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Abstract

Markov cohort state-transition models have been the standard approach for simulating the prognosis of

patients or, more generally, the life trajectories of individuals over a time period. Current approaches

for estimating the variance of a Markov model using a Monte Carlo sampling or a master equation

representation are computationally expensive and analytically difficult to express and solve. We introduce

an alternative representation of a Markov model in the form of a multinomial distribution. We derive this

representation from principles and then verify its veracity in a simulation exercise. This representation

provides an exact and fast approach to computing the variance and a way of estimating transition

probabilities in a Bayesian setting.



Highlights

• Markov model simulates the average experience of a cohort of patients.

• Monte Carlo simulation, the standard approach for estimating the variance, is computationally

expensive.

• A multinomial distribution provides an exact representation of a Markov model.

• Using the known formulas of a multinomial distribution, the mean and variance of a Markov model

can be readily calculated.



1 INTRODUCTION

Markov cohort state-transition models have been used in cost-effectiveness analyses and decision-analytic

modeling studies to simulate the life trajectories of a patient or a group of patients following the receipt of

a health intervention.1 Briefly, a Markov cohort state-transition model is a recursive matrix formula that

calculates the average number of individuals in each state using a transition probability matrix and an

initial distribution of individuals across the states. This formulation introduced by Beck and Pauker,1 and

its subsequent tutorial,2 however, does not fully capture the stochastic nature of the Markov model since it

only represents the average behavior of the stochastic process.3 A more useful quantity is the probability

distribution of all individuals at all times. To obtain this quantity, Iskandar3 explicated the stochastic

process underlying a Markov model in the form of a well-known time-evolution equation of a probability

function, i.e., a master equation, whose solution is the probability distribution of interest.3 Although the

concept of a master equation and its solution provide a complete characterization of a Markov model,

including higher-order moments, such a formulation requires some understanding of stochastic processes.

This brief report introduces an alternative representation of a Markov model in the form of a multinomial

distribution that is intuitive and hence more accessible to practitioners. We start with a description of a

Markov cohort state-transition model. Then, we formally derive a multinomial distribution representation.

Lastly, we conduct a numerical exercise to verify its equivalence to a canonical approach for simulating

cohort models.

2 MARKOV COHORT STATE-TRANSITION MODEL

A cohort of n0 individuals where each individual (indexed by j = 1, . . . ,n0) follows a Markov chain

on a finite set of mutually exclusive and completely exhaustive s health states: S = {S1,S2, . . . ,Ss}, is

defined as a stochastic process, {N(t)}t≥t0 , where t and t0 are time and the initial time, respectively. N(t)

represents a random vector of individuals across s states (state-configuration) :

N(t) = [N1(t) N2(t) . . . Ns(t)], (1)

in which N(t) = n ∈ Ns (N is the set of non-negative integers). The probability of observing a particular

state-configuration N(t) = n ∈ Ns at time t or Pr[N(t) = n] := G(n, t) (the notation Pr[·] denotes the

probability of observing the random event {·} at time t) provides the complete information about the

cohort model. We will show that Pr(N(t) = n) is a multinomial distribution.
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3 MULTINOMIAL DISTRIBUTION REPRESENTATION

To derive the multinomial representation, we start by deriving the stochastic process for each individual

and aggregate the individual processes. We then uncover the multinomial distribution by inspecting the

functional form of the aggregated process.

Individual process. For each j-th individual, we define a 1× s random unit vector of health state

occupancy, Y j(t), where the value of the i-th element of Y j(t), i.e., Yj,i(t), represents whether the

individual is in state Si: 1 (occupied) or 0 (not occupied), i.e., Y j(t) ∈ {0,1}s and
s
∑

i=1
Yj,i(t) = 1 (an

individual must be in one and only one state at any time). The dynamic of Y j(t) is governed by the

allowed transitions at discrete time steps (tz; z = 1, . . .) between all pairs of states in S and the intensities of

these transitions. We define an s× s stochastic matrix of transition probabilities governing the intensities

of the transitions among states in S, i.e., Pτ(tz) = [pkl(tz)]1≤k,l≤s, where τ denotes the time step (Markov

cycle). Each pkl(t) has the usual interpretation of the probability of an individual transitioning from states

Sk to Sl in one time step τ (Markov cycle) at time tz. We are interested in deriving the probability that the

individual j occupies a particular state at any time tz given an initial condition. Such a probability is also

a transition probability and can be derived by iteratively propagating the initial probability distribution of

state occupancy (denoted by the 1× s vector p(tz)) at the initial time, i.e., p j(t0), forward in time using

the transition probability matrix:

p j(tz) = p j(t0)
z−1

∏
u=1

P j
τ(tu) (2)

To derive the probability distribution of Y j, we note that there are s possible realizations of Y j. The

probability of a realization, i.e., the probability of an individual in some state k, is equal to [p j(tz)]k, where

[·]k denotes the k-th element of a vector (e.g., [y j(tZ)]k = y j,k(tz)). We write the probability distribution of

Y j(tz) as follows:

Pr (Y j(tz) = y j(tz)) =
s

∏
k=1

(
[p j(tz)]k

)[y j(tZ)]k (3)

Equation 3 has the form of a multinomial distribution, where the number of individuals is equal to one

(n0 = 1). Each term in the product corresponds to the probability of individual j being in one of the s

states at time tz.

