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Abstract: We aimed to assess the effects of hyperparameter tuning and automatic image augmentation
for deep learning-based classification of orthodontic photographs along the Angle classes. Our
dataset consisted of 605 images of Angle class I, 1038 images of class II, and 408 images of class III.
We trained ResNet architectures for classification of different combinations of learning rate and batch
size. For the best combination, we compared the performance of models trained with and without
automatic augmentation using 10-fold cross-validation. We used GradCAM to increase explainability,
which can provide heat maps containing the salient areas relevant for the classification. The best
combination of hyperparameters yielded a model with an accuracy of 0.63–0.64, F1-score 0.61–0.62,
sensitivity 0.59–0.65, and specificity 0.80–0.81. For all metrics, it was apparent that there was an ideal
corridor of batch size and learning rate combinations; smaller learning rates were associated with
higher classification performance. Overall, the performance was highest for learning rates of around
1–3 × 10−6 and a batch size of eight, respectively. Additional automatic augmentation improved
all metrics by 5–10% for all metrics. Misclassifications were most common between Angle classes
I and II. GradCAM showed that the models employed features relevant for human classification,
too. The choice of hyperparameters drastically affected the performance of deep learning models in
orthodontics, and automatic image augmentation resulted in further improvements. Our models
managed to classify the dental sagittal occlusion along Angle classes based on digital intraoral photos.

Keywords: artificial intelligence; deep learning; modeling; orthodontics; photographs

1. Introduction

Deep learning (DL) has been employed for image analysis (“computer vision”) in a
range of medical fields; in dentistry, DL is increasingly established for identifying patholo-
gies such as caries or apical lesions, periodontal bone loss, or intra-bony defects on imagery;
see [1,2] for recent reviews. A major field of activity is orthodontics, specifically landmark
detection on cephalometric radiographs [3] and, recently, the determination of growth
and development periods [4]. In many circumstances, DL shows accuracies similar or
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even superior to those of experts [5,6] while increasing the efficiency and reliability of
any analyses.

In non-medical domains, DL usually involves millions of data points (images) and
labels (annotations) to allow for learning the structure in the data representing the labels.
Such large, labelled datasets are absent in medicine and more so in dentistry, as obtaining
vast amounts of data points, specifically images, is challenging due to data protection
regulations. Moreover, labeling images is time-consuming, expensive, and error-prone.
Hence, it is relevant to also leverage smaller labelled datasets. Among others, two strategies
allow to improve the accuracy of DL models for image analysis (also called computer
vision) trained on smaller datasets: hyperparameter tuning and image augmentation.

A DL model has multiple hyperparameters, and two prominent examples are the
batch size, which is the number of datapoints to train the system in a single pass, and the
initial learning rate, which determines the step size taken by the optimizer and therefore
how fast the model learns. When training DL models on small datasets, in many cases, the
choice of hyperparameters has a significant effect on the performance of the models [7].
At the same time, hyperparameter tuning is a challenging problem since the number
of combinations grows exponentially with the number of hyperparameters. Given this
combinatorial complexity, a brute-force hyperparameter search (grid search) often becomes
computationally intractable due to the large number of possible combinations and to the
cost of having to train one or several models for each of them for the purpose of comparisons.
Consequently, random hyperparameter search is applied most frequently and has proven
to be effective and more efficient than grid-search for DL [8]. Hyperparameter optimization
is present in medical imaging research, where it has been used to obtain models with higher
diagnostic performance for a range of problems [9,10].

Image augmentation is another technique used in computer vision for improving the
performance of models trained on small datasets. During augmentation, copies of images
are created by a sequence of transformations (flipping, rotations, color transformation, etc.).
Image augmentation is known to improve the performance and robustness of computer
vision models and can be used to induce invariances and symmetries without having to
modify the model’s architecture. Intuitively, it can also be interpreted as a way of creating
extra images to interpolate gaps in the data manifold. In this manner, the model is trained
with a dataset containing richer features than a dataset without augmentation. Notably,
though, designing a good image augmentation pipeline for a particular problem requires
expert knowledge. Moreover, the components of the augmentation policy might have
both continuous and discrete parameters, such as the angle of rotation or the kernel size
for blurring, apart from the probability of every component being applied. Finding a
good augmentation policy can be formulated as a search problem. However, searching
in this space is computationally expensive, too. Therefore, in summary, there is a gap in
knowledge whether the hyperparameter tuning or automatic image augmentation would
enhance the classification performance especially while utilizing small, manually labelled
datasets. Image augmentation techniques have appeared in the medical imaging literature,
playing a particularly relevant role in self-supervised learning [11]. Automatic image
augmentation has been used for improving the performance of models [12–14]. As per our
best knowledge, no study in dentistry has attempted to determine the accuracy performance
of the hyperparameter tuning or automatic image augmentation on dental images.

