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Bullous pemphigoid is an autoimmune blistering disease caused by autoantibodies
targeting BP180 and BP230. While deposits of IgG and/or complement along the
epidermal basement membrane are typically seen suggesting complement -mediated
pathogenesis, several recent lines of evidence point towards complement-independent
pathways contributing to tissue damage and subepidermal blister formation. Notable
pathways include macropinocytosis of IgG-BP180 complexes resulting in depletion of
cellular BP180, direct induction of pro-inflammatory cytokines from keratinocytes, as well
as IgE autoantibody- and eosinophil-mediated effects. We review these mechanisms
which open new perspectives on novel targeted treatment modalities.

Keywords: bullous pemphigoid, complement - immunological terms, autoimmune blistering diseases, eosinophils –
immunology, igE (Immunoglobulin E), BP180, BP230
INTRODUCTION

Bullous pemphigoid (BP) is the most frequent autoimmune subepidermal blistering disease
associated with an autoantibody response directed against the BP antigen 180 (BP180, BPAG2 or
type XVII collagen) and the BP antigen 230 (BP230 or BPAG1-e). The latter are components of
junctional adhesion complexes called hemidesmosomes that promote dermo-epidermal cohesion
(1). Characteristically, BP is an intensely pruritic eruption with generalized blistering. However, in
early stages or in atypical variants of the disease, only localized or generalized excoriated,
eczematous, or urticarial lesions may be present. The disease, which has a chronic course,
typically affects the older population after the age of 65 and has a significant impact on both the
quality of life and life-expectancy (2). The one-year mortality ranges from 13% to 40%, while the
mortality rate of patients with BP seems to be at least three times higher than that of age- and sex-
matched subjects (3). The annual incidence has been estimated to be at least 6–13 new cases per
million population with a striking increase after the age of 80 years (with more than 300 cases per
million in individuals). Nonetheless, in the last two decades, there is evidence indicating a two to
four-fold rise of the overall incidence of BP in the population, most likely due to the better
recognition of atypical forms of BP and the increasing relative size of older age groups (4).
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A recent consensus guideline on management of BP primarily
recommends the use of high potency topical steroids and
systemic corticosteroids as first-line therapeutic options (5).
Immunomodulatory and immunosuppressive drugs may be
considered in treatment-resistant cases or in cases at increased
risk for steroid-related adverse events or in the presence of
contraindications to systemic steroids. In recent years, a
number of biologics have been used with promising results,
such as omalizumab, dupilumab, interleukin-17, and IL-5Ra
inhibitors (6, 7). In addition, a recently published phase 2a trial
examined the use of nomacopan, a leukotriene B4 and C5
inhibitor, in BP patients. The drug appears to be well-tolerated
by patients and has therapeutic potential for reducing acute BP
flares (8). As BP is more common in the elderly, balancing
management with patient comorbidities is almost invariably
challenging. The efficacy of current treatments is limited and
relatively unsatisfactory; patients’ unmet needs remain
significant. Hopefully, several ongoing trials will allow more
effective and better tolerated therapies to be validated in the
near future. Such therapies should facilitate and improve the
overall management of affected patients, which primarily consist
of fragile and debilitated individuals.
PATHOGENESIS OF BULLOUS
PEMPHIGOID

There is ample evidence indicating that BP occurs due to a loss of
immune tolerance leading to autoantibody formation against
BP180 and BP230. BP180 is transmembrane protein with a large
collagenous extra-cellular domain serving as an adhesion
molecule. Its ectodomain binds to laminin 332 and type IV
collagen, connecting the basal keratinocytes to the extracellular
matrix of the epidermal basement membrane (9–11). BP230, the
epithelial isoform of BPAG1, is a cytoplasmic protein of the
plakin family of cytolinkers. It primarily connects the keratin
intermediate filament system to hemidesmosomes at the basal
keratinocyte cell membrane (1, 9, 12). Patients’ sera recognize
multiple antigenic regions on both target antigens, although the
NC16A domain, on the extracellular membrane of BP180,
contains the immunodominant antigenic determinants (13,
14). The autoreactive B and T cell response in BP is primarily
directed at this region of BP180 (15, 16). BP autoantibodies lead
to an inflammatory response with a large number of eosinophils
and, to a lesser degree, neutrophils, migrating to the dermis and
degranulating. These cells contain and release upon activation
dozens of cytokines, chemokines, hydrolytic degrading enzymes,
including matrix metalloprotease 9 (MMP9) and neutrophil
elastase, as well reactive oxygen species. This inflammatory
cascade ultimately leads to tissue damage and subepidermal
blister formation (17–21).

