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Abstract. Visual Question Answering (VQA) models take an image and
a natural-language question as input and infer the answer to the ques-
tion. Recently, VQA systems in medical imaging have gained popularity
thanks to potential advantages such as patient engagement and second
opinions for clinicians. While most research efforts have been focused on
improving architectures and overcoming data-related limitations, answer
consistency has been overlooked even though it plays a critical role in
establishing trustworthy models. In this work, we propose a novel loss
function and corresponding training procedure that allows the inclusion
of relations between questions into the training process. Specifically, we
consider the case where implications between perception and reasoning
questions are known a-priori. To show the benefits of our approach, we
evaluate it on the clinically relevant task of Diabetic Macular Edema
(DME) staging from fundus imaging. Our experiments show that our
method outperforms state-of-the-art baselines, not only by improving
model consistency, but also in terms of overall model accuracy. Our code
and data are available at https://github.com/sergiotasconmorales/

consistency_vqa.
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1 Introduction

Visual Question Answering (VQA) models are neural networks that answer nat-
ural language questions about an image by interpreting the question and the
image provided [1,7,11,22]. Specifying questions using natural language gives
VQA models great appeal, as the set of possible questions one can ask is enor-
mous and does not need to be identical to the set of questions used to train
the models. Due to these advantages, VQA models for medical applications have
also been proposed [6,8,12,13,24,28], whereby allowing clinicians to probe the
model with subtle differentiating questions and contributing to build trust in
predictions.

To date, much of the work in medical VQA has focused on building more
effective model architectures [6,12,24] or overcoming limitations in medical VQA
datasets [14,12,19,28]. Yet a critical component of VQA is the notion of consis-
tency in the answers produced by a model. Here, consistency refers to a model’s

https://github.com/sergiotasconmorales/consistency_vqa
https://github.com/sergiotasconmorales/consistency_vqa
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Is the image healthy? Are there hard exudates here?
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Fig. 1. VQA inconsistency in Diabetic Macular Edema staging from fundus photo-
graph. While the VQA model correctly answers “Is the image healthy?” (left), it in-
correctly answers yes to“Are there hard exudates here?” for a specified retinal region.

capacity to produce answers that are not self-contradictory. For instance, the
task of staging diabetic macular edema (DME) from color fundus photograph il-
lustrated in Fig. 1 involves identifying perception elements in the image (e.g., “are
there hard exudates visible near the macula?”) to infer a disease stage, which
can be expressed as a reasoning question (e.g., “what is the stage of disease?”).
Ultimately, for any VQA model to be trustworthy, it should be able to answer
these without contradicting itself (i.e., answer that the image is healthy, but also
identify hard exudates in the periphery of the eye).

Consistency in VQA has been been studied in the broader computer vi-
sion context [4,5,16,18,21], where the relation between perception and reasoning
questions is unconstrained. That is, the answers to perception questions do not
necessarily imply any information with respect to the reasoning question and
vice-versa. In these broad cases, some methods have modeled question implica-
tions [16,18] or rephrased questions [21] by generating tailored question-answer
pairs (e.g., consistent data-augmentation). Alternatively, [5,23,27] used relations
between questions to impose constraints in the VQA’s embedding space. To
avoid needing to know the relation between questions, [20] proposed to enforce
consistency by making attention maps of reasoning and perception questions
similar to one another. However, even though these approaches tackle uncon-
strained question relations, the ensuring of VQA models’ consistency remains
limited and often reduces the overall performance [20].

Instead, we propose a novel approach to enforce VQA consistency that is
focused on cases where answers to the perception questions have explicit impli-
cations on reasoning question answers and vice-versa (e.g., cancerous cells and
severity of cancer found in H&E staining, or presence of hard exudates and DME
staging). By focusing on this subset of question relations, our aim is to improve
both the accuracy of our model and its consistency, without needing external
data as in [18,14,4]. To do this, we allow questions to probe arbitrary image
regions by masking irrelevant parts of the image and passing the masked image
to the VQA model (see Fig. 1). To then enforce consistency, we propose a new
loss function that penalizes incorrect perceptual predictions when reasoning ones
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are correct for a given image. To validate the impact of our approach, we test
it in the context of DME staging and show that it outperforms state-of-the-art
methods for consistency, without compromising overall performance accuracy.

2 Method

We present here our approach which consists of using a simple VQA model with
a training protocol that encourages consistency among pairs of perception and
reasoning questions. Fig. 2 illustrates this VQAmodel and our training approach.

