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ABSTRACT2

Stroke survivors are commonly affected by somatosensory impairment, hampering their ability3
to interpret somatosensory information. Somatosensory information has been shown to critically4
support movement execution in healthy individuals and stroke survivors. Despite the detrimental5
effect of somatosensory impairments on performing activities of daily living, somatosensory6
training –in stark contrast to motor training– does not represent standard care in neurorehabilita-7
tion. Reasons for the neglected somatosensory treatment are the lack of high-quality research8
demonstrating the benefits of somatosensory interventions on stroke recovery, the unavailability9
of reliable quantitative assessments of sensorimotor deficits, and the labor-intensive nature10
of somatosensory training that relies on therapists guiding the hands of patients with motor11
impairments. To address this clinical need, we developed a virtual reality-based robotic texture12
discrimination task to assess and train touch sensibility. Our system incorporates the possibility13
to robotically guide the participants’ hands during texture exploration (i.e., passive touch) and14
no-guided free texture exploration (i.e., active touch). We ran a three-day experiment with thirty-six15
healthy participants who were asked to discriminate the odd texture among three visually identical16
textures –haptically rendered with the robotic device– following the method of constant stimuli.17
All participants trained with the passive and active conditions in randomized order on different18
days. We investigated the reliability of our system using the Intraclass Correlation Coefficient19
(ICC). We also evaluated the enhancement of participants’ touch sensibility via somatosensory20
retraining and compared whether this enhancement differed between training with active vs.21
passive conditions. Our results showed that participants significantly improved their task per-22
formance after training. Moreover, we found that training effects were not significantly different23
between active and passive conditions, yet, passive exploration seemed to increase participants’24
perceived competence. The reliability of our system ranged from poor (in active condition) to25
moderate and good (in passive condition), probably due to the dependence of the ICC on the26
between-subject variability, which in a healthy population is usually small. Together, our virtual27
reality-based robotic haptic system may be a key asset for evaluating and retraining sensory loss28
with minimal supervision, especially for brain-injured patients who require guidance to move their29
hands.30

Keywords: Haptic rendering, sensory rehabilitation, active exploration, passive exploration, touch, texture discrimination.31
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1 INTRODUCTION

Stroke is the most common acquired brain injury that causes persisting and long-term disability in32
adults (Adamson et al., 2004). Between 65 % and 85 % of stroke survivors suffer from somatosensory33
impairment (Carey et al., 1993; Chia et al., 2019), hampering individuals’ ability to interpret somatosensory34
information (Pumpa et al., 2015), and thus, their ability to perform skillful movements independently35
(Schabrun and Hillier, 2009; Taylor et al., 2021). Importantly, somatosensory impairment increases patients’36
hospitalization time (Sommerfeld and von Arbin, 2004) and limits the recovery of sensorimotor function37
(Meyer et al., 2014). Despite the negative impact of somatosensory impairment on upper limb functionality38
and recovery (Yilmazer et al., 2019; Zandvliet et al., 2020), somatosensory training is not the standard39
of care following stroke (Schabrun and Hillier, 2009; Serrada et al., 2019) and generally receives less40
attention than motor training (Yilmazer et al., 2019). The lack of time for therapy and limited access to41
somatosensory training guidelines are some factors that may contribute to the lack of attention to sensory42
rehabilitation (Pumpa et al., 2015).43

Somatosensory interventions are therapeutic techniques performed by a therapist designed to retrain44
sensory function (O’Tool, 2017). Somatosensory interventions can be classified as sensory retraining –i.e.,45
interpretation of a stimulus– and sensory stimulation –i.e., afferent stimulation (Doyle et al., 2010). Sensory46
retraining involves the patients’ interpretation of stimuli, which are usually provided by the therapist. An47
example of sensory retraining intervention is the tactile discrimination test (TDT), a conventional approach48
to evaluate and train touch sensibility in clinical settings (Carey et al., 1993). TDT is performed by asking49
the patient to tactually explore gratings textures, also known as active touch. The therapist may also50
guide the patient’s paretic hand (i.e., passive touch) when the patient has a severe motor deficit. Sensory51
stimulation, by contrast, relies on the therapist providing a stimulus, e.g., transcutaneous electrical nerve52
stimulation, while the patient does not move and is asked to simply feel the stimulus without an active53
motor or cognitive reaction (Schabrun and Hillier, 2009; Yilmazer et al., 2019).54

