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Abstract: We study the non-parametric isotonic regression problem for
bivariate elicitable functionals that are given as an elicitable univariate
functional and its Bayes risk. Prominent examples for functionals of this
type are (mean, variance) and (Value-at-Risk, Expected Shortfall), where
the latter pair consists of important risk measures in finance. We present
our results for totally ordered covariates but extenstions to partial orders
are given in the appendix.
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1. Introduction

In isotonic regression, the aim is to fit an increasing function g1 to observations
(z1, y1), . . . , (zn, yn) such that a chosen loss function is minimized by g1. The
covariates z1, . . . , zn take values in some partially ordered space, that is, they
can be univariate, multivariate, or even more general. The solution g1 is then
called an optimal solution to the isotonic regression problem. If g1 is supposed
to model a conditional mean, then the loss function should be consistent for the
mean in the sense of Gneiting (2011, Definition 1) with a prominent example
being the squared error loss. More generally, if g1 is a model for a conditional
functional T , then the loss function L : R×R → R should be chosen consistent
for this functional T , that is, EPL(t, Y ) ≤ EPL(x, Y ) for all relevant probability
distributions P , all t ∈ T (P ) and all x ∈ R. Loss L is called strictly consistent
if the above inequality is strict for all x �∈ T (P ). This notion of consistency is
a property of the functional T and the loss function L and should not to be
confused with consistency of an estimator. Strict consistency of L ensures that
a correctly specified model minimizes the expected loss at the population level.

If a functional T , that is, a map on a certain class of probability distributions,
has a strictly consistent loss function, it is called elicitable. We say that the loss
function elicits T . Elicitability is important for forecast comparison (Gneiting,
2011), and yields natural estimation procedures. Unfortunately, some ubiquitous
functionals are not elicitable with prominent examples given by the variance
(var) and expected shortfall (ESα), the latter being an important risk measure
in finance and insurance. However, although ESα is not elicitable, it is jointly
elicitable together with the α-quantile (qα); see Fissler and Ziegel (2016) and
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Example 2.2. Similarly, while var itself is not elicitable, it is jointly elicitable
with the mean (E). This means that both ESα and var are 2-elicitable, that is,
they can both be obtained as a function of a 2-dimensional elicitable functional.
In a nutshell, the elicitation complexity of a functional is the minimal number
k of dimensions needed for the functional to be k-elicitable. Since both ESα
and var are not elicitable themselves but they are 2-elicitable, their elicitation
complexity equals 2 (Frongillo and Kash, 2020, Corollary 1 and 3).

Isotonic regression for one-dimensional elicitable functionals is well-under-
stood (Barlow et al., 1972). An interesting aspect is its robustness with respect
to the choice of the consistent loss function in the minimization problem. In
other words, no matter which strictly consistent loss function we choose for the
functional T , we will obtain the same isotonic solution (Brümmer and Du Preez,
2013; Jordan, Mühlemann and Ziegel, 2020). This is in stark contrast to esti-
mation in parametric regression models. In finite samples or for misspecified
models, the choice of the consistent loss function may lead to miscellaneous
estimates (Patton, 2020).

In this article, we investigate non-parametric regression for bivariate func-
tionals T under isotonicity constraints. In particular, we show that simultaneous
optimality with respect to an entire class of losses can rarely be achieved, and
discuss how to find optimal solutions for specific choices of loss functions. The
functionals we consider are of the form

T = (T, L),

where T is a one-dimensional elicitable functional with a strictly consistent loss
function L, and

L(P ) := inf
x1∈R

L(x1, P ), (1)

where L(x1, P ) =
∫
R
L(x1, y) dP (y) is the Bayes risk. The example T = (E, var)

arises by choosing L(x, y) = (x−y)2, and the example T = (qα,ESα) is obtained
by choosing L(x, y) = (1/α)1{y ≤ x}(x − y) − x, which is the piecewise linear
loss known from quantile regression up to a function that only depends on y.
Generally, Frongillo and Kash (2020) show that T is always 2-elicitable. More-
over, they also introduce a large class L of loss functions L(x1, x2, y) eliciting
T .

We show how the isotonic regression problem can be solved for T . It turns out
that the proposed canonical solution is generally not optimal with respect to all
loss functions in L, but there is a fairly simple approach to check whether a given
fit is simultaneously optimal. Furthermore, we show how the fit can be improved
for a specific chosen loss function. In a simulation experiment, we investigate
how often simultaneously optimal fits occur for the functionals (qα,ESα) and
(E, var) and investigate the fits for a specific choice of loss function.

The article is organized as follows. Section 2 introduces necessary prelimi-
naries on consistent loss functions including a mixture representation for loss
functions in L. In Section 3, the isotonic regression problem for total orders is
formulated and a natural solution through sequential optimization is proposed.
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Then, we study the simultaneous optimality of the solution of the sequential
optimization approach. Section 4 contains the numerical examples. In the Ap-
pendix, we show how our results can be generalized to partial orders.

2. Preliminaries

Following Jordan, Mühlemann and Ziegel (2020), a function V : R × R → R is
called an identification function if V (·, y) is increasing and left-continuous for
all y ∈ R. Then, for any probability measure P on R with finite support, we
define the functional T induced by an identification function V as

T (P ) = [T−(P ), T+(P )] ⊆ [−∞,∞],

where the lower and upper bounds are given by

T−(P ) = sup{x1 : V (x1, P ) < 0} and T+(P ) = inf{x1 : V (x1, P ) > 0},

using the notation V (x1, P ) =
∫
R
V (x1, y) dP (y). If a functional T is induced by

an identification function, we call it identifiable. A broad class of functionals can
be defined via their identification function, quantiles and expectiles, including
the median and the mean, being just some of the most prominent examples.
For other popular examples, see Jordan, Mühlemann and Ziegel (2020). The
examples of quantiles and expectiles already illustrate that the functional T can
take singleton-values as well as interval-values.

Recall that for a functional T taking values in R
k, a loss function L̃ : Rk×R →

R is called consistent if EP L̃(t, Y ) ≤ EP L̃(x, Y ) for all relevant probability
distributions P , all t ∈ T (P ) and all x ∈ R

k. It is called strictly consistent if
equality implies that t ∈ T (P ). If T has strictly consistent loss function L̃, we
equivalently say that L̃ elicits T .

Theorem 1 in Frongillo and Kash (2020) states that if L is a strictly consistent
loss function for T and L is the Bayes risk defined at (1), then the loss

L̃(x1, x2, y) = L′(x1, y) +H(x2) + h(x2)(L(x1, y)− x2) (2)

elicits T = (T, L), where h : R → R is any positive strictly decreasing function,
H(r) =

∫ r

0
h(x) dx, and L′ is any consistent loss function for T (possibly dif-

ferent from L or even equal to zero). If h is merely decreasing, then L̃ is still a
consistent loss function.

Ehm et al. (2016) pointed out that for expectiles and quantiles, any consistent
loss function L′ can be written as

L′(x1, y) =

∫
R

Sη,1(x1, y) dH1(η), (3)

for certain elementary (quantile or expectile) losses Sη,1 and a measure H1 on
R depending on L′; see also Lambert (2019) and the references therin. In fact,
such mixtures always yield a large class L of consistent scoring functions for
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T if it is identifiable with identification function V (x, y) (Dawid, 2016; Ziegel,
2016). Then, the elementary losses are given by

Sη,1(x1, y) = (1{η ≤ x1} − 1{η ≤ y})V (η, y), (4)

where η ∈ R. Moreover, the elementary losses are themselves consistent for T .
We define

L =

{
(x1, y) 	→

∫
R

Sη,1(x1, y) dH1(η) : H1 is a positive measure on R

}
.