As a result, in the present study, we examined the potential of automatic hyperparam-
eters and image augmentation search techniques for computer vision problems in images
related to orthodontics. We formulated an image classification task for photographs taken
for diagnostic reasons before the start of orthodontic treatment, with each photo being
classified as Angle classes I, II, and III according to the sagittal relationship of the upper
and lower first molars [15]. In orthodontics, the Angle classification is a basic concept for
describing the sagittal occlusal relationship between the upper and lower first molars on
each side for the permanent dentition. By Angle’s definition, a normal (neutral) occlusion
(Angle class I) is given when the mesialbuccal cusp of the upper first molar occludes in the
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groove between the mesial and the distal (or, if present, middle) buccal cusps of the lower
first molar [16], and the rest of the teeth in the arch are aligned accordingly [17]. Ever since
and despite its controverse inadequateness [17–21], the Angle classification is a routine
diagnostic assessment in orthodontics [22] that distinguishes between a neutral sagittal
occlusion and a mesial and distal malocclusion that could lead to masticatory limitations
and unphysiological tooth wear [23] (Figure 1) and could indicate an orthodontic treatment.
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Figure 1. Schematic representation of different Angle classes: (a) Angle class I, (b) Angle class II, and
(c) Angle class III.

We hypothesized that using hyperparameter tuning and automatic image augmenta-
tion could significantly improve the classification performance of a deep learning classifier
of photos along different Angle classes.

2. Materials and Methods
2.1. Study Design

In the present retrospective cohort study, we used a dataset of photographs classified
into different Angle classes to assess hyperparameter tuning using the asynchronous
successive halving algorithm (ASHA) algorithm [24] and automated image augmentation
policy search using faster autoaugment [25]. Using the best hyperparameter combination
resulting from the ASHA algorithm, we trained an augmentation policy using faster
autoaugment. We then compared a model trained with the resulting policy with a model
tuned and trained without augmentations. We used the explainable AI technique GradCAM
to interpret the predictions of the model. Reporting of this study follows the Standards
for Reporting of Diagnostic Accuracy Studies (STARD) guidelines [26], the Checklist for
Artificial Intelligence in Medical Imaging (CLAIM) [27], and the Checklist for Artificial
Intelligence in Dental Research [28].
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2.2. Data, Sampling, and Gold-Standard Dataset Development

Our dataset included 2051 clinical RGB images retrieved from the planning and simu-
lation software OnyxCeph (Image Instruments, Chemnitz, Germany) at the Department of
Orthodontics and Dentofacial Orthopedics at Charité-Universitätsmedizin Berlin, which
were previously taken by the attendings and postgraduate students of the department
with the same camera and settings after having received an instruction on how to take
intraoral photos in the orthodontic practice. There were 42.1% male and 57.9% female
patients; the mean (SD, min-max) age was 18.9 (10.6, 4–60) years. All intraoral photos
were taken indirectly through a mirror with a digital CANON 80D reflex camera (Ota,
Japan) and a CANON macro lens (focal length 1/200, aperture 22), showing the occlusal
relationship between the upper and lower dentition on the right and left side of the mouth.
The collection of data was ethically approved (EA4/080/18). One orthodontist (P.J.K.)
reviewed the images and classified them into Angle class I (605 photos, 30%), Angle class
II (1038, 50%), and Angle class III (408, 20%), respectively. The manually labelled dataset
was sporadically checked by one other expert, and disagreements were resolved through
consensus and adjudications. The adjudicated dataset was used as a gold-standard dataset
to train, test, and validate our computer vision algorithms.