Somatosensory interventions have shown promising results in enhancing sensory discrimination –i.e.,55
the skill to discern and interpret specific sensory stimuli (O’Tool, 2017)– in stroke survivors (Taylor et al.,56
2021). Moreover, sensory retraining interventions have been found beneficial for the recovery of motor57
function in stroke patients (Yilmazer et al., 2019) and improvement of somatosensory function, especially58
those interventions based on the discrimination of textures, proprioceptive discrimination tests, and tactile59
object recognition (Carey et al., 2011; Elangovan et al., 2017; Yeh et al., 2021). Yet, in the last decade,60
six reviews concluded that there is insufficient empirical evidence regarding the effectiveness of sensory61
retraining interventions on the recovery of sensorimotor function after a brain injury (Schabrun and Hillier,62
2009; Taylor et al., 2021; Yilmazer et al., 2019; Serrada et al., 2019; Turville et al., 2019; Doyle et al.,63
2010). These reviews cited poor quality of study designs, variations in outcome measurements (Carlsson64
et al., 2021), small sample sizes, and inadequate statistical power to detect meaningful differences between65
control and treatment (Taylor et al., 2021) as limiting factors to draw clear conclusions. Two recent reviews66
about the effectiveness of somatosensory interventions concluded that high-quality research is necessary to67
determine whether sensory retraining is effective in stroke rehabilitation (Yilmazer et al., 2019; Serrada68
et al., 2019).69

Quantitative reliable assessment of the sensorimotor performance is needed to evaluate if patients are70
achieving functional rehabilitation gains after somatosensory interventions (Taylor et al., 2021; Turville71
et al., 2019). However, conventional somatosensory assessments may present variations in results, especially72
when the assessment is performed by different clinicians (Lincoln et al., 1991). A systematic, qualitative,73
and objective assessment of touch sensibility would facilitate diagnosis, prognosis, and the selection of74
adequate somatosensory treatments according to the patients’ touch sensibility (Pumpa et al., 2015).75

Robotics is a promising technology to quantitatively assess somatosensory function and provide so-76
matosensory training. Compared to other conventional treatments, robotic devices are capable of delivering77
precise and reproducible stimuli (Zbytniewska et al., 2021). Further, robots can physically guide the78
patients’ limbs during sensorimotor training (Basalp et al., 2021), facilitating the admission of patients79
with severe motor impairments into the training and enhancing their motivation and engagement during80
repetitive and intensive practice (Rowe et al., 2017). However, despite their potential, the usage of robots to81
assess and treat somatosensory function is, to date, mainly neglected (Ballardini et al., 2018; Handelzalts82
et al., 2021). Although research efforts have been made to assess and enhance proprioceptive function83
with robots –e.g., Kenzie et al. (2017); Zbytniewska et al. (2021); Elangovan et al. (2017); Yeh et al.84
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(2021); Cappello et al. (2015)–, fewer efforts have been done into assessing and training tactile function85
(Ballardini et al., 2018). Currently, there is a clinical need to develop robotic systems to assess and train86
touch sensibility in patients with limited motor function that within this project we aim to meet.87

When designing a robotic device for assessment and training of touch sensibility, especially for those88
patients with severe motor impairments who require robotic assistance to move their paretic limbs, it is89
important to first understand the differences in touch sensibility perception when a patient is assisted or not.90
The perception of touch sensibility may differ depending on the mode of touch: active or passive touch.91
Fundamental studies of touch sensation refer to active touch as the action of touching, e.g., by actively92
moving the limbs. In contrast, passive touch refers to two different processes: 1) the act of being touched,93
while the limb does not move/is not passively moved (Lederman and Klatzky, 2009), and 2) the act of94
touching while being assisted by an external agent (e.g., by a therapist) (Symmons et al., 2004). It is not yet95
fully understood how the nervous system processes active and passive touch. According to Pertovaara et al.,96
active touch relies on the afferent-induced mechanism and the motor command signals, whereas passive97
touch relies mainly on the afferent-induced mechanism (Pertovaara et al., 1994). Further, active touch98
involves participants choosing their exploration strategy, notably the intention, planning, preparation, and99
execution of the movements (Van Doorn et al., 2012). On the contrary, passive exploration is considered to100
minimize any involvement of decision-making processes (Van Doorn et al., 2012), allowing participants to101
focus on the perception of the stimulus (Magee and Kennedy, 1980). Consistently, Van Doorn et al. (2012)102
found an increase in attentional networks activity in the parietal lobe in active touch compared to passive103
touch using functional Magnetic Resonance Imaging (fMRI).104