A priori, the class L of loss functions depends on the choice of the identifica-
tion function V for T , and for simplicity we assume that we have fixed and
identification function for our functional of choice throughout. However, for
many functionals including all the examples mentioned above, Osband’s princi-
ple for identification functions (Dimitriadis, Fissler and Ziegel, 2020, Appendix
B) shows that the identification function is uniquely determined up to mul-
tiplication with a positive function that only depends on the first argument
(η in (4)). This implies that the class L is in fact identical for any choice of
identification function for T .

Note that (strict) consistency of a loss function is not altered by adding func-
tions in y as long as they are integrable for all relevant probability measures P .
Therefore, when speaking of characterizations of the class of (strictly) consistent
loss functions this is always meant up to possible addition of a function in y.

If a loss function is given as a mixture of elementary losses as in (3), this
may be useful when minimizing the expected loss (over some set of parame-
ters, for example); see details for the isotonic regression problem in Section 3.
Using Fubini’s theorem, one can see that we can look for minimizers of the
expected elementary losses and hope that these minimizers all agree, that is,
there is a simultaneous minimizer for all parameters η. Then, this minimizer is
automatically optimal for all scoring functions of the form (3), independently
of the measure H1. Indeed, this approach is at the heart of the characterization
of all simultaneously optimal solutions to the isotonic regression problem for
one-dimensional functionals in Jordan, Mühlemann and Ziegel (2020).

Using the same approach as used by Ziegel et al. (2020) to derive a mixture
representation for the pair (qα,ESα), we derive a mixture representation for the
loss functions for T of the form (2).

Lemma 2.1. Let L,L′ ∈ L. Then, any consistent loss function for T = (T, L)
of the form given at (2) can be written as

L̃(x1, x2, y) =

∫
R

Sη,1(x1, y) dH1(η) +

∫
R

Sη,2(x1, x2, y) dH2(η), (5)

where H1, H2 are measures on R, H2 is finite on intervals of the form (−∞,−x2],
x2 ∈ R, and

Sη,1(x1, y) = (1{η ≤ x1} − 1{η ≤ y})V (η, y)
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Sη,2(x1, x2, y) = 1{η ≤ −x2}(L(x1, y) + η)− 1{η ≤ 0}η.

Conversely, any loss function of the form (5) is consistent for T = (T, L). It is
strictly consistent if H2 puts positive mass on all open intervals.

Proof. The consistency follows directly from Theorem 1 in Frongillo and Kash
(2020). Recall that h is decreasing and nonnegative and H(r) =

∫ r

0
h(x) dx. To

see that the loss functions in (2) with loss L′ ∈ L can be written as in (5),
define A := limx→∞ h(x) ≥ 0. Since h ≥ 0, we can define the measure H2 by
H2((−∞, t]) = h(−t) − A ≥ 0 for all t ∈ R. Without loss of generality we can
assume h satisfies limx→∞ h(x) = 0. Indeed, we can define h = h − A then H
becomes H(x) = H(x)− xA and L̃(x1, x2, y) = L̃(x1, x2, y) + AL(x1, y). Then,
L̃(x1, x2, y) = L′(x1, y)−AL(x1, y)+H(x2)+h(x2)(L(x1, y)−x2). Thus, adding
constants to h corresponds to modifying the loss function L′. Moreover, since
L,L′ ∈ L we have that L′ + AL ∈ L. Hence, we can assume that A = 0, then
H2((−∞, x]) = h(−x) for all x ∈ R and

h(x2) =

∫ −x2

−∞
dH2(η).

Then we have

∫
R

Sη,2(x1, x2, y) dH2(η) =L(x1, y)h(x2)−
∫ 0

−x2

η dH2(η).

Integration by parts yields

∫
R

Sη,2(x1, x2, y) dH2(η) =L(x1, y)h(x2)− x2h(x2) +H(x2).

Restricting the choice of L′ to L ensures the existence of the mixture represen-
tation for L′(x1, y).

The following two examples discuss the mixture representations for the pairs
(qα,ESα) and (E, var) in more detail.

Example 2.2. As mentioned in the introduction, a popular but non-elicitable
risk measure is expected shortfall. In this article we adopt the sign convention
used by Frongillo and Kash (2020) which is different from Fissler and Ziegel
(2016); Ziegel et al. (2020).

For a given level α ∈ (0, 1), the loss function

L(x1, y) =
1

α
1{y ≤ x1}(x1 − y)− x1

elicits the α-quantile qα(P ). The expected shortfall ESα is the corresponding
Bayes risk, that is,

ESα(P ) = inf
x1∈R

L(x1, P ).
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The elementary loss functions of Lemma 2.1 are given by

Sη,1(x1, y) = (1{η ≤ x1} − 1{η ≤ y})(1{η > y} − α)

Sη,2(x1, x2, y) = 1{η ≤ −x2}
(
1
α1{y ≤ x1}(x1 − y)− (x1 − η)

)
− 1{η ≤ 0}η.

In fact, all loss functions consistent for the pair (qα,ESα) are of the form (2),
or equivalently, (5); see Ziegel et al. (2020). Due to the different sign conven-
tions mentioned previously, the mixture representation in Ziegel et al. (2020)
corresponds to L(x1,−x2, y) (up to normalization).

Example 2.3. The squared loss L(x1, y) = (x1 − y)2 elicits the expectation
E(P ). The corresponding Bayes risk is the variance var(P ). Thus, the pair
(E, var) is elicitable. The elementary loss functions of Lemma 2.1 are given
by

Sη,1(x1, y) = (1{η ≤ x1} − 1{η ≤ y})(η − y)

Sη,2(x1, x2, y) = 1{η ≤ −x2}
(
(x1 − y)2 + η)

)
− 1{η ≤ 0}η.

In contrast to the pair (qα,ESα) not all consistent loss functions for (E, var) are
of this form; see Frongillo and Kash (2020, Section 3.1).

3. Isotonic regression

3.1. General results

Suppose we have pairs of observations (z1, y1), . . . , (zn, yn), where y1, . . . , yn are
real-valued, the covariates z1, . . . , zn are equipped with a total order, and z1 <
z2 < · · · < zn. Repeated observations can easily be accommodated; see Remark
3.1 in Jordan, Mühlemann and Ziegel (2020). We aim to fit a function ĝ =
(ĝ1, ĝ2) : {z1, . . . , zn}2 → R

2 to these observations, such that g1 is isotonic and
models the conditional functional T given the covariates zi, and g2 is antitonic
and models the conditional Bayes risk L given at (1) given the covariates zi for
some consistent loss function L ∈ L. That is, if zi ≤ zj then ĝ1(zi) ≤ ĝ1(zj) and
ĝ2(zi) ≥ ĝ2(zj), respectively. Considering the pair (qα,ESα) for example, one
would be interested in an isotonic ĝ1 and an antitonic ĝ2 since qα(Y1) ≤ qα(Y2)
and ESα(Y1) ≥ ESα(Y2) whenever Y1 ≤ Y2 almost surely. Keeping this leading
example in mind, we focus on the case that g1 is isotonic, or increasing, and g2
is decreasing, or antitonic. Adaptations of the results, where g1 is desired to be
decreasing or g2 to be increasing are straight forward.

Following the literature on loss functions for expected shortfall, we first con-
sider loss functions of the form (2) with L′ = 0 (Nolde and Ziegel, 2017; Patton,
Ziegel and Chen, 2019). When studying simultaneous optimality of solutions in
Section 3.3, we also consider L′ �= 0. Let h : R → (0,∞) be decreasing with
limx→∞ h(x) = 0 and H(r) =

∫ r

0
h(x) dx. The goal is to minimize

n∑
i=1

L̃(g1(zi), g2(zi), yi) =

n∑
i=1

(
H(g2(zi)) + h(g2(zi))

(
L(g1(zi), yi)− g2(zi)

))

(6)
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over all functions g = (g1, g2) : {z1, . . . , zn}2 → R
2 such that g1 is increasing and

g2 is decreasing. Keeping either g1 or g2 fixed, we can directly give an optimal
solution with respect to the other component.

