, z = −12)
(Supplementary Figure 2 and Supplementary Table 3).
We detected no significant differences comparing SZSB and
SZWB patients.

DISCUSSION

Here we test the effect of season of birth on gray matter
volume in a large transdiagnostic sample of 192 subjects with
depression, schizophrenia and healthy controls. As hypothesized,
we demonstrate a significant effect of season of birth on
gray matter volume. In particular, we found an association of
season of birth and right hippocampal volume in depression.
However, contrary to our hypothesis summer-born patients
showed decreased hippocampal volume compared to winter-
born patients with depression. No effect of season of birth was
present in schizophrenia. In contrast, schizophrenia patients
had a right hippocampal volume reduction independent of
season of birth.

Volumetric changes shown with VBM cannot offer direct
information about the underlying cellular mechanism relevant
for the effects. Therefore, deductive reasoning from volumetric
changes to functional changes remains speculative. However, it
has been suggested that volumetric changes seen with VBM are
the result of a multifactorial process including multiple cellular
modifications, for example cell density, cell size, myelination and
vascularization affecting relaxation times and voxel intensities on

a T1-weighted image (Zatorre et al., 2012). Given that season
of birth can serve as a proxy of harmful environmental factors,
our results argue for such environmental factors leading to
hippocampal volume reduction in summer-born depression.

As stated in the introduction, a birth excess in winter-
born patients with depression has repeatedly been found.
In fact, harmful environmental factors are thought to affect
neurodevelopment in perinatal stages and thus increase the risk
to develop the disorder. Importantly previous reports suggest
harmful effects of season of birth in depression. According to
these observations we expected a decreased gray matter volume,
in particular within the hippocampus in winter-born patients.
Previous reports show alterations in hippocampal development
leading to reduction in gray matter within the hippocampus
following prenatal infection. For instance, reduced cell density
in pyramidal and non-pyramidal cells as well as signs of atrophy
(e.g., Fatemi et al., 1999, 2002a, 2008) were demonstrated.
These alterations were associated with inflammation-induced
depressive-like behavior in mice such as decrease of exploratory
behavior (Shi et al., 2003; Meyer, 2006; Samuelsson et al., 2006;
Fortier et al., 2007; Meyer et al., 2008; Li et al., 2009; Spini et al.,
2021). On the contrary, here we show gray matter reduction
in the hippocampus in summer-born compared to winter-born
patients. Therefore, we have to conclude that the described
seasonal birth excess in winter is not related to hippocampal
volume reduction in depression.

The hippocampus is one of the most studied brain regions
in the context of depression. In fact, bilateral hippocampal
volume reductions form the most reliable regional gray matter
abnormalities identified in depression (Koolschijn et al., 2009;
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McKinnon et al., 2009; Cole et al., 2011; Kempton et al.,
2011; Bora et al., 2012a,b; Du et al., 2012, 2014; Sacher
et al., 2012; Arnone et al., 2013; Lai, 2013; Sexton et al.,
2013; Stratmann et al., 2014; Zhao et al., 2014; Schmaal
et al., 2016; Zhang et al., 2016; Yüksel et al., 2018) and
subjects with subclinical symptoms (Besteher et al., 2020).
The hippocampus is a brain region specifically sensitive to
infectious agents (Green and Nolan, 2014), is important for
stress regulation for instance via its inhibitory control over
HPA-axis activity, and is more broadly involved in cognitive
and affective processing via its widespread connections with
prefrontal and limbic brain regions (Duman and Monteggia,
2006). Furthermore, antidepressant action may be accomplished
through the prevention of cell apoptosis in the hippocampus
(McKernan et al., 2009; Chen et al., 2017). Likewise, modern
models of depression suggest hippocampal atrophy in humans
as key in the development of the disease. In fact, lower
hippocampal volume has been suggested as a risk marker of
depression (Chen et al., 2010; Rao et al., 2010; Cole et al., 2011).
Reduced hippocampal volume has been consistently shown
to be about 5% smaller in depression (for meta-analyses see
Koolschijn et al., 2009; McKinnon et al., 2009; Cole et al.,
2011; Kempton et al., 2011; Bora et al., 2012a,b; Du et al.,
2012, 2014; Sacher et al., 2012; Arnone et al., 2013; Lai, 2013;
Sexton et al., 2013; Zhao et al., 2014; Schmaal et al., 2016;
Zhang et al., 2016). Importantly, reductions in hippocampal
volume are not only explained as consequence of medication
(Zhao et al., 2014) or psychiatric comorbidities (Du et al.,
2012) and have been shown throughout the lifespan (Sexton
et al., 2013). Thus, reductions in hippocampal volume are a
robust structural marker observed in depression. Our finding
of reduced hippocampal volume in summer-born patients with
depression add to this evidence and suggesting a key role of
environmental factors as perinatal events in the disturbance
of hippocampal development as risk factor for depression
leastwise in a subgroup of patients. Importantly although
previously alterations associated with season of birth in summer-
born patients were not shown in depression, this effect was
seen in schizophrenia and healthy subjects with psychotic
experiences. In detail, summer-born schizophrenia patients had
significantly lower fractional anisotropy in widespread white
matter regions (i.e., the corpus callosum, internal and external
capsule, corona radiata, posterior thalamic radiation, sagittal
stratum, and superior longitudinal fasciculus) compared to
patients born in the remainder of the year (Kempton et al.,
2011), and cortical cortical thinning was detected in summer-
born healthy individuals with subthreshold psychosis symptoms
(Koolschijn et al., 2009).