In vitro and in vivo studies have allowed the characterization
of several pathways critically involved in BP pathogenesis that
directly contribute to tissue damage. Among these, activation of
the complement system with production of anaphylatoxins, and
activation of the innate immune response with subsequent
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recruitment and activation of basophils, eosinophils,
neutrophils, monocytes/macrophages, and mast cells, play a
key role in BP (15, 19, 22–27). Complement components,
including C1q, C3, C4, and the membrane attack complex
(MAC) are usually found detected along the dermal-epidermal
junction (DEJ) in the skin of both patients with BP and of mice
with experimentally induced BP (28–31). Furthermore,
complement proteins including anaphylatoxins are detectable
in the blister fluid of BP patients (32). The presence of tissue-
bound complement components and/or the ability of circulating
autoantibodies to mediate complement activation are also likely
to affect clinical and histopathological features, including overall
disease activity, in affected patients (33). For example, the
presence of tissue-bound C3 in the skin of BP positively
correlates with the presence of circulating anti-BP180
antibodies targeting the NC16A domain (34). While the
importance of complement was described as early as the 1970s
(35), increasing evidence has emerged pointing to the presence of
complement-independent pathways in mediating tissue damage
and subepidermal formation in BP.

This review will seek to summarize the current understanding
of complement-independent mechanisms in BP and provide a
reference framework for future research aimed at further
elucidating these processes. This new knowledge is expected to
facilitate the development of new treatment modalities that
should benefit the management of BP patients in the near future.
COMPLEMENT-INDEPENDENT
PATHWAYS IN TISSUE DAMAGE AND IN
DERMO-EPIDERMAL DISADHESION

In the last decade, a number of laboratories have provided
convincing evidence that complement-independent processes are
implicated in the pathogenesis of BP, directly contributing to
inflammation, tissue damage and dermo-epidermal separation.
This idea is substantiated by a number of in vitro and in vivo
experiments as well as clinical observations, including:

1) Serum derived anti-NC16A IgG antibodies and
recombinant anti human NC16a IgG antibodies impair
keratinocyte adhesion and deplete BP180 by induction of
macropinocytosis (36–39); 2) Passive transfer of F(ab’)2
fragments of the human BP or IgG antibodies, against BP180,
that cannot activate complement, are able to cause skin fragility
in neonatal BP180-humanized mice (36); 3) C5-/- mice as well as
C5ar1-/- mice injected with anti-NC15A antibodies, the murine
analog to NC16A in humans, develop a BP-like phenotype,
although its severity is milder when compared to that of wild
type (WT) mice (40). In the latter study, pharmacologic
inhibition of C5a receptor 1 fails to reduce clinical disease or
neutrophil infiltration in mice with established cutaneous disease
(40); Notably, this study demonstrates that inhibition of
complement has therapeutic benefit, once again reaffirming the
importance of complement in BP. However, C5ar-/- mice
demonstrated a relatively increased extent of skin lesions
following BP-IgG injection, raising the possibility of
July 2022 | Volume 13 | Article 912876
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complement-independent induced blistering as well 4)
Production of neutrophil reactive oxygen species (ROS), which
contribute to tissue damage, does not differ between WT,
C5ar1-/-, and C5ar2-/- mice (40), 5) Passive transfer of human
BP-IgG into C3-/- BP180 humanized mice develop blisters (39);
6) Non-complement binding autoantibodies are able to cause
blister formation in vivo (39, 41); 7) BP-IgG antibodies are able
to induce IL-6, IL-8, and Hsp90 expression from cultured
keratinocytes independent of complement (42–48); 8) IgG4
autoantibodies, which are the dominant IgG isotype in over
50% of BP patients, are able to induce blistering in cryosection
assays (41, 49–54) 9) IgE autoantibodies and eosinophils
contribute to blister formation by means of various
mechanisms including secretion of proteases, eosinophil
degranulation, and extracellular traps, as well as cytokine and
chemokine release in a complement independent manner.
However, IgE antibodies very rarely form in isolation of IgG.
As such, while they are definitively pathogenic, their
contribution relative to IgG is unclear. Finally, 10) in up to
20% of biopsy specimens obtained from BP patients, there is no
evidence for complement deposition as assessed by direct
immunofluorescence microscopy (DIF) (55). However, this
study was limited by use of a single detection antibody against
complement, specifically the C3c component. Sensitivity may
increase with the use of multiple antibodies. Likewise, a case
report of a patient developing BP despite C4 deficiency provides
further support (56)

The recent Phase 2a trial results of the complement inhibiting
drug nomacopan offer an important caveat to the prospect of
physiologically significant complement-independent effects (8).
In this study, 7 of 9 patients saw significant reductions in skin
severity index scores by six weeks. However, the subjects who
were non-responders to such complement inhibition raises the
possibility of tissue damage and blister induction occurring
outside of the complement system in these patients.
Furthermore, randomized trials with much larger sample sizes
are needed to truly assess the therapeutic efficacy of this drug.
NON-IMMUNOLOGIC INDUCTION OF
BLISTERING BY ANTI-BP180 ANTIBODIES
ON KERATINOCYTES