Proposition 3.1. (a) Let g1 : {z1, . . . , zn} → R be given. Then, the optimal
antitonic solution ĝ2 of (6) with g1 fixed is given by

ĝ2(z�) = −min
j≥�

max
i≤j

−E(P̄i:j) = −max
i≤�

min
j≥i

−E(P̄i:j), � = 1, . . . , n,

where P̄i:j is the empirical distribution of L(g1(zi), yi), . . . , L(g1(zj), yj).
(b) Let g2 : {z1, . . . , zn} → R be given. Then, any optimal isotonic solution ĝ1

of (6) with g2 fixed satisfies

min
j≥�

max
i≤j

T−(Pw
i:j) ≤ ĝ1(z�) ≤ max

i≤�
min
j≥i

T+(Pw
i:j),

where Pw
i:j is the weighted empirical distribution of yi, . . . , yj with weights

proportional to h(g2(zi)), . . . , h(g2(zj)).

Proof. (a) Notice that for fixed g1, the loss function (6) is a Bregman loss func-
tion. Moreover, ĝ2 is antitonic if and only if −ĝ2 is isotonic. Thus, we can
solve the classical isotonic regression problem as in Jordan, Mühlemann
and Ziegel (2020) for −ĝ2 to obtain the optimal antitonic ĝ2.

(b) Minimizing (6) for fixed g2 is equivalent to minimizing

n∑
i=1

h(g2(zi))L(g1(zi), yi).

Remark 3.1 and Proposition 3.6 in Jordan, Mühlemann and Ziegel (2020)
yields the result.

The bounds on the solution in Proposition 3.1 (b) are sharp in the sense that,
both, the left hand side and the right hand side of the sequence of inequalities
are themselves optimal solutions. However, not any increasing function ĝ1 be-
tween those bounds is an optimal solution. A counter-example can be found in
Mösching and Dümbgen (2020, Remark 2.2 and Example 2.4).

If T is singleton-valued, Proposition 3.1 yields the existence and a necessary
condition for any solution to (6).

Corollary 3.2. If T is singleton-valued, an optimal solution ĝ1, ĝ2 to (6) exists.
In particular, we have

ĝ2(z�) = −min
j≥�

max
i≤j

−E(P̄i:j) = −max
i≤�

min
j≥i

−E(P̄i:j),

where P̄i:j is the empirical distribution of L(ĝ1(zi), yi), . . . , L(ĝ1(zj), yj), and

ĝ1(z�) = min
j≥�

max
i≤j

T (Pw
i:j) = max

i≤�
min
j≥i

T (Pw
i:j),

where Pw
i:j is the weighted empirical distribution of yi, . . . , yj with weights pro-

portional to h(ĝ2(zi)), . . . , h(ĝ2(zj)).
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Proof. For all solutions that are given by a min-max-representation with respect
to some functional T̃ there exists a partition Q of the index set with g(z�) =
T̃ (Q), � ∈ Q, Q ∈ Q (Jordan, Mühlemann and Ziegel, 2020, Proposition 4.17).
Since there exist only finitely many partitions of the index set {1, . . . , n} there
exist only finitely many possible solutions. Therefore, an optimal solution has
to exist. In particular, ĝ1 has to be the solution obtained from Proposition 3.1
when ĝ2 is treated as fixed and vice versa. Otherwise we could replace ĝ1 by the
solution obtained from Proposition 3.1 to obtain a smaller loss. Similarly, we
could replace ĝ2 by the solution in Proposition 3.1 to obtain a smaller loss.

In addition to the theoretical solutions, Proposition 3.1 suggests an algorithm
for finding minimizers of (6), which roughly consists of the following steps:

1. Take g2 constant and find the optimal ĝ
(1)
1 .

2. Find the optimal ĝ
(1)
2 given ĝ

(1)
1 .

3. Find the optimal ĝ
(2)
1 given ĝ

(1)
2 .

4. Iterate steps 2 and 3 until ĝ
(k)
1 = ĝ

(k−1)
1 .

There is a problem with this algorithm if T is interval-valued, since then, the
solution in part (b) of Proposition 3.1 is not unique. It turns out that it is best
to choose the smallest possible solution corresponding to T−, see Section 3.2 for
details.

Fissler and Ziegel (2019) show that the expectation of consistent loss func-
tions has no local minima. The optima in the isotonic regression case are more
complex. But we believe that order sensitivity can be exploited to argue that
the above algorithm can only converge to a global optimum. Numerical con-
siderations where we perturbed the initial solutions to see whether they still
converge to the same solution reinforced our suspicions that the algorithm does
not converge to a saddle point. However, a rigorous mathematical proof for this
conjecture is currently an open problem.

3.2. Solution to the optimization problem

In this somewhat technical section, we will show that for fixed g2, it is best to
choose

ĝ−1 (z�) := min
j≥�

max
i≤j

T−(Pw
i:j) = max

i≤�
min
j≥i

T−(Pw
i:j), (7)

where Pw
i:j is the weighted empirical distribution of yi:j with weights wi, . . . , wj

proportional to h(g2(zi)), . . . , h(g2(zj)), to minimize (6); see Propositions 3.7
and 3.8.

The weight vector w that is described in the previous paragraph will re-
main fixed throughout this section. Recall that the function ĝ−1 is the pointwise
smallest solution minimizing

n∑
i=1

wiL(ĝ1(zi), yi) (8)
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over all isotonic functions ĝ1 (Jordan, Mühlemann and Ziegel, 2020).
We denote Tλ = λT−+(1−λ)T+, λ ∈ [0, 1], where T− and T+ are the lower

and upper bound of T , respectively. In (7) the indices �, i and j are all elements
of the index set {1, . . . , n}. If we were to restrict �, i and j to be elements of
the subset {1, . . . ,m}, m ≤ n, we would obtain an optimal solution to (8) on
the subset (z1, y1), . . . , (zm, ym) of the original data set, that is, with n replaced
by m. In the following, we denote an optimal solution on this subset by ĝ1;1:m
and by ĝ1

∣∣
1:m

we denote the optimal solution on the original set restricted to
{z1, . . . , zm}.

The following auxiliary result relates ĝ1;1:m to ĝ1
∣∣
1:m

in the case where ĝ1 is
given by a min-max-representation.

Lemma 3.3. Assume that

ĝ1(z�) := min
j≥�

max
i≤j

Tλ(Pw
i:j) = max

i≤�
min
j≥i

Tλ(Pw
i:j), � = 1, . . . , n,

for some λ ∈ [0, 1]. Then we have ĝ1
∣∣
1:m

≤ ĝ1;1:m and ĝ1
∣∣
(m+1):n

≥ ĝ1;(m+1):n.

Proof. Notice that

ĝ1;1:m(z�) = min
j≥�

j≤m

max
i≤j

Tλ(Pw
i:j) ≥ min

j≥�
max
i≤j

Tλ(Pw
i:j) = ĝ1(z�).

The second statement follows with similar reasoning.

We recall some observations made in Jordan, Mühlemann and Ziegel (2020).
For fixed g2, that is, for fixed weights w, we can minimize

n∑
i=1

wi1{η ≤ ĝ1(zi)}V (η, yi), for all η ∈ R, (9)

to obtain an optimal solution to (6), or equivalently, to (8). The crucial insight
of Jordan, Mühlemann and Ziegel (2020) is that an optimal isotonic solution
to (8) is not only optimal for L but also for any other L′ ∈ L. Therefore, we
can equivalently find a solution that is optimal for all elementary losses given in
Lemma 2.1, which leads to (9). Because we want ĝ1 to be isotonic, this means
that for a given η ∈ R we have to find an index � ∈ {1. . . . , n+1} that minimizes

n∑
i=�

wiV (η, yi). (10)

For � = n + 1, recall that an empty sum is zero. The search for the optimal
index � needs to be conducted for every η ∈ R. For η ∈ R, we denote the set of
indices minimizing (10) by I1:n(η).

