Bertholet, Jenny; Mackeprang, Paul-Henry; Müller, Silvan; Guyer, Gian; Loebner, Hannes A; Wyss, Yanick; Frei, Daniel; Volken, Werner; Elicin, Olgun; Aebersold, Daniel M; Fix, Michael K; Manser, Peter (2022). Organ-at-risk sparing with dynamic trajectory radiotherapy for head and neck cancer: comparison with volumetric arc therapy on a publicly available library of cases. Radiation oncology, 17(1), p. 122. BioMed Central 10.1186/s13014-022-02092-5
|
Text
s13014-022-02092-5.pdf - Published Version Available under License Creative Commons: Attribution (CC-BY). Download (1MB) | Preview |
BACKGROUND
Dynamic trajectory radiotherapy (DTRT) extends volumetric modulated arc therapy (VMAT) with dynamic table and collimator rotation during beam-on. The aim of the study is to establish DTRT path-finding strategies, demonstrate deliverability and dosimetric accuracy and compare DTRT to state-of-the-art VMAT for common head and neck (HN) cancer cases.
METHODS
A publicly available library of seven HN cases was created on an anthropomorphic phantom with all relevant organs-at-risk (OARs) delineated. DTRT plans were generated with beam incidences minimizing fractional target/OAR volume overlap and compared to VMAT. Deliverability and dosimetric validation was carried out on the phantom.
RESULTS
DTRT and VMAT had similar target coverage. For three locoregionally advanced oropharyngeal carcinomas and one adenoid cystic carcinoma, mean dose to the contralateral salivary glands, pharynx and oral cavity was reduced by 2.5, 1.7 and 3.1 Gy respectively on average with DTRT compared to VMAT. For a locally recurrent nasopharyngeal carcinoma, D0.03 cc to the ipsilateral optic nerve was above tolerance (54.0 Gy) for VMAT (54.8 Gy) but within tolerance for DTRT (53.3 Gy). For a laryngeal carcinoma, DTRT resulted in higher dose than VMAT to the pharynx and brachial plexus but lower dose to the upper oesophagus, thyroid gland and contralateral carotid artery. For a single vocal cord irradiation case, DTRT spared most OARs better than VMAT. All plans were delivered successfully on the phantom and dosimetric validation resulted in gamma passing rates of 93.9% and 95.8% (2%/2 mm criteria, 10% dose threshold).
CONCLUSIONS
This study provides a proof of principle of DTRT for common HN cases with plans that were deliverable on a C-arm linac with high accuracy. The comparison with VMAT indicates substantial OAR sparing could be achieved.