To the best of our knowledge, this is the first study to
investigate the effect of season of birth on gray matter volume
in a transdiagnostic sample of patients, in particular including
depression. The mechanisms that account for the detected
reduced hippocampal volume in depressed summer-born
patients are beyond the scope of this study and understanding
the pathophysiological mechanisms by which infection,
inflammation, and depression are linked is complex. It was
hypothesized that several factors (for instance increased oxidative
stress, hypothalamic–pituitary–adrenal axis dysfunction,

neurotransmitter insufficiency or reductions in growth factors)
or a combination of these factors may lead to a possible final
pathway of decreases in neuropil, immunoreactivity, and
dendritic spine density or neuronal apoptosis that may underlay
gray matter loss in the hippocampus. However, several other
factors such as unhealthy lifestyle in patients may also contribute
to our finding. Still, the present finding of a relationship between
season of birth and right hippocampal volume support the
hypothesis of perinatal events involving a seasonal factor and
subsequent pathologic brain development in depression.

Turning to schizophrenia, we show a general reduction of
hippocampal volume irrespective of season of birth. This fact
may hamper to detect specific effects of season of birth within
the hippocampus. However, our finding is in line with previous
reports showing hippocampal volume reduction in schizophrenia
(Nelson et al., 1998; Heckers and Konradi, 2010; Adriano et al.,
2012), even at the onset of the disorder in the first episode
(Adriano et al., 2012; McHugo et al., 2020), as well as in ad
risk subjects who later develop the disorder (Harrisberger et al.,
2016). Contrary, and as mentioned in the introduction, previous
reports have observed alterations in the brain structure associated
with season of birth, which was not the case in our report. In
particular, ventricular enlargement in winter-born compared to
summer-born patients with schizophrenia was shown (Sacchetti
et al., 1987, 1992; Zipursky and Schulz, 1987; Degreef et al.,
1988; d’Amato et al., 1994). In addition, one DTI study displayed
structural white matter impairments in patients born in summer
relative to patients born in winter (Giezendanner et al., 2013).

We have to point out limitations of our report. First, all but
seven patients were on psychotropic medication. We cannot rule
out that medication had an effect on hippocampal volume. In
particular, medication may hamper to detect an effect of volume
reduction in schizophrenia. However, SB and WB schizophrenia
patients did not differ in CPZ equivalents as a proxy of
antipsychotic dosage. In addition, previous reports detected
alterations in brain structure in medicated schizophrenia patients
(Sacchetti et al., 1987, 1992; Zipursky and Schulz, 1987; Degreef
et al., 1988; d’Amato et al., 1994; Giezendanner et al., 2013).
Furthermore meta-analytic evidence suggests that hippocampal
volume reduction in depression is not solely explained as a
medication effect (Zhao et al., 2014). Second, we do not have
information of possible infections or other complications during
the prenatal period or birth as well as birth weight or whether it
was preterm birth in our subjects. Thus, the seasonal birth pattern
is associated with alterations in the brain but we cannot conclude
on the causes. Third, sample size was not balanced over the
groups leading to smaller sample size of patients with depression
(n = 39). Finally, several factors have been suggested that may
moderate the association between depression and hippocampal
volume including depression severity and state (Arnone et al.,
2013) or age-of-onset of the first depressive episode (Schmaal
et al., 2016). However, in our study winter- and summer-born
patients with depression did not differ in depression severity
and age of onset.

In conclusion, our results demonstrate that seasonal birth
pattern may contribute to hippocampal volume reduction in
depression. Additionally, we demonstrate that schizophrenia
patients show a hippocampal volume reduction independent
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of season of birth. The finding of a relationship between
season of birth and hippocampal volume in depression support
the hypothesis of a harmful perinatal event and subsequent
pathologic brain development in depression, at least in a
subgroup of patients.
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