The expected value of Y j(tz) is equal to Pr[Y j(tz)] since the expected value of each element of Y j(tz) is

equal to the expected value of an indicator function of whether the j-th individual occupies the corre-
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sponding state, i.e., E
[
Yj,k(tz)

]
= [p j(tz)]k = p j,k(tz). The covariance matrix of Y j(tz), denoted by ΣYj(tz),

is calculated using the definition of a covariance matrix,
[
ΣYj(tz)

]
kl
= E[Yj,kYj,l ]−E[Yj,k]E[Yj,l ], and is

equal to:

[
ΣYj(tz)

]
kl
=


p j,k(tz)(1− p j,l(tz)) if k = l

−p j,k(tz)p j,l(tz) if k ̸= l
(4)

From individuals to a cohort. We relate N(t) (Equation 1) with Y j(t) by using the following relationship:

N(t) =
n0

∑
j=1

Y j(t) (5)

where we write a cohort as the sum of its individual members. To derive the probability distribution

of N(t), we need to associate each element in N(t) with the corresponding element in the sum. Each

element in the sum consists of a vector of 1s and 0s, i.e., Y j(t). The sum is constrained to be n0 (a closed

cohort). The number of possible ways that N(t) can be realized, given that ordering of individuals within

group does not matter, is equal to the number of possible realizations of the vector [Y1(t)Y2(t) . . .Yn0(t)].

Since all individuals are independent and follow the same transition rules and intensities (P j
τ(t) = Pτ(t),

p j,k(tz) = pk(tz) = for all ks, and p j(t0) = p(t0)), each realization of [Y1(tz)Y2(tz) . . .Yn0(tz)] occurs with

a probability of

Pr([Y1(tz)Y2(tz) . . .Yn0(tz)]) =
n0

∏
j=1

s

∏
k=1

pk(tz)y j,k(t)

=
s

∏
k=1

pk(tz)

n0
∑

j=1
y j,k(t)

=
s

∏
k=1

pk(tz)nk(t) (6)

Multinomial distribution. The number of ways that N(t) can be realized is identical to the problem of

assigning n0 of people into s groups, which is given by the multinomial coefficient:
( n0

n1n2...ns

)
. Putting all

components together, the probability of N(tz) at time tz is given by the following multinomial distribution:

Pr(N(tz)) =
(

n0

n1n2 . . .ns

) s

∏
k=1

pk(tz)nk(tz) (7)

To derive the first two moments, we use the first two moments of the individual process (Y j(t)) and the

relationship between each individual and a cohort of individuals (Equation 5). By linearity of expectation,
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the expected value of N(tz) is equal to:

E[N(tz)] = n0p(tz) (8)

By independence of individuals, the variance of N(tz) is the sum of n0 identical variance of Yj(tz) and is

given by:

ΣN(tz) = n0ΣYj(tz) (9)

The covariance matrix of N(tz), denoted by ΣN(tz), is calculated using the definition of a covariance

matrix, [ΣN(tz)]uv = E[NuNv]−E[Nu]E[Nu], and is equal to:

[ΣN(tz)]uv =


n0 pu(tz)(1− pu(tz)) if v = u

−n0 pu(tz)pv(tz) if v ̸= u
(10)

4 NUMERICAL VERIFICATION

We conduct a simulation study to verify whether the multinomial distribution (Equation 7) represents

the solution to a Markov cohort state-transition model. We consider a 4-state model with the allowed

transitions and their probabilities as follows: Pr[S1 → S2] = 0.1, Pr[S1 → S3] = 0.05, Pr[S1 → S4] = 0.14,

Pr[S2 → S3] = 0.07, Pr[S2 → S4] = 0.17, and Pr[S3 → S4] = 0.11. The simulation focuses on comparing

the mean (Equation 8) and variance (Equation 10) of the multinomial distribution with those of a

microsimulation. We simulate a cohort of 10000 individuals (n0 = 10000) with τ = 1-year. Each

individual’s life trajectory is a realization of a Markov chain based on the given transition probabilities.

We replicate the simulation 1000 times and calculate the means and variances of the number of individuals

across states at all times. The results of the population trajectories across the four states are given in

Figure 1. We observe no difference between the empirical estimates of the mean and variance from the

microsimulation and the multinomial distribution. The code for the numerical exercise is available under

a GNU GPL license and can be found at https://github.com/rowaniskandar/CM_multinomial.

5 CONCLUDING REMARKS

This study explicates an alternative representation of a Markov cohort state-transition model in the form of

a multinomial distribution. We derive the equivalent representation by using elementary arguments. First,

the derivation starts with specifying a Markov state-transition model for simulating an individual following

Beck and Pauker.1 We then extend the model to a cohort of individuals by imposing independence among
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Figure 1. The time trajectories of individual counts in each state using two approaches, i.e.,
microsimulation (solid blue lines) and multinomial distribution (dotted red lines). For each approach,
there are three lines, i.e., mean, mean+standard deviation, mean-standard deviation. The lines are on the
top of each other, indicating no difference between the two approaches.
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individuals and uncover the multinomial distribution by inspection. We verify the first two moments

of the derived multinomial distribution of the number of individuals across health states against using

a microsimulation. The formula for the first moment (Equation 8) is indeed the formula for simulating

Markov models as introduced by Beck and Pauker.1 To estimate the variance, practitioners often

use microsimulations, which may be computationally expensive since we need to replicate the cohort

simulation a number of times in addition to the individual Monte Carlo runs within each simulated cohort.

In contrast, the multinomial representation provides a more direct and non-computationally demanding

approach, particularly for estimating the variance. This approach relies only on the formula for the mean,

which in turn depends only on the initial distribution and the time-dependent or time-invariant translation

probability matrix. In addition to the computational advantage, the multinomial representation provides

a convenient way to conduct Bayesian inference on the transition probabilities.4 In a Bayesian setting,

the Markov model would be treated as the likelihood and naturally takes the form of a multinomial

distribution using the result of this study. We can then derive the posterior distribution of the transition

probabilities by utilizing the conjugacy between the Dirichlet and multinomial distributions. In sum,

this study introduces another formulation of a well-established methodology and reinforces the utility of

Markov models further.
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