The direct non-immunologic, but complex biologic impact of
anti-BP180 antibodies on basal keratinocytes represents an
important means by which complement-independent
mechanisms contribute to basement membrane disadhesion
and dermo-epidermal blistering. Both ubiquitin- and
proteasome-mediated degradation of BP180, as well as
macropinocytic internalization of BP180 appear to be involved
(57). Notably, this is seen with antibodies targeting the NC16a
domain of BP180, but not the c-terminus, suggesting epitope
dependent pathogenicity (58).

Early studies by Kitajima et al. first showed that the binding of
anti-BP180 antibodies results in internalization of BP180 in
Frontiers in Immunology | www.frontiersin.org 3
cultured epidermal cells (59, 60). Further work by Iwata et al.
confirmed that incubation of anti-BP-IgG autoantibodies causes
internalization of BP180 from the cell membrane and provided
evidence indicating that BP180 is depleted from the keratinocyte.
In these experiments, BP-IgG treatment was able to reduce the
amount of BP180 from cells by roughly 40% and 85% after two
and six hours of respective incubation as assessed by
immunoblotting. Notably, while BP180 was decreased, the
amount of the a6b4 integrin, a key component of
hemidesmosomes, remained unchanged, indicating that the
effect on BP180 was specific. By semiquantitative analysis of
BP180 content in BP patients’ skin by immunoblotting, the
authors also found a reduction of ~40% of BP180 in BP
patients’ skin when compared to that of control subjects.
Finally, in vibration detaching assay using cultured
keratinocytes, BP-IgG treatment caused a significant reduction
of the adhesion of cells to the culture plate (61). Another study
showed that both BP-IgG and BP-IgE are capable of directly
binding to the surface of cultured human keratinocytes with
subsequent loss of hemidesmosomes at the basement membrane
zone (BMZ) (44). The studies mentioned above used in vitro
models exclusively, and generalizations regarding this apparent
BP180 internalization and subsequent loss of adhesion to living
systems are limited.

In 2012, Natsuga et al. reported that rabbit antibodies raised
against a distinct portion of the human NC16A region of BP180
(Arg522 to Gln545) decrease BP180 expression in cultured NHKs
(36). More strikingly, the same group also found that the
injection of the F(ab’)2 fragments of the rabbit anti-BP180-
NC16A antibodies, thus lacking the complement-binding Fc
domain, was able to cause dermal-epidermal splitting in
neonatal BP180-humanized mice and also decreased
expression of BP180 in murine skin by immunoblotting.
Nevertheless, the observation that not all mice injected with
the F(ab’)2 fragments displayed skin fragility implies that the
anti-NC16A F(ab’)2 fragments have a less potent effect than BP-
IgG (36). It is important to note that this study utilized neonatal
mice. Skin fragility and neonatal immune response may not be
predictive of human responses. Hiroyasu et al. subsequently
confirmed the findings of Natsuga et al. using cultured 804G
cells and normal human epidermal keratinocytes (NHEKs) as
well as BP-IgG(Fab’)2 and BP-IgG Fab fragments (37). Hence,
these observations strongly indicate that skin detachment in BP
not only depends on a complement-mediated inflammatory
cascade, but also involves a direct effect of BP antibodies on
the adhesive function and cell expression of BP180, which
directly impairs dermo-epidermal cohesion. It is unclear why
previous mouse model studies failed to observe a direct effect of
IgG(Fab’)2 fragments against BP180 on keratinocyte adhesions.
These apparent discrepancies may be related to the variable
experimental conditions of the used in vitro assays and in vivo
models (22, 62, 63).

It has been speculated that blistering in BP first requires a
weakening of the adhesive strength of keratinocytes, which is
then accompanied by an inflammatory response that ultimately
causes dermo-epidermal separation (37, 61). This model, which
July 2022 | Volume 13 | Article 912876
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is not yet substantiated by experimental data, can however be
applied on a subset of patients with pauci-inflammatory BP and
other subepidermal bullous autoimmune diseases in which
blistering primarily results from mechanical trauma and
friction. This phenomenon is typically observed in patients
with the mechano-bullous form of epidermolysis bullosa
acquisita, with antibodies directed against type VII collagen.