2.3. Data Preparation, Model, and Training

For all our experiments, we used a deep learning ResNet-18 architecture pretrained on
the ImageNet dataset as a feature extraction module. We added a classification head with
three output neurons equal to the number of categories, followed by a SoftMax activation
function. The input of the classification model was an RGB image, and the output a proba-
bility distribution over the three Angle classes, the values being interpreted as a confidence
score. Angle classes II and III (36% and 20% of the total dataset, respectively) were under-
represented, so we considered the dataset as imbalanced. To address this class imbalance,
we used a weighted cross entropy loss function with weights inversely proportional to the
frequency of each category. In this way, the model was penalized when it misclassified
an underrepresented category. The images were resized into 256 × 256 × 3 tensors and
normalized with the mean and standard deviation of the ImageNet dataset. We trained our
models on a NVIDIA Quadro RTX 6000 graphics card (NVIDIA, Santa Clara, CA, USA)
using the deep learning framework Pytorch.

2.3.1. Hyperparameter Tuning

For this stage of our study, we divided the dataset into a training, validation, and
test split, and the performance on the validation set was monitored during training. The
splits were stratified, meaning that the original distribution of classes in the splits was the
same as the distribution of the entire dataset. In this way, we prevented a low number
of underrepresented classes in the test and validation splits. For simplicity, we focused
on the batch size and learning rate for hyperparameter tuning since these are two of the
parameters that impact the performance of most models [7]. We considered a continuous
interval for the learning rate from 10−6 to 10−2 and values for batch size contained in
(8, 16, 32, 64). We randomly sampled 50 combinations of these two parameters, and we
trained a model for each of these, using the validation dataset to monitor the performance
during training for early stopping. Due to the high computational cost of cross-validation
for hyperparameter tuning, we employed a single train, validation, and test split. We
monitored the performance of the model on the validation set, applying early stopping
after a patience of five epochs. No image augmentation was used at this stage.

We employed an open-source implementation of the ASHA algorithm [24], which
is suitable for large-scale parallel computing and makes use of early stopping to avoid
unnecessary computations. We evaluated the resulting models on the test dataset and
computed the classification metrics accuracy, sensitivity, specificity, and F1-score. We used
the ray tune implementation [29].
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2.3.2. Automatic Augmentation

The goal of the faster autoaugment algorithm [25] is to automatically obtain an ideal
augmentation policy. This problem is formulated using a generative adversarial network
with a trainable policy as the generator and a discriminator, which is trained to detect
whether an image has been transformed by the policy. This process makes the generator
produce images that are close to the original data and are supposed to fill gaps in the
data distribution.

Training a model using the resulting policy could result in a better classifier. We used
the implementation from the Albumentations library [30], training for 25 epochs with
batch size 8 and learning rate 10−5 based on the result from hyperparameter tuning. We
considered augmentations such as horizontal and vertical flipping and shifting, rotations,
cropping, dropout, and color transformations. It is worth mentioning that the most salient
feature required for identifying the different Angle classes is the relative position of the
upper and lower first molars in the permanent dentition, as previously described. Thus,
introducing vertical flipping as an augmentation might change the features of a certain
image and could transform it into a different Angle class. We assumed that the resulting
augmentation pipeline would avoid transformations that would result in misclassifications.

Once the augmentation policy was trained, we compared the performance of a model
trained with this policy with a model without augmentations. We used stratified 10-fold
cross-validation with 10 non-overlapping train, validation, and test splits. The distribution
across classes in each of the splits was the same as for the entire dataset. For each split,
we trained the model for a maximum of 50 epochs, monitoring the performance on the
validation set and using early stopping with a patience parameter of five epochs to avoid
overfitting. We used a batch size of 8 images and the Adam optimizer with a learning
rate of 10−5. We monitored the validation loss during training and applied early stopping.
We calculated the average value and the 95% confidence interval (95% CI) for the metrics
mentioned above across the test splits and independent two-sided t-tests with p < 0.05 for
each of the models. The remaining settings remained as described.

For the comparison between the model trained with faster autoaugment and a baseline
without augmentations, we computed the confusion matrix for each test split from cross-
validation and averaged them. We also visualized the receiver operating characteristic
(ROC) curves and computed the area under the curve (AUC).

2.4. Evaluation and Explainaibility

Explainable AI (XAI) is a field of artificial intelligence that seeks to interpret the
behavior of machine learning models. XAI techniques allow practitioners to understand
the decisions taken by the models. In computer vision, these techniques usually provide
saliency maps that highlight the relevant areas of an image relevant for a certain output. We
used the GradCAM algorithm [31], which calculates a weighted average of the activation
maps of our model.

3. Results

We found statistically significant improvement in the classification performance after
hyperparameter tuning and image augmentation. Below, we provide detailed classification
performances and comparisons.