Lemma 3.4. We have that I1:n(η) ∩ {1, . . . ,m + 1} ⊆ I1:m(η), where I1:m(η)
is the set of minimizing indices for the isotonic regression problem (8) on the
subsample (z1, y1), . . . , (zm, ym).
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Proof. Let � ∈ I1:n(η) ∩ {1, . . . ,m} for some η ∈ R. Therefore, the function

tη : {1, . . . , n+ 1} → R, x 	→
n∑

i=x

wiV (η, yi)

has a minimum at �. We can write

n∑
i=�

wiV (η, yi) =

m∑
i=�

wiV (η, yi) +

n∑
i=m+1

wiV (η, yi).

Hence, tη
∣∣
1:m

has also a minimum at � and thus � ∈ I1:m(η). If tη has a minimum
at � = m+ 1 then

tη(x)−
n∑

i=m+1

wiV (η, yi) ≥ 0

with equality for x = m+ 1. Thus, I1:n(η) ∩ {1, . . . ,m+ 1} ⊆ I1:m(η).

The next result shows that if ĝ1 is an optimal solution to the isotonic regres-
sion problem (8) with ĝ1(zm) < ĝ1(zm+1) then ĝ1

∣∣
1:m

is an optimal solution to
the isotonic regression problem (8) on the subsample (z1, y1), . . . , (zm, ym).

Corollary 3.5. Let ĝ1 be an optimal solution to (8) with ĝ1(zm) < ĝ1(zm+1).
Then we have that ĝ1

∣∣
1:m

is an optimal solution to (8) on the subsample (z1, y1),
. . . , (zm, ym).

Proof. It follows from Jordan, Mühlemann and Ziegel (2020, Proposition 3.5)
that the optimal solution ĝ1 is in one-to-one correspondence with increasing,
left-continuous functions ι : R → {1, . . . , n + 1} with ι(η) ∈ I1:n(η), for all
η ∈ R, in the sense that

inf{η : ι(η) > �} = ĝ1(z�) = max{η : ι(η) ≤ �}.

The restricted function ι
∣∣
1:m

: R → {1, . . . ,m+ 1} is left-continuous, increasing
and satisfies

inf{η : ι
∣∣
1:m

(η) > �} = ĝ1
∣∣
1:m

(z�) = max{η : ι
∣∣
1:m

(η) ≤ �}.

Moreover, ι
∣∣
1:m

(η) ∈ I1:n(η) ∩ {1, . . . ,m+ 1}, for all η ∈ R. Lemma 3.4 implies

that ι
∣∣
1:m

(η) ∈ I1:m(η), for all η ∈ R. Thus, ĝ1
∣∣
1:m

is an optimal solution to (8)
on the subsample (z1, y1), . . . , (zm, ym).

We now would like to show that for fixed weights the solution

ĝ−1 (z�) = min
j≥�

max
i≤j

T−(Pw
i:j) = max

i≤�
min
j≥i

T−(Pw
i:j)

is most likely to minimize (6) out of all possible solutions to (8). An intuition
behind this statement is obtained by combining Lemma 3.3 with Proposition
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3.6 from Jordan, Mühlemann and Ziegel (2020). Lemma 3.3 yields ĝ−1
∣∣
(m+1):n

≥
ĝ−1,(m+1):n. Proposition 3.6 of Jordan, Mühlemann and Ziegel (2020), on the

other hand, implies that any optimal solution ĝ1,(m+1):n on (zm+1, ym+1), . . . ,

(zn, yn) has to satisfy ĝ−1,(m+1):n ≤ ĝ1,(m+1):n ≤ ĝ+1,(m+1):n, where ĝ+1,(m+1):n is

the upper bound given by Proposition 3.1 (b) when considering the subsample
{zm+1, . . . , zn}. Thus, ĝ−1 has the highest chance to lie between those bounds.

To prove this formally the order sensitivity of loss functions is needed. We
recall the definition given in Steinwart et al. (2014).

Definition 3.6. Let P be a class of probability distributions. A loss function
L : R × R → R is said to be P-order sensitive for T, if the image of T is an
interval, and for all P ∈ P and all t1, t2 ∈ R with either t2 < t1 ≤ T−(P ) or
T+(P ) ≤ t1 < t2, we have L(t1, P ) < L(t2, P ).

It follows directly from the definition that order sensitive loss functions are
consistent. The reverse holds under weak regularity conditions on the functional;
see Lambert (2019, Proposition 11). The loss functions in class L are order-
sensitive because they are defined via an oriented identification function and a
positive measure H1 (Steinwart et al., 2014, Theorem 7). Thus, the loss function
L in the following proposition is order sensitive. This observation is crucial for
the final step in the proof.

Proposition 3.7. Let ĝ−1 be given by (7), and let ĝ1 be any other solution
to (8). Then, for all antitonic g′2, we have

n∑
i=1

L̃(ĝ−1 (zi), g
′
2(zi), yi) ≤

n∑
i=1

L̃(ĝ1(zi), g
′
2(zi), yi).

Proof. For each ĝ1, we have a partition Q of the index set such that

ĝ1(zi) = ĝ1(zj) for all i, j ∈ Q, Q ∈ Q.

We denote by Qm the partition element corresponding to ĝ1 containing m, and
byQ−

m we denote the partition element corresponding to ĝ−1 containingm. Recall
that we assumed that L′ = 0. Therefore, by Lemma 2.1, it suffices to show that
for all η ∈ R, and for all antitonic g′2

n∑
i=1

Sη,2(ĝ
−
1 (zi), g

′
2(zi), yi) ≤

n∑
i=1

Sη,2(ĝ1(zi), g
′
2(zi), yi),

since S1,η only occurs in the mixture representation of L′. For the latter, it
suffices to show that for all m ≤ n

n∑
�=m

L(ĝ−1 (z�), y�) ≤
n∑

�=m

L(ĝ1(z�), y�). (11)



Isotonic regression for elicitable functionals and their Bayes risk 3847

Since ĝ1 is another solution to (8), ĝ1 can only jump in � with � ∈ ∪ηI1:n(η). In
particular, we have

n∑
�=1

L(ĝ−1 (z�), y�) =
n∑

�=1

L(ĝ1(z�), y�).

In the following, we will prove the converse to (11), that is, for all m ≤ n we
have

m∑
�=1

L(ĝ1(z�), y�) ≤
m∑
�=1

L(ĝ−1 (z�), y�). (12)

If m = maxQm, it follows from Corollary 3.5 that ĝ1
∣∣
1:m

is optimal on (z1, y1),
. . . , (zm, ym) and therefore (12) holds.

For m �= maxQm, we distinguish two cases.
Case 1: If m = maxQ−

m, it follows from Lemma 3.3 and Proposition 3.1 that

ĝ−1
∣∣
1:m

= ĝ−1;1:m ≤ ĝ1
∣∣
1:m

≤ ĝ+1
∣∣
1:m

≤ ĝ+1;1:m.

By Lemma 3.4 we have I1:n(η) ∩ {1, . . . ,m+ 1} ⊆ I1:m(η) for all η ∈ R. Hence,
ι
∣∣
1:m

(η) ∈ I1:m(η) for all η ∈ R, where ι : R → {1, . . . , n + 1} is the function
imposing the score minimizing-indices corresponding to ĝ1. Thus, Proposition
3.5 in Jordan, Mühlemann and Ziegel (2020) implies that ĝ1

∣∣
1:m

is an optimal
solution to the isotonic regression problem on (z1, y1), . . . , (zm, ym).
Case 2: Consider the case m �= maxQ−

m and let j = max (minQm,minQ−
m). It

follows from the previous considerations that ĝ1 is optimal up to j−1 in the sense
that it is a minimizer on (z1, y1), . . . , (zj−1, yj−1). We know that ĝ−1

∣∣
1:m

≤ ĝ−1;1:m
so if ĝ1

∣∣
1:m

≥ ĝ−1;1:m we can conclude with the same reasoning as in case 1.