VQA model. Following [2], our VQA model, f : I ×Q → P(A), takes a tuple
containing an image, x, and a question, q, to produce a distribution, p = f(x,q),
over a finite set of possible answers A (see Fig. 2(Top)). After encoding the
inputs, the VQA model combines visual (v) and textual (q) features through an
attention module (k) [26] that selects the visual features relevant to the question
(v′). The final classifier receives a combination of the relevant features and the
text features through a fusion module to predict the final distribution.

In some cases, questions may consider asking about content related to specific
regions of the image (e.g., “are there hard exudates in this region?”). To process
these cases, the input image is masked so that the visible area corresponds to
the region mentioned in the question while the rest of the image is set to zero.

Training this model requires a dataset T = {t(i) = (x(i),q(i), a(i))}Ni=1 ⊆
I×Q×A of images and questions annotated with their answers. The VQA loss is
simply the cross-entropy between the predicted distribution and the real answer,

ℓVQA(p, a) = H(p, a) = − logpa. (1)

While this loss alone is sufficient to reach a reasonable performance, it ignores
the potentially useful interactions that may exist among training questions.

Consistency loss. We aim to improve the quality of our VQA model by ex-
ploiting the relationships between reasoning and perception questions at training
time. To this end, we augment the training dataset with an additional binary re-
lation ≺ over the set of questions Q. Two questions are related, q(i) ≺ q(j), if q(i)

is a perception question associated to the reasoning question q(j). From hence
on, we refer to perception questions as sub-questions and reasoning questions as
main questions.

Following the terminology in [20], an inconsistency occurs when the VQA
model infers the main question correctly but the sub-question incorrectly. Using
the entropy as a measurement of incorrectness, we propose to impose the con-
sistency at training time by penalizing the cases with high H(i) = H(p(i), a(i))
and low H(j) = H(p(j), a(j)) when q(i) ≺ q(j). To do this, we use an adapted
hinge loss that disables the penalty when H(j) is larger than a threshold γ > 0,
but otherwise penalizes large values of H(i),

ℓcons(H
(i), H(j)) = H(i) max{0, γ −H(j)}. (2)
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Fig. 2. Top: VQA model architecture. Bottom: Visualization of the training process
with the proposed loss. The total loss, ℓtot, is based on two terms: the conventional VQA
loss, ℓVQA and our proposed consistency loss term, ℓcons. The latter is computed only for
pairs of main (reasoning) and sub (perception) questions. Training mini-batches consist
of main and sub questions at the same time, whereby sub-questions can consider specific
regions of the image. Unrelated questions (denoted with “ind”) can also be included in
training batches, but do not contribute to ℓcons.

The final cost function then minimizes the expected value of the VQA loss (1)
for the elements of the training dataset and the consistency loss (2) for the pairs
of training samples with ≺-related questions,

Et∼T [ℓVQA(p, a)] + λE(t(i),t(j))∼T 2 [ℓcons(H
(i), H(j)) | x(i) = x(j),q(i) ≺ q(j)],

(3)
where λ > 0 controls the relative strength of both losses and T 2 is the Cartesian
product of T with itself, that is, all pairs of training samples.

To train, this cost is iteratively minimized approximating the expectations
with mini-batches. The two expectations of Eq. (3) suggest that two mini-batches
are necessary at each iteration: one mini-batch sampled from T and a second
mini-batch of ≺-related pairs sampled from T 2. However, in practice a single
mini-batch is sufficient as long as we ensure that it contains pairs of ≺-related
questions. While this biased sampling could in turn bias the estimation of the
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first expectation, we did not observe a noticeable impact in our experiments.
Fig. 2(Bottom) illustrates this training procedure.

3 Experiments and results

DME staging. Diabetic Macular Edema (DME) staging from color fundus
images involves grading images on a scale from 0 to 2, with 0 being healthy
and 2 being severe (see Fig. 3). Differentiation between the grades relies on the
presence of hard exudates present in different locations of the retina. Specifically,
a grade of 0 implies that no hard exudates are present at all, a grade of 1 implies
that hard exudates are located in the retina periphery (i.e., outside a circular
region centered at the fovea center with radius of one optic disc diameter), and
a grade of 2 when hard exudates are in the macular region [17].

Dataset and questions. To validate our method, we make use of two publicly
available datasets: the Indian Diabetic Retinopathy Image Dataset (IDRiD) [15]
and the e-Ophta dataset [3]. From the IDRiD dataset, we use images from the
segmentation and grading tasks, which consist of 81 and 516 images, respectively.
Images from the segmentation task include segmentation masks for hard exu-
dates and images from the grading task only have the DME grade. On the other
hand, the e-Ophta dataset comprises 47 images with segmentation of hard exu-
dates and 35 images without lesions. Combining both datasets yields a dataset of
128 images with segmentation masks for hard exudates and 128 images without
any lesions, plus 423 images for which only the DME risk grade is available.