3.1. Hyperparameter Tuning

Figure 2 contains a visualization of the impact of hyperparameter tuning, i.e., learning
rate and batch size, on our accuracy estimates. For all metrics, it was apparent that there
was an ideal corridor of batch size and learning rate combinations; generally, smaller
learning rates were associated with higher classification performance. The higher the batch
size, the smaller the learning rate needed to be to compensate to some degree for lost
performance. The combined effect of both factors was significant: performances varied up
to 70% between the best and the worst combination. Overall, the performance was highest
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for learning rates of around 1–3 × 10−6 and a batch size of 8 (accuracy 0.63–0.64, F1-score
0.61–0.62, sensitivity 0.59–0.65, and specificity 0.80–0.81), respectively.
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(c), and specificity in (d). Each dot corresponds to an experiment. Red indicates a value closer to one
and blue closer to zero.

3.2. Augmentation

We present some of the images augmented by the faster autoaugment algorithm in
Figure 3. We observed that the resulting policy transforms images applying geometrical
transformations such as horizontal flipping and shifting with mirroring. We also observed
color transformations such as dropout, blurring, or changes in intensity. Notably, the
algorithm learned that the problem was invariant to horizontal flipping and translations as
well as to small changes in the pixel value such as blurring or dropout. Most importantly,
it also learned to exclude vertical symmetry; vertical flipping did not form part of the
learned policy.

The impact of automated augmentation on accuracy estimates is displayed in Figure 4.
We observed that the model trained with automatic augmentation performed generally
better for all metrics than the model trained without augmentations; all metrics were
significantly higher for augmented than non-augmented models (p < 0.05). We further
compared how the models performed for each Angle class using the confusion matrix
(Figure 5). For automated augmentation, we observed a significant increase in the number
of correctly classified images from class 2 and a significant decrease in the number of
misclassified images from the same class. Figure 6 shows the average and class-wise ROC
and AUC values for augmented and non-augmented models.
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Figure 3. Original images together with their augmented version. We observed color changes in (a,b),
no transformation in (c), horizontal and vertical flipping together with vertical shift in (d), blurring in
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Figure 4. Cross-validation metrics for models trained with and without automated augmentation.
The lower bar from the boxes above represents the minimum value, the lower bar of the box the first
quartile, the bar in the middle the median, the upper box bar the third quartile, and the upper bar the
maximum value. Models trained with augmentations performed significantly better than the model
trained with no augmentations (p < 0.05).

3.3. Explainability

Finally, we were interested in interpreting the output of the models. Figure 7 shows
the interpretability maps produced by GradCAM for images from one of the test splits. The
red areas are the most relevant for the output category. As shown in these examples, it was
noticeable that the model paid attention almost exclusively to areas relevant for determining
the Angle class: the upper and lower first molars and, specifically, the relationship between
the mesiobuccal cusp of the upper first molar and the groove between the mesial and
middle cusps of the lower first molar.
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number of misclassifications for class 2 and increased the number of correctly classified images for
this class. Confidence intervals were omitted for readability.
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4. Discussion

The aim of this study was to evaluate the effect of hyperparameter tuning and auto-
matic image augmentation on a DL-based classification of the dental sagittal occlusion on
intraoral photos. We had hypothesized that both strategies would improve the classification,
and we accept that hypothesis.

Currently, the Angle classification is recorded during clinical examination by an
orthodontist by looking at the lower first molars and evaluating its sagittal relationship to
the upper first molars. This evaluation is regularly trained in orthodontic courses during
the dental education and needs knowledge, exercise, and suggestive experience in case
the cusps are worn already at the time of the evaluation. Notably, classification results
are highly dependent on the angle at which the practitioner is looking at the teeth (a
perpendicular angle onto the buccal surfaces is ideal), which, in turn, depends on the
patient’s mouth opening.

Intraoral photo documentation is an additional part of the standard evaluation, and AI-
based classification of the Angle class on photos may assist the clinical evaluation. Moreover,
in the hands of less-experienced practitioners (postgraduate students), it may help in
achieving high classification accuracy, allowing for targeted referral. AI-based systems may
also be used for orthodontic training and patient communication. Furthermore, patients
may be able to acquire lateral photos with their smart devices and to pre-check their Angle
class, helping them to decide if there is a need to present themselves to an orthodontist for
a further consultation or not. Moreover, photos and AI-based evaluation may be useful in
monitoring orthodontic therapy by professionals.