Otherwise, let j0 ≥ j be the minimal index with ĝ−1;1:m(zj0) > ĝ1
∣∣
1:m

(zj0).
Clearly j0 ∈ Qm and hence ĝ1 is constant on {j, . . . , j0}. Moreover, if j0 > j
then for all � ∈ {1, . . . , j0 − 1} we have that

ĝ−1;1:m(z�) = ĝ−1;1:(j0−1)(z�) ≤ ĝ1(z�) ≤ ĝ+1
∣∣
1:(j0−1)

(z�) ≤ ĝ+1;1:(j0−1)(z�),

implying that ĝ1 is in fact optimal up to j0 − 1. Of course, if j0 = j, we already
know that ĝ1 is optimal up to j0 − 1, since we know that ĝ1 is optimal up to
j− 1 from our previous considerations. Thus, it remains to check what happens
for � ∈ {j0, . . . ,m}.

For � ∈ {j0, . . . ,m} we have ĝ−1 (z�) = c− ≤ c = ĝ1(z�) < ĝ−1;1:m(z�) for some
constants c− and c.

Denote by Q−
s;1:m, . . . , Q−

r;1:m the partition elements of ĝ−1;1:m on {j0, . . . ,m}.
Then, for k ∈ {s, . . . , r} we have

∑
�∈Q−

k;1:m

L(ĝ−1;1:m, y�) ≤
∑

�∈Q−
k;1:m

L(c, y�) ≤
∑

�∈Q−
k;1:m

L(c−, y�)

since ĝ−1;1:m is constant each Q−
k;1:m and L is order-sensitive. Therefore, (12) is

fulfilled.
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Finally, we have all necessary results to see that ĝ−1 is indeed our best bet.
Define

ĝ−1 (z�;w) := min
j≥�

max
i≤j

T−(Pw
i:j) = max

i≤�
min
j≥i

T−(Pw
i:j)

ĝ−2 (z�; ĝ
−
1 ) := −min

j≥�
max
i≤j

−E(P̄i:j) = −max
i≤�

min
j≥i

−E(P̄i:j),

where P̄i:j is the empirical distribution of L(ĝ−1 (zi), yi), . . . , L(ĝ
−
1 (zj), yj) and

Pw
i:j is the weighted empirical distribution of yi, . . . , yj with weights w.

Proposition 3.8. Assume that there exist ĝ1, ĝ2 : {z1, . . . , zn} → R minimiz-
ing (6), then ĝ−1 (·;h(ĝ2)), ĝ−2 (·; ĝ−1 (·;h(ĝ2))) are also minimizers.

Proof. Clearly the pair ĝ1(·), ĝ2(·) has to satisfy the restrictions imposed by
Proposition 3.1 as otherwise they would not be optimal. Proposition 3.7 implies
that the pair ĝ−1 (·;h(ĝ2)), ĝ2(·) is also a minimizing pair to (6). Finally applying
part (a) of Proposition 3.1 we can conclude that ĝ2(·) = ĝ−2 (·; ĝ−1 (·;h(ĝ2))).

3.3. Simultaneously optimal solutions

A simultaneously optimal solution ĝ1, ĝ2 has to minimize the expected elemen-
tary losses

1

n

n∑
i=1

Sη,1(g1(zi), yi) (13)

and

1

n

n∑
i=1

Sη,2(g1(zi), g2(zi), yi) (14)

for all η ∈ R among all increasing functions g1 : {z1, . . . , zn} → R and all
decreasing functions g2 : {z1, . . . , zn} → R. The expected elementary score (13)
is minimized for all η ∈ R if and only if ĝ1 is an optimal isotonic solution with
respect to T characterized in Jordan, Mühlemann and Ziegel (2020). Thus, there
can only exist a simultaneously optimal solution if for one such ĝ1 there exists
ĝ2 : {z1, . . . , zn} → R decreasing so that the pair ĝ1, ĝ2 minimizes (14) for all
η ∈ R.

The proof of Proposition 3.7 suggests that for any m ≤ n

n∑
i=m

L(ĝ−1 (zi), yi) ≤
n∑

i=m

L(ĝ1(zi), yi)

with equality whenever m = n. Note that minimizing (14) for all η ∈ R is
equivalent to minimizing

n∑
i=1

1{η ≤ −g2(zi)}L(g1(zi), y).
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Fig 1. Specific sample of seven data points (black) on the left, such that for T = (q0.5,ES0.5),
ĝ−1 |5:7 is not an optimal isotonic solution on (z5, y5), (z6, y6), (z7, y7) but ĝ−2 (z4) > ĝ−2 (z5).
The function ĝm1 is not an optimal isotonic solution to the global optimization problem. The
Murphy diagram (Ehm et al., 2016) (plot of expected elementary scores) on the right shows
that there are values of η where ĝm1 , ĝm2 has smaller expected loss than ĝ−1 , ĝ−2 .

Thus, a pair ĝ1, ĝ2 can only be simultaneously optimal if ĝ1
∣∣
m:n

is an optimal iso-
tonic solution on (zm, ym), . . . , (zn, yn) for all m ∈ {1, . . . , n} with ĝ2(zm−1) >
ĝ2(zm). If this is not the case for some m ∈ {1, . . . , n}, we can find ĝm1 such that
the pair ĝm1 , ĝm2 , where ĝm2 is the corresponding solution obtained via Proposi-
tion 3.1, dominates ĝ1, ĝ2 for all η ∈ R with ĝ2(zm−1) < η ≤ ĝ2(zm−1). But in-
evitably this solution performs worse for other η ∈ R, especially for η ≤ −g2(z1).
Figure 1 displays a data example where a simultaneously optimal solution does
not exist because there exists some index m with ĝ2(zm−1) > ĝ2(zm) but ĝ−1

∣∣
m:n

is not an optimal isotonic solution on (zm, ym), . . . , (zn, yn). The previous con-
siderations are summarized by the following proposition.

Proposition 3.9. A simultaneously optimal solution exists if and only if ĝ−1
∣∣
m:n

is an optimal solution on (zm, ym), . . . , (zn, yn) for all m ∈ {2, . . . , n} such that
ĝ−2 (zm−1) > ĝ−2 (zm) and ĝ−1 (zm−1) = ĝ−1 (zm).

The condition ĝ−1 (zm−1) = ĝ−1 (zm) arises because the only critical indices
are those where ĝ−2 has a jump but ĝ−1 has not. In the case where ĝ−1 has a jump
too, ĝ−1 is already an optimal solution on {m, . . . , n}.

Proposition 3.9 supplies us with a criterion to check for simultaneous opti-
mality. The approach is to first calculate

ĝ−1 (z�) := min
j≥�

max
i≤j

T−(Pi:j) = max
i≤�

min
j≥i

T−(Pi:j),

ĝ−2 (z�) := −min
j≥�

max
i≤j

−E(P̄i:j) = −max
i≤�

min
j≥i

−E(P̄i:j),
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with P̄ as defined in Proposition 3.1. In a second step, for each m ≥ 2 with
ĝ−2 (zm−1) > ĝ−2 (zm) and ĝ−1 (zm−1) = ĝ−1 (zm) one has to check whether ĝ−1

∣∣
m:n

is an optimal solution on the subset (zm, ym), . . . , (zn, yn). To check whether
ĝ−1

∣∣
m:n

remains optimal we can compare the expected elementary score for

ĝ−1
∣∣
m:n

to the one of ĝ−1;m:n. If ĝ
−
1

∣∣
m:n

remains optimal for each m ≥ 2 with

ĝ−2 (zm−1) > ĝ−2 (zm) and ĝ−1 (zm−1) = ĝ−1 (zm), then the solution (ĝ−1 , ĝ
−
2 ) is

indeed simultaneously optimal.
For bivariate functionals T with two elicitable components there always exists

a subclass L2 of consistent loss functions L(x1, x2, y) that are separable in the
sense that L(x1, x2, y) = L1(x1, y) + L2(x1, y). Solving the isotonic regression
problem simultaneously over all L ∈ L2 can be split into two independent opti-
mization problems. In this case Jordan, Mühlemann and Ziegel (2020) provide
all necessary tools for a complete characterization of all solutions. But not all
consistent loss functions lie necessarily in L2. If T is a vector of moments this
can be seen in Proposition 4.11 in Fissler and Ziegel (2019). In the case where T
is a vector of quantiles, however, L2 comprises all consistent losses (Fissler and
Ziegel, 2016, Proposition 4.2) explaining some of the optimality properties of the
IDR introduced by Henzi, Ziegel and Gneiting (2019). Thus, when considering
functionals with elicitable components one can reach simultaneous optimality
at least with respect to the class L2. When considering functionals with elici-
tation complexity greater than one however, there are no separable consistent
loss functions, so that possibly no simultaneous optimum exists.