BP-IgG induced internalization of BP180 occurs through the
macropinocytosis pathway. In fluid uptake assays, the addition of
macropinocytosis inhibitors are able to block the internalization
of BP180 in both cultured 804G cells and NHEKs. This process
seems to occur following a calcium-dependent phosphorylation
of the intracellular domain of BP180 by the protein kinase C
pathway (38). Inhibition of the macropinocytosis pathway is also
able to block the negative effect of BP-IgG on the adhesive
strength of cultured NHEKs following treatment (37). The entire
BP180 molecule seems to be internalized as a complex bound
with BP-IgG. The impact of this internalization of BP180 on
hemidesmosome formation in vitro and potentially in vivo
remains to be assessed (64).

Ujiie et al. also characterized the mechanisms by which BP-
IgG induced BP180 depletion takes place (39), confirming that
anti-BP180 BP-IgG can induce blistering in complement-
deficient mice. Notably, these researchers have utilized a
monoclonal antibody, mIgG2c (TS4-2) which has high
complement activation activity, low ability to deplete BP180,
and low affinity to hNC16A. The passive transfer of this mIgG2c
anti-BP180 monoclonal antibody failed to cause blistering in
most mice. Ujiie et al. also showed that BP180 is ubiquinated
following treatment with BP-IgG. In fact, addition of a
proteasome inhibitor, MG-132, prevents the depletion of
BP180 in a dose-dependent manner. These results thus
indicate that the ubiquitin/proteasome pathway is implicated
in BP180 depletion. Noteworthy, in this latter experimental
model, mice injected with the monoclonal antibody rhIgG4
against the human NC16A domain of BP180 (but unable to
activate the complement) still developed blistering despite the
administration of a proteasome inhibitor. This observation
indicates that internalization of BP180 and adhesive weakening
most likely precede the degradation of BP180 via proteasomes. In
this context, it should be mentioned that proteins that enter cells
via macropinocytosis are usually degraded by lysosomes.
However, proteasomes may also be involved under certain
circumstances, such as in relation to cross-presentation of
antigens on the major histocompatibility complex I pathway
(65). Hence, it remains unclear if BP180 is only degraded by
proteasomal pathways or if lysosomes and/or other processes are
also implicated (9).
REGULATION OF INFLAMMATORY
RESPONSES BY BP180 IN
KERATINOCYTES

In addition to the direct non-inflammatory effects of anti-BP180
autoantibodies, there is growing evidence for complement-
Frontiers in Immunology | www.frontiersin.org 4
independent inflammatory mechanisms by which BP
antibodies can induce disease. Specifically, keratinocytes are
able to secrete a variety of proinflammatory cytokines which
appear to be pathogenetically relevant. Specifically, in 2000
Schmidt et al. found that treatment of cultured NHEKs with
anti-NC16A BP-IgG, and not control IgG, results in an increased
expression of IL-6 and IL-8 in a time- and concentration-
dependent manner while IL-1a, IL-1-b, IL-10, and TNF-a
were not detected and MCP-1 levels remained unchanged (46).
Molecules such as IL-1b and TNF-a are known to upregulate
complement factors (66). The upregulation of IL-6 and IL-8 was
detected at both the mRNA and protein level. In addition,
blocking the immunoreactivity of two distinct epitopes,
NC16A and NC16A2, prevented the upsurge in IL-8. Also of
note, since BP-IgG treatment of BP180-deficient keratinocytes
did not cause an increased release of IL-6 or IL-8, these results
suggest that the specific interaction between BP autoantibodies
and BP180 ectodomain initiates an intracellular signal
transduction pathway affecting transcription and translation
with an increased release of keratinocyte-derived IL-6 and IL-
8 (46).

Messingham and colleagues expanded on these results finding
that not only IgG but also IgE anti-BP antibodies are capable of
stimulating IL-6 and IL-8 production in cultured human
keratinocytes and organ culture (44). Similar results were
obtained following treatment with F(ab’)2 and Fab fragments
prepared from IgE and IgG, confirming that these effects occur in
an FcR-independent manner. Noteworthy, IgE appears to be a
more potent stimulator of cytokine production compared to IgG
(44). In this context, we recently identified a similar pro-
inflammatory response from keratinocytes treated with IgG
obtained from patients with laminin-332 pemphigoid,
particularly with autoantibodies against the b3 subunit (67).

IL-8 derived from keratinocytes is chemotactic for
neutrophils (68). The latter are critical for the formation of
blisters in both animal and in vitro BP models (23, 69).
Furthermore, Liu et al. showed that intradermal IL-8 injection
into C-5 deficient mice can reverse their resistance to the
pathogenic effects of rabbit-derived BP-IgG monoclonal
antibodies (23). IL-6 is another pro-inflammatory cytokine. It
is secreted by keratinocytes and can penetrate the BMZ (70). Its
contribution in tissue damage is attested by the observation that
IL-6-depleted mice do not develop blistering in a BP model (23).
Finally, IL-6 and IL-8 levels are elevated in both the sera and
blister fluid of BP patients (71, 72). Serum levels of these
interleukins have also been correlated with disease activity in
BP (73). Overall these observations indicate that keratinocytes,
by releasing pro-inflammatory cytokines, also play a previously
unrecognized role in the pathogenesis of pemphigoid diseases
(67). Keratinocyte dependent complement-independent
mechanisms are summarized in Figure 1.