Based on our study, a number of findings emerged.
First, hyperparameter tuning and automatic image augmentation are well-known

techniques used to improve the performance of computer vision models. Using these
techniques requires little technical effort and no domain-specific knowledge; a developer
with no domain expertise can nevertheless significantly improve the performance of AI
models for a particular field. This is particularly powerful in dentistry and medicine in
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general due to the high costs of training practitioners to develop this type of automatic
diagnostic systems. The techniques used in this study offer the possibility of improving the
diagnostic performance of models with minimal effort, which ultimately could translate
into a better service and patient care.

Second, from the hyperparameter tuning experiments, we conclude that a combination
of medium-sized learning rates and small batch sizes yielded the best results for accuracy
and sensitivity. We also observed that the smaller the batch size, the higher the learning rate
can be without a significant drop in performance. The learning rate had a larger effect on
performance than batch size. Overall, the choice of the two hyperparameters considered in
this study has a drastic impact, from useful accuracies at around 0.65 in the best-performing
models to accuracies near zero for the worst ones. Further research is needed to confirm
if the observed effects of hyperparameter tuning can be generalized to other DL tasks
in dentistry, while modelers in the field should appreciate the relevance of this step for
dental DL.

Third, automatic augmentation proved to have a positive influence on the performance
of the models. The learned augmentation policy had a significant effect on all metrics,
increasing them by around 5–10 percent. This effect was smaller than that of hyperpa-
rameter tuning, though, but is in line with effects for other medical applications [12–14].
Notably, and assuring, the augmentation policy learned the symmetry of the problem and
discarded vertical flipping as one of the transformations. Moreover, the main impact of
using automatic augmentation was reducing misclassifications of class I into class II. We
did not test its impact on the generalizability or robustness of the model to other imagery
(e.g., from other populations or image characteristics), which is where augmentation may
be even more relevant.

Fourth, we showed that the models learned to classify based on features relevant for
humans when classifying Angle classes I, II, and III, too. The resulting explainability is
relevant to gauge medical logic and increase trust as well as to scrutinize failure cases. While,
in many cases, the model highlighted an area of interest for orthodontists, it was observed
that, in some cases, the model focused on a non-relevant area for the classification, a sign
that the model might have learned misleading patterns, also known as shortcut learning.

This study has a number of strengths and limitations. First, hyperparameter tuning
and augmentation are standard instruments in dental DL but are usually chosen on a
non-informed basis; the present study is the first one to systematically assess their effects
for computer vision in dentistry. Our study serves to display the relevance of both factors—
hyperparameter tuning having been found far more relevant than augmentation—and to
inform modelers about potential choices to make. For example, balancing the learning rate
and the batch size seems a useful approach, as the learning rate accounts for the magnitude
of the update of the gradient for optimization, and the batch size indicates the number of
samples that are optimized at once. A good combination of these two parameters stabilizes
the optimization and can allow the model to reach lower values of the loss function and
therefore increase performance. Second, and as a limitation, the used dataset was limited
in its size and representativeness. As a consequence, the trained models showed only
moderate accuracy and presumably limited generalizability. We accepted this caveat, as
we aimed to test the effects of tuning and augmentation and not to train clinically useful
models. Similarly, the employed photos were of high quality; if photos were of poor quality
(e.g., not taken at a nearly 90◦ angle or show blurring, dropouts, etc.), this may impact on
model accuracy, too. For training models fit for “real-world” application, a compromise
of image quality may need to be accepted and such compromised images intentionally
sampled into the dataset. Third, we explored the two modeling aspects in a controlled and
separated fashion; joint variance would be of interest, too, and should be explored in future
studies. Similarly, quantifying efficiency aspects when varying hyperparameter tuning and
augmentation policy should be assessed.
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5. Conclusions

Computer vision models with small datasets can be sensitive to the choice of hyperpa-
rameters, particularly batch size and learning rate, as demonstrated in our experiments.
Efficient hyperparameter tuning helped to identify the optimal values for maximizing
the performance of the models and to avoid the overheads of a brute force or a manual
search for optimal hyperparameter parametrization. Similarly, it is often a time-consuming
task to design a good augmentation policy manually, and any prior information about
symmetries of the data, etc. might not be available for the computer vision engineer but
remains relevant for modeling. Automated augmentation can optimize the augmentation
policy for a given problem and was shown applicable to a dental task in the present study.
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