4. Numerical experiments

We let

ĝ−1 (z�) := min
j≥�

max
i≤j

T−(Pi:j) = max
i≤�

min
j≥i

T−(Pi:j),

ĝ−2 (z�) := −min
j≥�

max
i≤j

−E(P̄i:j) = −max
i≤�

min
j≥i

−E(P̄i:j).

In this section we investigate how often simultaneous optimality occurs and
the number of iterations needed to obtain an optimal solution for a specific
loss function, whenever the solution ĝ−1 , ĝ

−
2 is not simultaneously optimal. We

consider the two prominent examples (qα,ESα) and (E, var) in the simulations.
First, let us examine what we would expect to result from those simulations

in terms of simultaneous optimality. In Section 3.2, we saw that simultaneous
optimality is attained whenever ĝ−1

∣∣
m:n

remains an optimal solution for all m ∈
{2, . . . , n} with ĝ−2 (zm−1) > ĝ−2 (zm). Clearly, this requirement is fulfilled as
long as ĝ−2 jumps at the same point as ĝ−1 . Naturally, the more jumps ĝ−1 has,
or equivalently the less pooling was required, the higher are the chances for
simultaneous optimality, in that there are not many additional restrictions left
to be imposed by ĝ−2 . Thus, the less the isotonicity constraint is violated in the
data the higher the chances for the pair (ĝ−1 , ĝ

−
2 ) to be simultaneously optimal.

Only considering the impact of ĝ−1 , we would expect the chance for simultaneous
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Fig 2. For a set of n = 100 data points and the pair (qα,ESα) the optimal fit ĝ−1 was drawn
for each α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

optimality to decrease with increasing variance in the data. Moreover, for fixed
variance we would expect the chance of simultaneous optimality to decrease
with increasing sample size, because the chance for necessary pooling increases.

Concerning the impact of ĝ−2 , we have seen in Proposition 3.1 that ĝ−2 is
fitted to the transformed data points (z1, L(ĝ

−
1 (z1), y1)), . . . , (zn, L(ĝ

−
1 (zn), yn)),

where the transformed y-values depend on the loss L of y� and ĝ−1 (z�). The order
sensitivity of the loss function ensures that the transformation L(ĝ−1 (z�), y�)
takes larger values when ĝ−1 (z�) and y� are far apart and smaller values when
they are close. Thus, if small modifications are necessary to obtain ĝ1, then we
would expect the transformed data to be approximately constant. The outcome
of the transformation however depends on how the loss L weighs the differences.

The setup for the simulations was the following: For the pair (qα,ESα) we
aimed to optimally fit an increasing function ĝ−1 and decreasing function ĝ−2 to
simulated data sets. We drew n points z� independently and uniformly from
[0, 100]. The corresponding y-value was y� = z� + ε� where ε� ∼ N (0, σ2) are
independent of each other and independent of z�. We let n ∈ {10, 100, 500, 1000}
and σ ∈ {3, 10, 20, 30} and we repeated the experiment M = 1000 times to
count the number of times simultaneous optimality occurred. To investigate
whether the results differ depending on the level α, we calculated ĝ−1 and ĝ−2
for each data set for all α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. For a specific
data set, Figure 2 shows the fits ĝ−1 for all levels α, and Figure 3 contains the
corresponding fits −ĝ−2 .

For the pair (E, var) we aimed to optimally fit two increasing functions ĝ−1
and ĝ−2 to simulated data sets. All our results can clearly be adapted to this
case. Thus, again we drew n points z independently and uniformly from [0, 100].
The corresponding y-value was y� = z� + ε� where ε� ∼ N (0, c�/

√
n) were

independent. We let n ∈ {10, 20, 40, 60, 80, 100, 500, 1000} and c ∈ {0.5, 1, 3, 6}
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Fig 3. For the same choice of n = 100 data points as in Figure 2 the corresponding fits ĝ−2
are calculated and −ĝ−2 is displayed for each α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Fig 4. For a sample of n = 100 data points and the pair (E, var) the optimal fit ĝ1 is drawn
in red and ĝ2 is in green. Moreover, ĝ1 −

√
ĝ2 and ĝ1 +

√
ĝ2 are drawn in blue and pink,

respectively

and then generated M = 1000 data sets and calculated the corresponding fits
ĝ−1 and ĝ−2 . Figure 4 contains the fits ĝ−1 and ĝ−2 for a specific data set.

Using the criterion in Proposition 3.9, we counted how many times simulta-
neous optimality occurred. Table 1 contains the results for the pair (qα,ESα).
The percentage of times simultaneous optimality is reached is displayed. The
results confirm our expectations. With increasing sample size and increasing
variance the percentage decreases drastically. The reason that not all levels α
are equally affected is due to the different weights that L imposes depending on
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Table 1. Percentage of times simultaneous optimality occurred for (qα,ESα) for each combination of sample size n, standard deviation σ, and level
α.

α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9
n = 10 σ = 3 1.00 1.00 1.00 1.00 1.00 1.00 0.93 0.94 0.94

σ = 10 1.00 1.00 1.00 1.00 0.98 0.96 0.79 0.70 0.69
σ = 20 1.00 1.00 1.00 0.98 0.94 0.92 0.69 0.58 0.50
σ = 30 1.00 1.00 0.98 0.97 0.88 0.88 0.64 0.53 0.44

n = 100 σ = 3 1.00 0.97 0.60 0.48 0.14 0.13 0.00 0.00 0.00
σ = 10 0.96 0.53 0.16 0.08 0.01 0.01 0.00 0.00 0.00
σ = 20 0.80 0.31 0.11 0.06 0.01 0.02 0.00 0.00 0.00
σ = 30 0.70 0.27 0.12 0.06 0.02 0.02 0.00 0.00 0.00

n = 500 σ = 3 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 10 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 20 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 30 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

n = 1000 σ = 3 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ = 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 2

Percentage of times simultaneous optimality occurred for (E, var) for each combination of
sample size n and constant c.

c = 0.5 c = 1 c = 3 c = 6
n = 10 0.98 0.95 0.79 0.57
n = 20 0.88 0.73 0.33 0.14
n = 40 0.53 0.22 0.02 0.00
n = 60 0.21 0.06 0.00 0.00
n = 80 0.07 0.02 0.00 0.00
n = 100 0.02 0.00 0.00 0.00
n = 500 0.00 0.00 0.00 0.00
n = 1000 0.00 0.00 0.00 0.00

the level α.

The results for the pair (E, var) in Table 2 also confirm our expectations. The
reason why the percentage in this case decreases even more rapidly is that the
expectation E is less robust when it comes to removing data from a partition
element than the quantile qα is.

Simultaneous optimality is usually not attainable. In these cases, we have
to choose a specific loss function to solve the isotonic regression problem. It is
natural to ask, how different these solutions are compared to our candidate for
simultaneous optimality.