Optic disc Circle with radius of one optic disc diameter Hard exudates x Fovea center
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Grade 0

x

Main: What is the DME 
grade? 
Answer: 0

Sub: Are there hard 
exudates in the image?
Answer: No

Grade 1

x

Main: What is the DME 
grade? 
Answer: 1

Sub: Are there hard 
exudates in the macula?
Answer: No

Grade 2

x

Main: What is the DME 
grade? 
Answer: 2

Sub: Are there hard 
exudates in this region?
Answer: Yes

Fig. 3. DME risk grading Grade 0 is assigned if there are no hard exudates present
in the whole image. Grade 1 is assigned if there are hard exudates, but only located
outside a circle centered at the fovea with radius of one optic disc diameter. Grade 2
is assigned if there are hard exudates located within the circle. Examples of main and
sub-questions are provided for each grade.
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In this context, we consider main questions to be those asking “What is
the DME risk grade?” when considering the entire image. Sub-questions were
then defined as questions asking about the presence of the hard exudates. For
instance, as shown in Fig. 3(Right), “Are there hard exudates in this region?”
where the region designated contains the macula. In practice, we set three types
of sub-questions: “are there hard exudates in this image?”, “are there hard ex-
udates in the macula?” and “are there hard exudates in this region?”. We refer
to these three questions as whole, macula and region questions, respectively.
For the region sub-questions, we consider circular regions that can be centered
anywhere, or centered on the fovea, depending on availability of fovea center
location annotations. As mentioned in Sec. 1, to answer questions about regions,
images are masked so that only the region is visible.

The total number of question-answer pairs in our dataset consist of 9779 for
training (4.4% main, 21.4% sub, 74.2% ind), 2380 for validation (4.5% main,
19.2% sub, 76.3% ind) and 1311 for testing (10% main, 46.1% sub, 43.9% ind),
with images in the train, validation and test sets being mutually exclusive.

Baselines, implementation details and evaluation metrics: We compare
our approach to a baseline model that does not use the proposed ℓcons loss,
equivalent to setting λ = 0. In addition, we compare our method against the
attention-matching method, SQuINT [20], as it is a state-of-the-art alternative
to our approach that can be used with the same VQA model architecture.

Our VQA model uses an ImageNet-pretrained ResNet101 [9] with input im-
age of 448 × 448 pixels and an embedding of 2048 dimensions for the image
encoding. For text encoding, a single-layer LSTM [10] network processes the in-
put question with word encoding of length 300 and produces a single question
embedding of 1024 dimensions. The multi-glimpse attention mechanism [26] uses
2 glimpses and dropout rate 0.25, and the multimodal fusion stage uses standard
concatenation. The final classifier is a multi-layer perceptron with hidden layer
of 1024 dimensions and dropout rate of 0.25. Hyperparameters λ and γ were
empirically adjusted to 0.5 and 1.0, respectively.

All experiments were implemented using PyTorch 1.10.1 and run on a Linux
machine with an NVIDIA RTX 3090 graphic card using 16 GB of memory and
4 CPU cores. All methods use the weighted cross-entropy as the base VQA loss
function. Batch size was set to 64, and we used Adam for optimization with
a learning rate of 10−4. Maximum epoch number was 100 and we use early
stopping policy to prevent overfitting, with a patience of 20 epochs.

We report accuracy and consistency [20] performances, using two different
definitions of consistency for comparison. Consistency, C1, is the percentage of
sub-questions that are answered correctly when the main question was answered
correctly. Consistency, C2, is the percentage of main questions that are answered
correctly when all corresponding sub-questions were answered correctly.

Results: Table 1 shows the results. We compare these results to the case in
which the value of λ is 0, which corresponds to the baseline in which no additional
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Case
Accuracy Consistency

overall grade whole macula region C1 C2

Baseline (no att.) 77.54 73.59 81.37 83.37 76.66 81.70 91.86

Baseline (att.) 81.46 80.23 83.13 87.18 80.58 89.21 96.92

Baseline (att.) + SQuINT [20] 80.58 77.48 82.82 85.34 80.02 88.17 94.62

Baseline (att.) + Ours (λ = 0.5, γ = 1) 83.49 80.69 84.96 87.18 83.16 94.20 98.12

Table 1. Average test accuracy and consistency values for the different models. Results
shown are averaged over 10 models trained with different seeds. Accuracy values are
presented for all questions (overall), for main questions (grade) and for sub-questions
(whole, macula and region). Both measures of consistency are shown as well.