Pharmacologic studies have also been useful to gain better
insight into the inflammatory processes triggered by anti-BP
antibodies (42, 45, 47). By ELISA, Tukaj et al. found that
calcitriol decreased the BP-IgG-induced release of IL-6 and IL-8
in human keratinocytes in a dose- and time-dependent fashion
July 2022 | Volume 13 | Article 912876
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(42). Moreover, this vitamin D metabolite reduced
phosphorylation of STAT3 and suppressed NF-kb activity in
keratinocytes treated with BP-IgG, but did not affect levels of
heat shock protein (Hsp) 70 or the vitamin D receptor (VDR), an
observation implying that NF-kb and STAT3 are both involved in
mediating the pro-inflammatory effects. Dapsone, an anti-
inflammatory agent used in BP management, was found to
specifically suppress the release of IL-8, but not of IL-6, from
NHEKs treated with BP-IgG antibodies isolated from both human
and rabbit sera, in a dose-dependent manner (45). Evidence was
further provided suggesting that the effect of dapsone occurs at the
post-transcriptional level (45). Notably, dapsone can also exert a
significant inhibitory effect on neutrophils (74). Therefore,
conclusions drawn on the complement-independent
mechanisms of BP from dapsone’s efficacy in the disease may
be limited.

Hsp90 has been linked to the synthesis of various cytokines
such as TNF-a, IL-1, IL-6, and IL-8 (48, 75–77). In human
epidermal keratinocytes treated with BP-IgG, blockade of Hsp90
with 17-DMAG is able to suppress the IL-8, but not IL-6, release
in a dose- and time-dependent manner (47). Blocking Hsp90
also impaired the NF-kb p65 subunit activity in BP-IgG
stimulated keratinocytes. These findings suggest that Hsp90
also exerts a regulatory role in BP-IgG-induced production of
IL-8.

Van Den Bergh et al. sought to assess whether BP180 is
directly involved in modulating this pro-inflammatory response
(43). For this purpose, they measured IL-8 response under
various inflammatory stimuli in both normal keratinocytes and
in BP180-deficient keratinocytes derived from either a junctional
Frontiers in Immunology | www.frontiersin.org 5
epidermolysis bullosa patient or after shRNA-mediated
knockdown of BP180. The BP180-deficient keratinocytes
showed a dysregulated higher IL-8 response after treatment
with lipopolysaccharide (LPS), ultraviolet-B radiation or tumor
necrosis factor compared to normal human keratinocytes.
Notably, inhibition of NF-kb, but not p38MAPK, was able to
normalize this response. The same group also found that LPS
treatment of BP180-deficient keratinocytes increases the
expression of an NF-kb-driven reporter compared to normal
cells. In LPS-treated cells, inhibition of NF-kb activity in BP180-
deficient keratinocytes normalized their IL-8 response. The
results are in line with the idea that the effects of BP180 on IL-
8 response are mediated by NF-kb. Together, these results point
toward BP180 serving as regulator of IL-8 involved inflammatory
response of keratinocytes. It is as of yet unclear if autoantibodies
to BP180 affect its interactions with other hemidesmosomal
components, such as the a6b4 integrin and extracellular
proteins, and if disturbance of this network has an impact on
the inflammatory response. Importantly, many of the
aforementioned studies looking at these inflammatory
mechanisms and their regulation are limited by reliance on in
vitro data. As such, drawing conclusions regarding the in vivo
response must be done carefully.

In another study (78), genetically engineered mice which
expressed a NC16A-truncated BP180 developed spontaneous
inflammation of the skin and exhibited severe pruritus,
compromised skin barrier, increased serum IgE, and immune
cell infiltration. The pruritus was found to be independent of
adaptive immunity or histamine, but was related to an increased
expression of TSLP. This study suggests that dysfunction or
FIGURE 1 | Keratinocyte mediated, complement-independent pathways in bullous pemphigoid. (A) IgG autoantibodies targeting BP180 bind to the epidermal
basement membrane. IgG-BP180 complexes undergo macropinocytosis as shown by immunostain for EEA-1. (B) Internalized IgG-BP180 complexes lead to both
loss of cellular BP180 and increased expression of proinflammatory mediators such as IL-6 and IL-8, resulting in both (C) pauci-inflammatory and pro-inflammatory
complement-independent mechanisms.
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structural alteration of BP180 is sufficient to trigger an
inflammatory response similar to that seen in BP patients.