For both examples, we choose two different functions h and count the number
of iterations the algorithm needed to get from the candidate for simultaneous
optimality to a potential optimal solution for the specific loss. For the pair
(qα,ESα), we considered the (1/2)-homogeneous loss from Nolde and Ziegel
(2017). It arises when choosing h in (2) as h1(x) = 1/(2

√
x). We also considered

h2(x) = exp(−x). The iteration was stopped when the loss given by (6) did not
improve by more that 10−10. For both loss functions, almost no adjustments
were necessary with a maximum average number of iterations for h1 of 0.11
when σ = 30 and α = 0.3, and for h2 of 0.05 when σ = 30 and α = 0.1. For
most combinations of σ and α, the average number of iterations was zero for
both loss functions which is why detailed results are not displayed. This suggests
that although the candidate for simultaneous optimality is not simultaneously
optimal, it still is optimal with respect to some losses.

For the pair (E, var), we chose functions h1(x) = 1/(x + 0.1) and h2(x) =
exp(−x/50 + 0.1). The reason for dividing by 50 was the scale of the weights
to avoid numerical issues. The summand +0.1 was to avoid weights of zero.
Again, the iteration was stopped when the loss given by (6) did not improve by
more that 10−10. Figure 5 displays the corresponding solutions obtained for a
specific data set. The average number of iterations is displayed in Table 3. Here,
the situation is different. Given a specific loss function for the pair (E, var),
the global loss may decrease through adaptations of the optimal solution for E
alone.
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Fig 5. For a specific sample of size 100 the original fits (g1 and g2) are displayed in red and
light blue respectively. The light green and dark blue fits (g1 it1 and g2 it1) correspond to the
iterated versions of g1 and g2, respectively, with respect to the weight function h1. Finally,
the dark green and the pink fits (g1 it2 and g2 it2) correspond to the iterated versions of g1
and g2, respectively, with respect to h2. For h1 the number of iterations was 13 and for h2 a
total of 5 iterations were necessary.

Table 3

The average number of iterations are displayed for the two weight functions h1, h2

considered for the pair (E, var).

c = 0.5 c = 1 c = 3 c = 6
n = 10 h1 0.07 0.24 1.15 2.77

h2 0.01 0.06 0.94 2.79
n = 20 h1 0.64 1.95 5.85 9.41

h2 0.09 0.66 4.05 7.78
n = 40 h1 3.53 7.43 12.51 13.69

h2 0.59 2.42 8.70 10.81
n = 60 h1 7.19 10.04 13.05 14.30

h2 1.53 4.27 10.76 11.88
n = 80 h1 9.73 11.32 14.27 15.05

h2 2.11 5.25 11.44 12.40
n = 100 h1 10.52 12.48 13.95 14.45

h2 2.90 6.52 13.12 12.73
n = 500 h1 10.54 11.76 13.77 13.58

h2 6.68 11.05 14.40 8.78
n = 1000 h1 9.16 10.05 11.37 12.58

h2 7.91 12.04 12.19 3.32

Appendix A: Generalizations to partial orders

The results in this article can be generalized to partially ordered covariate sets.
Let distribution P be the distribution of the random vector (Z, Y ) ∈ Z × R,
where Z is a finite partially ordered set. We denote the partial order by �. The
distribution P can be the empirical distribution of a sample with values but it
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does not have to be. However, we assume that P ({z} × R) > 0 for all z ∈ Z.
We aim now to minimize the criterion

∫
Z×R

L̃(g1(z), g2(z), y)P ( dz, dy)

=

∫
Z×R

(
H(g2(z)) + h(g2(z))

(
L(g1(z), y)− g2(z)

))
P ( dz, dy) (15)

among all increasing functions g1 : Z → R and decreasing g2 : Z → R, that is,
for z � z′ we have g1(z) ≤ g1(z

′) and g2(z) ≥ g2(z
′). We call any minimizing

pair an optimal solution to the isotonic regression problem. Following Jordan,
Mühlemann and Ziegel (2020), in order to accommodate the partially ordered
set Z, we introduce upper sets x ⊆ Z to replace single indices i ∈ {1, . . . , n+1}.
Set x is said to be an upper set if z ∈ x and z � z′ implies z′ ∈ x. Let X
consist of all admissible superlevel sets for an increasing function g imposed by
the partial order on Z. For a weight vector w of length #Z summing to one,
we define Pw to be the distribution with density z 	→ w(z) with respect to P .

As in the case of total orders, keeping either g1 or g2 fixed, we can find the
optimal solution to (15) with respect to the other component.

Proposition A.1. (a) Let g1 : Z → R be given. Then, the optimal antitonic
solution ĝ2 of (15) corresponding to g1 is given by

ĝ2(z) = − min
x′:z/∈x′

max
x�x′

−E(P̄x\x′) = − max
x:z∈x

min
x′�x

−E(P̄x\x′),

where P̄x\x′ is the conditional distribution of L(g1(Z), Y ) given Z ∈ x\x′.
(b) Let g2 : Z → R be given. Then, any optimal isotonic solution ĝ1 of (15)

with g2 fixed satisfies

min
x′:z/∈x′

max
x�x′

T−(Pw
x\x′) ≤ ĝ1(z) ≤ max

x:z∈x
min
x′�x

T+(Pw
x\x′),

where Pw
x\x′ is the conditional law of Pw on the event x \ x′, where the

weight w is proportional to h(g2(z)), z ∈ Z.

Proof. Follows with the same argument as for total orders.

As in Section 3.2, we need to introduce some notation for the investigations
ahead. In the following, we denote an optimal solution on the subset x̄ ⊆ Z by
ĝ1;x̄ and by ĝ1

∣∣
x̄
we denote the optimal solution on the original set restricted to

x̄.
Thinking in terms of superlevel sets, Lemma 3.3 states that ĝ1

∣∣
Z\x̄ ≤ ĝ1;Z\x̄

and ĝ1
∣∣
x̄
≥ ĝ1;x̄ for any x̄ ∈ X .

Lemma A.2. Let x̄ ∈ X and assume that

ĝ1(z) := min
x′:z/∈x′

max
x�x′

Tλ(Pw
x\x′) = max

x:z∈x
min
x′�x

Tλ(Pw
x\x′)

for some λ ∈ [0, 1]. Then we have ĝ1
∣∣
x̄
≥ ĝ1;x̄ and ĝ1

∣∣
Z\x̄ ≤ ĝ1;Z\x̄.
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Proof. It suffices to notice that

ĝ1
∣∣
x̄
(z) = max

x:z∈x
min
x′�x

Tλ(Pw
x\x′) ≥ max

x∈X ; x⊆x̄;
z∈x

min
x′∈X ; x′�x

Tλ(Pw
x\x′) = ĝ1;x̄(z).

The second statement follows with similar reasoning.

Let us recall the following observations made in Jordan, Mühlemann and
Ziegel (2020). For fixed weights w, we can minimize

∫
x×R

V (η, y)Pw( dy), for all η ∈ R (16)

among all admissible superlevel sets x for an increasing function g1 : Z → R to
obtain an optimal solution to (15). The search for the optimal superlevel set x
needs to be conducted for every η ∈ R. Again there is a one-to-one correspon-
dence between admissible superlevel sets and optimal solutions. Instead of an
increasing function ι : R → {1, . . . , n+ 1} with ι(η) ∈ I1:n(η) for all η, we now
have a monotone function ξ : R → Z, in the sense that ξ(η′) ⊆ ξ(η) for η′ > η.
Moreover, it should hold that ξ(η) ∈ XZ(η) for all η ∈ R, where XZ(η) ⊆ X
denotes the set of all superlevel sets minimizing (16). Then the correspondence
between an optimal solution ĝ1 and ξ(η) is given by

inf{η : z /∈ ξ(η)} = ĝ1(z) = max{η : z ∈ ξ(η)}.