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

Are there hard exudates in this region?

Are there hard exudates in this region?

0 0 0 0

NO YES NO NO

Are there hard exudates in the macula? NO NO NO NO

NO

NO

YESNO NO

NO NOYES

Type

main

sub

sub

sub

sub

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

1 2 2 2

YES NO NO NO

Are there hard exudates in the macula? NO YES YES NO

Type

main

sub

sub

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

Are there hard exudates in this region*?

Are there hard exudates in this region*?

2 2 2 2

YES YES YES YES

Are there hard exudates in the macula? YES YES YES YES

YES

YES

YESNO YES

YES YESYES

Type

main

sub

sub

sub

sub

*Regions located at fovea center, with radius smaller than 1 optic disc diameter (See Fig. 3)

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

0

NO

NO

Are there hard exudates in the macula? NO

YES

NO

Type

main

sub

sub

2 0 0

NO

NO YES

What is the DME grade?

Question Ans. GT Ans. baseline Ans. SQuINT Ans. Ours

Are there hard exudates in the image?

1 2 2 2

YES NO NO NO

Are there hard exudates in the macula? NO YES YES NO

Type

main

sub

sub

Fig. 4. Qualitative examples from the test set. Inconsistent sub-answers are highlighted
in red. Additional examples are shown in the supplementary material.

loss term is used. For each case, we present the overall accuracy and the accuracy
for each type of question, as well as the consistency values. Fig. 4 illustrates the
performance of each method with representative qualitative examples.
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λ γ
Accuracy Consistency

overall grade whole macula region C1 C2

0 - 81.46 80.23 83.13 87.18 80.58 89.21 96.92

0.2 0.5 82.01 80.38 83.59 86.56 81.36 90.93 97.38

0.2 1 82.65 79.77 83.97 86.64 82.30 93.22 97.51

0.2 1.5 83.05 81.22 84.27 87.33 82.53 93.23 97.56

0.3 0.5 82.34 79.92 83.59 87.71 81.74 92.32 97.31

0.3 1 83.27 80.53 84.58 87.25 82.91 94.01 98.10

0.3 1.5 83.28 80.84 84.43 87.48 82.86 93.28 98.29

0.4 0.5 82.87 80.69 84.89 87.02 82.30 92.66 96.66

0.4 1 82.97 80.15 83.97 86.72 82.69 93.91 98.23

0.4 1.5 83.33 80.08 84.20 86.87 83.17 93.96 97.77

0.5 0.5 82.54 81.07 83.66 88.02 81.81 91.87 97.73

0.5 1 83.49 80.69 84.96 87.18 83.16 94.20 98.12

0.5 1.5 83.25 79.92 84.58 86.95 83.01 94.20 98.12

Table 2. Average test accuracy and consistency values for different values of the pa-
rameters λ and γ. The first row (λ = 0) corresponds to the baseline.

In general, we observe that our proposed approach yields increases in ac-
curacy and consistency when compared to both the baseline and SQuINT. Im-
portantly, this increase in consistency is not at the expense of overall accuracy.
Specifically, this indicates that our loss term causes the model to be correct
about sub-questions when it is correct about main questions. The observed in-
crease in accuracy also indicates that our approach is not synthetically increasing
consistency by reducing the number of correct answers on main questions [20].
We note that SQuINT results in a reduction in accuracy and consistency, which
can be partially explained by the presence of region questions that are not asso-
ciated to any main question. These questions, which exceed the number of main
questions, may affect the constraint in the learned attention maps.

Table 2 shows the effect of λ and γ on the performance metrics. As expected,
we notice that when λ increases, the consistency of our approach increases as
well and will occasionally deteriorate overall accuracy. The impact of γ however
is less evident, as no clear trend is visible. This would imply that the exact
parameter value used is moderately critical to performances.

4 Conclusions

In this work, we presented a novel method for improving consistency in VQA
models in cases where answers to sub-questions imply those of main questions
and vice-versa. By using a tailored training procedure and loss function that
measures the level of inconsistency, we show on the application of DME staging,
that our approach provides important improvements in both VQA accuracy
and consistency. In addition, we show that our method’s hyperparameters are
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relatively insensitive to model performance. In the future, we plan to investigate
how this approach can be extended to the broader case of unconstrained question
relations.

Acknowledgments. This work was partially funded by the Swiss National
Science Foundation through the grant # 191983.
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