Finally, the effects of IgG4 autoantibodies provide evidence
for other complement-independent inflammatory mechanisms
in bullous pemphigoid. While IgG1 and IgG3 antibodies are
known to fix complement, the IgG4 subclass does not (79). In
2007, Mihai et al. isolated both IgG1 and IgG4 BP antibodies
from patient sera and introduced them into an ex vivo
experimental model. Although the IgG4 antibodies did not
activate complement, they were able to induce dermo-
epidermal spitting and tissue damage via leukocyte recruitment
and activation (79). While the pathogenic potential of the IgG4
autoantibodies was significantly less than that of IgG1 in this
experiment, the study demonstrates the capability of IgG4 to
induce a BP-like phenotype in the absence of complement, and
introduces a novel role for IgG4 in this disease.
EOSINOPHIL AND IGE MEDIATED
BLISTERING

Eosinophils can directly mediate dermo-epidermal separation in
the presence of either IgG or IgE (80, 81). In both instances,
complement is not required. Eosinophils, which are typically
abundantly present in lesional skin of BP patients, play an
important role in tissue damage by means of different
mechanisms (82–86). Eosinophils are capable of secreting the
matrix metalloproteinase 9 (MMP-9), which can degrade BP180
and thus contribute to dermo-epidermal separation, by cleaving
the extracellular collagenous domain of BP180 and other
proteins (21, 87–90).

Degranulated proteins from eosinophils can be detected in
both the serum and blister fluid of BP patients (91–94).
Eosinophil granules have also been found along the BMZ in
patients with BP (94, 95). Release and deposition of eosinophil
granules appear to be present even in the early stages of BP
lesions (96, 97). We have demonstrated that the granule proteins
eosinophil cationic protein (ECP) and eosinophil derived
neurotoxin (EDN) induce keratinocyte expression of IL-5,
eotaxin-1, and RANTES, as well as reactive oxygen species
formation. ECP but not EDN is able to directly induce
keratinocyte detachment (98).

Eosinophils can also produce extracellular traps (EETs) which
are made up of granule proteins, DNA, and nuclear components
in a network-like structure which can expand to be 15 times
larger than the cell itself (99). EETs have been found to be
present in BP. Based on ex vivo data obtained from experiments
involving human skin and isolated eosinophils showing that
dermo-epidermal separation is reduced with DNase affecting
EETs, the latter may be directly involved in the amplification of
the inflammatory response, although the exact mechanisms
remain still unknown (100). It should be noted that neutrophil
extracellular traps (NETs) may also play a role in BP. Using
immunodetection of patient skin biopsies, NET formation has
been shown to be associated with BP (101). Additionally, levels of
Frontiers in Immunology | www.frontiersin.org 6
NET biomarkers are correlated to BP disease activity (102). Thus,
it is likely that these complexes play a role in the tissue damage
involved in this disease. However, given the fact that neutrophils
are likely recruited at least in part by complement (103), it is
unclear whether these NET-related mechanisms may truly be
complement-independent.

As described previously, eosinophils are involved in BP
pathogenesis by mediating the effects of anti-BP180 IgE
antibodies and contributing to dermo-epidermal separation
(81). Anti-BP180 IgE autoantibodies are present in the
majority of BP patients, and their levels are correlated with
disease activity (104–107). In mice with grafted human skin,
injection of anti-NC16A IgE resulted in inflammation with
development of erythematous skin lesions and dermo-
epidermal separation. Influx and degranulation of eosinophils
have been here implicated (108). Similar results were obtained
using human cryosection dermis in which IgE injection led to
DEJ separation with associated eosinophil infiltration. The
activation of eosinophils was mediated through the FCeRI
receptor (109–111). Notably, the amount of anti-BP180 IgE
and IgG was correlated to levels of circulating eosinophils in
BP sera (111). Moreover, IgE autoantibodies against a
component of the shed ectodomain of BPAG2 induce pruritus,
erythema, eosinophil infiltration, and blistering when passively
transferred (112).

Eosinophils also directly contribute to BP symptomatology by
producing IL-31, a known pruritogen. Pruritus is a key feature of
BP and can be a presenting symptom even in the absence of
specific skin lesions (13). IL-31 activates endothelin-1 and causes
subsequent upregulation of brain natriuretic peptide (BNP), an
important mediator of pruritus (113, 114). IL-31 is known to be
produced by eosinophils (107, 115), and increased levels of IL-31
have been found in both the lesional skin and serum of BP
patients (116). Recent evidence even suggests that eosinophils are
the central source of IL-31 in BP (117). Eosinophil-derived IL-31
certainly plays a role in BP itching, but it is still unclear whether
this is the primary mediator of pruritus in BP or if other
pathways are paramount.