The next result is the generalization of Lemma 3.4 to partial orders.

Lemma A.3. Let x̄ ∈ X . We have that XZ(η)∩XZ\x̄ ⊆ XZ\x̄(η), where Xx̄(η)
is the set of minimizing superlevel sets for the isotonic regression problem (15)
for the distribution of (Z, Y ) conditional on Z ∈ x̄ ⊆ Z and XZ\x̄ is the set of
all upper sets in Z \ x̄.

Proof. Let x′ ∈ XZ(η) ∩ XZ\x̄ for some η ∈ R. Therefore, the function

tη : X → R, x 	→
∫
x×R

V (η, y)Pw( dy)

has a minimum at x′. We can write∫
x×R

V (η, y)Pw( dy) =

∫
x∩(Z\x̄)×R

V (η, y)Pw( dy) +

∫
x∩x̄×R

V (η, y)Pw( dy).

Hence, tη
∣∣
XZ\x̄

has a minimum at x′ and thus x′ ∈ XZ\x̄(η). If tη has a minimum

in x = x̄, then

tη(x)−
∫
x∩x̄×R

V (η, y)Pw( dy) ≥ 0,

with equality in x = x̄. Thus, ∅ ∈ XZ\x̄(η).
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Let us generalize Proposition 3.7 to partial orders.

Proposition A.4. For fixed g2, corresponding ĝ−1 and any other solution ĝ1
to (15) for g2, we have for any decreasing g′2∫

Z×R

L̃(g−1 (z), g
′
2(z), y)P ( dz, dy) ≤

∫
Z×R

L̃(g1(z), g
′
2(z), y)P ( dz, dy).

Proof. Let Q and Q− denote the partition of Z corresponding to ĝ1 and ĝ−1 ,
respectively. By Lemma 2.1, it suffices to show that for all η ∈ R∫

Z×R

Sη,2(ĝ
−
1 (z), g

′
2(z), y)P ( dz, dy) ≤

∫
Z×R

Sη,2(ĝ1(z), g
′
2(z), y)P ( dz, dy).

For the latter, it suffices to show that for all x̄ ∈ X∫
x̄×R

L(ĝ−1 (z), y)P ( dz, dy) ≤
∫
x̄×R

L(ĝ1(z), y)P ( dz, dy).

Again it suffices to consider ĝ1 with superlevel sets in ∪ηX(η) and again we will
prove the converse. In other words, for all x̄ ∈ X , we have∫

Z\x̄×R

L(ĝ1(z), y)P ( dz, dy) ≤
∫
Z\x̄×R

L(ĝ−1 (z), y)P ( dz, dy). (17)

If Z \ x̄ = Q1 ∪ · · · ∪Qi, Q1, . . . , Qi ∈ Q, Lemma A.3 implies that ĝ1
∣∣
Z\x̄ is

optimal for the distribution of (Z, Y ) conditional on Z ∈ Z \ x̄. Thus, (17) holds
trivially. If there exists no sequence of partition elements such that Z \ x̄ =
Q1 ∪ · · · ∪Qi we distinguish two cases.
Case 1: If Z \ x̄ = Q−

1 ∪ · · · ∪Q−
i− , Q

−
1 , . . . , Q

−
i− ∈ Q− Lemma A.2 implies that

ĝ−1
∣∣
Z\x̄ = ĝ−1;Z\x̄ ≤ ĝ1

∣∣
Z\x̄ ≤ ĝ+1

∣∣
Z\x̄ ≤ ĝ+1;Z\x̄

Moreover, by Lemma A.3, XZ(η)∩XZ\x̄ ⊆ XZ\x̄(η). Hence ξ
∣∣
Z\x̄(η) ∈ XZ\x̄(η)

for all η ∈ R, where ξ : R → Z is the function imposing the score-minimizing su-
perlevel sets corresponding to ĝ1. Thus, by Proposition 4.5 in Jordan, Mühlemann
and Ziegel (2020) ĝ1

∣∣
Z\x̄ is an optimal solution to the isotonic regression prob-

lem for the distribution of (Z, Y ) conditional on Z ∈ Z \ x̄.
Case 2: It remains to consider the case where no sequence of partition elements
such that Z \ x̄ = Q−

1 ∪ · · · ∪ Q−
i−

exists. Note that ĝ1 is optimal for all z ∈
Z \ x̄ with ĝ−1;Z\x̄(z) ≤ ĝ1(z). Indeed, for those z, we have ḡ−1;Z\x̄(z) ≤ ĝ1(z) ≤
ĝ+1;Z\x̄(z), and can argue as in case 1. For z ∈ Z \ x̄ with ĝ−1;Z\x̄(z) > ĝ1(z),

we can argue similarly as in the proof of Proposition 3.7. For every z ∈ {z′ ∈
Z \ x̄ : ĝ−1;Z\x̄(z

′) > ĝ1(z
′)} we have z ∈ Qi+r, r ∈ {1, . . . , k}. Moreover, ĝ1 is

constant on each Qi+r, r ∈ {1, . . . , k}. With the same reasoning as in the proof
of Proposition 3.7, we obtain that∫

Q>
i+r×R

L(ĝ−1;Z\x̄(z), y)P ( dz, dy) ≤
∫
Q>

i+r×R

L(ci, y)P ( dz, dy)
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≤
∫
Q>

i+r×R

L(c−i , y)P ( dz, dy)

for all r ∈ {1, . . . , k}, where Q>
i+r := Qi+r ∩ {z ∈ Z \ x̄ : ĝ−1;Z\x̄(z) > ĝ1(z)}.

This implies the statement.

Proposition 3.8 also translates directly to partial orders.

Proposition A.5. Assume that there exist ĝ1, ĝ2 : Z → R minimizing (15).
Then ĝ−1 (·;h(ĝ2)), and the corresponding ĝ−2 (·; ĝ−1 (·;h(ĝ2))) are also minimizers.

Proof. The argument is the same as in the proof of Proposition 3.8.

As in the case of total orders, a simultaneously optimal solution may not
necessarily exist, since ĝ−2 imposes additional constraints. Nonetheless, we are
able to formulate a criterion so that simultaneous optimality is reached whenever
the criterion is fulfilled. Let

ĝ1(z) = min
x′:z/∈x′

max
x�x′

T−(Px\x′) = max
x:z∈x

min
x′�x

T−(Px\x′),

ĝ2(z) = − min
x′:z/∈x′

max
x�x′

−E(P̄x\x′) = − max
x:z∈x

min
x′�x

−E(P̄x\x′),

where Px\x′ is the conditional law of P on the event x \ x′.

Proposition A.6. Let ĝ−1 , ĝ
−
2 as defined above. A simultaneously optimal solu-

tion exists if and only if ĝ−1 = ĝ−1;Z\x̄ for all superlevel sets Z\ x̄, x̄ ∈ X assumed

by −ĝ−2 .

The reasoning behind this Proposition is analogous to the reasoning behind
Proposition 3.9.
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Brümmer, N. and Du Preez, J. (2013). The PAV algorithm optimizes binary
proper scoring rules. arXiv:1304.2331.

Dawid, A. P. (2016). Contribution to the discussion of “Of quantiles and ex-
pectiles: Consistent scoring functions, Choquet representations and forecast
rankings” by Ehm, W., Gneiting, T., Jordan, A. and Krüger, F. The Journal
of the Royal Statistical Society, Series B (Statistical Methodology) 78 505–562.
MR3506792

https://www.ams.org/mathscinet-getitem?mr=0326887
https://arxiv.org/abs/1304.2331
https://www.ams.org/mathscinet-getitem?mr=3506792


3860 A. Mühlemann and J. Ziegel

Dimitriadis, T., Fissler, T. and Ziegel, J. F. (2020). The efficiency gap.
Preprint, arXiv:2010.14146.

Ehm, W., Gneiting, T., Jordan, A. and Krüger, F. (2016). Of quan-
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