The most compelling evidence for the role of eosinophils in
mediating tissue injury in BP comes from Lin et al. who
generated a transgenic mouse which expressed human
hNC16A as well as the human FCeRI (118). In these mice,
anti-NC16A IgE produced subepidermal splitting along with
eosinophil infiltration and deposition of IgE along the epidermal
BMZ. BP-IgE-induced blistering required the presence of
eosinophils. In this model, the intensity of eosinophil
infiltration also correlated with disease severity. Overall, these
findings not only support the pathogenicity of anti-NC16A IgE
antibodies in BP, but also show that eosinophils are the mediator
in this process (118).

The work of Freire et al. further characterized the complex role of
IgE antibodies in BP (119). Using ELISA and immunofluorescence
to examine BP patient sera and skin respectively, they detected
increased levels of both anti-BP180 and anti-BP230 IgE compared
to healthy controls. The former were found to interact with the same
NC16A region of BP180 known to be recognized by IgG.
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Furthermore, direct immunofluorescence studies showed the
majority of BP patients (compared to none of the healthy
controls) to have IgE+ cells in their skin. Surprisingly, IgE was
rarely detected at the BMZ, and instead was primarily associated
with mast cells and eosinophils in the dermis. The study also
identified fragments of the extracellular domain of BP180 in the
dermis and BMZ, often co-localized with IgE+ cells. These findings
indicate that BP180 and IgE can form complexes on the same cells.
Further degranulation assays revealed that these IgE-BP180
complexes are capable of cross-linking FCERI receptors and
causing basophil degranulation. This process could conceivably
lead to inflammation and tissue damage in BP skin. When taken
overall, these findings provide strong evidence for an additional
complement-independent, Th2-dependent, eosinophil-mediated
pathway that contributes to tissue damage and clinical features in
BP. A summary of IgE and eosinophil dependent pathomechanisms
are shown in Figure 2.

Finally, investigation regarding IgM antibodies in pemphigoid
also highlights the possibility of complement-independent
mechanisms in these diseases. Cases of IgM bullous pemphigoid
have been documented, with such patients exhibiting linear
deposition of both IgM and C3 (120–125). In addition, several
patients with only IgM deposition have been identified (126, 127).
A recently published article from Boch et al. describes three
patients with ‘non-bullous’ pemphigoid who presented with
erythematous papules and plaques, two of whom displayed
exclusive IgM deposition at the BMZ in the complete absence of
complement. The other patient showed weak complement
binding. Additionally all three patients demonstrated no serum
complement activation capacity (128). Thus, complement-
Frontiers in Immunology | www.frontiersin.org 7
independent mechanisms may play a more prominent role in
unique subtypes of AIBD such as this. However, as C3c deposition
has been shown to be significantly decreased in non-bullous
patients as compared to those with blisters (33, 55), these
findings continue to reinforce the central importance of
complement activation in actual blister formation as well.
LESSONS FROM THE BEDSIDE AND
TARGETED THERAPIES

The presence of complement-dependent and independent
mechanisms in BP not only highlight the disease’s biologic
complexity, but treatment challenges. Currently, several
inhibitors of complement components are under investigation
for the treatment of BP. Other than identifying the presence of
complement on the epidermal BMZ which has significant
limitations, it remains a challenge to stratify patients who may
have significant contribution from complement-independent
pathways. Nonetheless, biomarkers of complement independent
pathways can be utilized to target these pathways.

Patients with BP often exhibit elevated serum IgE levels and
circulating BP180- and BP230-specific IgE autoantibodies. These
findings provide support to the idea that IgE has a role in BP
pathogenesis (129, 130). In fact, it is thought that IgE
autoantibodies directed against the ectodomain of BP180 are
first bound to FceRI on mast cells and eosinophils. This binding
subsequently promotes degranulation and initiates an
inflammatory reaction resulting in further tissue damage and
blister formation (44, 97, 111, 131–133). In addition, binding of
FIGURE 2 | IgE- and eosinophil-mediated complement-independent pathways in bullous pemphigoid. (A) BP180 IgE autoantibodies and BP180-IgE complexes
bind to the cutaneous basement membrane and the FcϵR1 on eosinophils as well as mast cells and basophils. This results in release of proteases (e.g. MMP9),
eosinophil granule proteins (ECP, EDN), eosinophil extracellular traps, as well as reactive nitric oxide-derived oxidants (NOS). (B) Keratinocytes release IL-5, RANTES,
and eotaxin-1 as a response to eosinophil granule proteins. (C) this positive feedback loop results in an increase in tissue eosinophilia and eosinophilic spongiosis.
Inhibitory therapeutic antibodies are shown in boxes with red arrows leading to their downstream target.
July 2022 | Volume 13 | Article 912876

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cole et al. Complement-Independent Mechanisms in BP
specific IgE autoantibodies to the ectodomain of BP180 on basal
keratinocytes also triggers internalization of BP180 (see above)
and thereby contributes to cell-substrate disadhesion
(44, 119, 134). As a result, a humanized mAb that inhibits IgE
binding to its high-affinity receptor (FceRI), omalizumab (an
approved treatment for severe asthma and chronic spontaneous
urticaria), represents a logical alternative drug for BP. In 2009
Fairley et al. first reported the beneficial effect of omalizumab in a
BP patient poorly controlled by oral corticosteroids,
azathioprine, and minocycline. After 16 weeks of treatment,
several patients showed a significant improvement despite
discontinuation of corticosteroids. Since this first report,
several case series have confirmed the value of omalizumab as
either monotherapy or adjuvant therapy in patients with various
forms of BP (105, 135–138). We have also successfully used
omalizumab in a number of BP patients and found that
omalizumab treatment results in a sharp decrease of FceRI
expression on circulating basophils and a strong reduction of
FceRI+ cells in the skin of treated patients (129). Our results are
thus in line with the idea that omalizumab is able to sequester
free IgE and prevent its binding to its high-affinity IgE receptor,
FceRI (139–141). This process has been proposed to then
downregulate the expression of FceRI on mast cells and
basophils as well as antigen-presenting cells (139).

In addition to omalizumab, there are other biological targeted
therapies in development for BP (142). Dupilumab, a human
IgG4 monoclonal antibody binding the IL4-Ra inhibits IL-4 and
IL-13. It is approved in atopic dermatitis and is being studied in
BP, and has several reports of treatment success (7, 143–145).
While a phase 2 study of mepolizumab, a humanized IgG1
monoclonal antibody targeting IL-5, was unsuccessful in BP
(146), benralizumab, a human IgG1 monoclonal antibody
targeting IL5-Ra that leads to apoptosis of eosinophils and
basophils, is being studied.

Together, these observations corroborate the idea that
complement-independent mechanisms, which play a role in BP
pathogenesis, offer additional therapeutic targets beneficial for
affected patients. The recent, promising results of the complement
inhibitor nomacopan continue to reflect the well-established role of
complement-dependent mechanisms as the primary driver in the
pathogenesis of BP (8). As such, downregulation of the complement
pathway should remain the priority for investigation of therapeutic
targets in this disease. However, given the evidence laid out above
for the existence of complement-independent mechanisms, it is
reasonable to conclude that specific targeting of these pathways may
offer additional benefit to patients in the future, or be a major
treatment option for a subset of patients in which these
mechanisms are predominant.
CONCLUSIONS

Increased insight into complement-independent mechanisms in
BP has not only improved our understanding of BP pathogenesis
but has also significant translational implication. The increasing
Frontiers in Immunology | www.frontiersin.org 8
knowledge gained from studies dissecting IgE- and eosinophil-
dependent pathways have highlighted the importance of extending
the therapeutic horizons beyond those predominantly focusing on
complement-mediated pathways. Hence, several avenues remain
to be therapeutically explored. For example, blocking the
production of pro-inflammatory mediators released by
keratinocytes represents a potential approach by which BP may
be improved. Likewise, induction of BP180 expression in basal
keratinocytes to compensate for BP-IgG induced BP180 loss could
also have a beneficial effect.

The extent to which complement-dependent or -independent
mechanisms contribute to phenotypic presentation remains to be
determined. Dissecting contributory pathways has significant
impact on personalized treatments. For example, autoantibodies
to non-NC16a epitopes have been associated with a pauci-
inflammatory phenotype (147). Could this be sufficiently
explained by the lack of NC16a-mediated endocytosis and
subsequent expression of pro-inflammatory molecules? Several
other questions remain. Are anti-NC16a induced keratinocyte
pro-inflammatory molecules sufficient to induce granulocyte
infiltration in the absence of complement? Does anti-BP180
depletion on keratinocytes lead to skin fragility in patients or is
this primarily protease driven? Do keratinocytes express other
pro-inflammatory cytokines/chemokines that may account for the
eosinophilia typically seen in BP? Is keratinocyte derived IL-8 the
major inducer of neutrophil chemotaxis or complement? Can the
presence or absence of complement fixing antibodies predict
responses to different therapies?

While the whole-body application of topical corticosteroids
may affect these pathways, their systemic absorption, local side
effects, and their practical use in elderly patients constitute a
therapeutic hurdle (148, 149). It is likely that in the near future,
the possibility to more rapidly and easily obtain a comprehensive
characterization of complement-independent pathways activated
in lesional tissues obtained from BP patients, for example using
gene expression profiling, transcriptomics and proteomics, will
provide a means to better tailor the therapy plan to the individual
affected by BP.
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