In their review, Symmons et al. (2004) attributed differences in sensory perception between active and105
passive modalities to the task characteristics and the nature of the stimulus, rather than the exploration106
mode. For example, Magee and Kennedy (1980) found passive exploration to be better in the discrimination107
of dot-pattern shapes when compared to active exploration, while Richardson et al. (1981) found no108
differences between active and passive touch in discriminating embossed-dots mazes. Vega-Bermudez et al.109
(1991) associated the differences between active and passive touch to two main causes: 1) the experimenter110
failing to provide equivalent somatosensory information in both modalities and 2) differences in the sensory111
neural mechanisms underlying tactual pattern recognition behavior. Thus, for comparing active versus112
passive touch, the experimenter should provide the same stimulus in both conditions, including kinesthetic113
information regarding the movement of the limb. Furthermore, other subjective factors such as motivation,114
might play a role in the differences between passive and active touch. Active engagement during training115
has been associated with higher motivation (Colombo et al., 2007), while high motivation is associated with116
an increase in motor adjustments based on sensory signals (Lezkan et al., 2018). However, passive touch117
may allow participants to better focus on the task (i.e., to the sensory input), enhancing their perceived118
competence (Wenk et al., 2022).119

This study aims to evaluate a novel robotic intervention to assess and train tactile function and, when120
needed, provide robotic assistance to guide the hand during passive touch. We developed a sensory121
discrimination task to characterize and treat the acuity of touch sensibility via the perception of virtual122
textures rendered by a haptic robotic device (Fig. 1). The novelty of our approach relies on the provision123
of the haptic rendering forces from the virtual textures that are independent of the normal forces that124
participants exert against the virtual surface, and thus, providing more controlled stimuli within and125
between participants.126

We ran a three-day within-subject experiment with 37 healthy participants who actively and passively127
(i.e., assisted by the robot) explored a set of virtual haptically rendered textures and selected the odd texture128
among three visually identical textures. The first session consisted of two initial baselines. The remaining129
two sessions comprised three phases: baseline, training, and retention, performed each with passive or130
active touch in randomized order. In this paper, we evaluated: 1) the system reliability, 2) the change in131
participants’ touch sensibility after somatosensory training, 3) differences in touch discrimination changes132
pre-post training between active and passive conditions, and 4) differences between passive and active133
touch conditions on participants’ motivation. We hypothesized that passive exploration would have a higher134
reliability coefficient than active exploration since the provision of stimuli is more controlled. We also135
hypothesized that participants would improve their tactile acuity of textures after training. Moreover, the136
improvement of touch sensibility after training would not differ between active and passive conditions in137
our controlled set-up. Finally, we expected active exploration to generally enhance participants’ effort,138
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Table 1. Participants demographics. Thirty-seven (one participant excluded) participants were recruited
for the experiment.

Characteristics Participants (N= 36)
no. (%)

Gender
Female 18 (50)
Male 18 (50)
Age
<25 yr 4 (11.111)
25-35 yr 25 (69.444)
≥ 35 yr 7 (19.444)
Handedness
Right 34 (94.444)
Left 2 (5.556)

pressure, and enjoyment/interest during the task (Lezkan et al., 2018), yet, haptic guidance may specifically139
increase the self-reported level of perceived competence (Wenk et al., 2022).140

2 METHODS

2.1 Participants141

Thirty-seven healthy participants gave written informed consent to participate in the study. One participant142
was excluded from the analysis due to a hardware failure during the second session and could not participate143
in the third session. Thus, 36 participants (50 % females) completed the experiment, see demographic144
information in Table 1. The study was approved by the local ethical committee (Swiss Cantonal Ethics145
Committee; Basec ref: 2018-01179) and the Swiss Agency for Therapeutic Products (Swissmedic ref:146
100000432), and conducted in compliance with the Declaration of Helsinki. The participants’ hand147
dominance was assessed with the Edinburgh Handedness Inventory (Bryden, 1977).148

The sample size was calculated using the R package “sensR” (Christensen and Brockhoff, 2020). First,149
we ran a first pilot experiment with seven healthy participants, in which the average number of correct150
responses after 40 trials was 25. Second, we used the average number of correct responses, assumed the151
desired power of 0.95, a type I error of alpha equal to 0.05, and a probability guess of 1/3 (i.e., triangle test)152
to compute the sample size. The result of the sample size computation was 34.153

2.2 Experimental set-up154

The experimental set-up (Fig. 1) consisted of a 24 inch monitor (S24E650, Samsung, South Korea), a155
robotic device (Delta.3, Force Dimension, Switzerland), a passive arm weight support (SaeboMAS mini,156
Saebo, USA), noise-canceling headphones (WH-1000XM4, Sony, Japan), and a custom-made response157
box with a push-button.158

During the experiment, participants were seated at a desk on a comfortable chair with backrest. Their159
dominant arms were placed using Velcro® straps in a passive arm weight support device attached to the160
table. The passive arm weight support was used to reduce fatigue during the experiment. The weight161
compensation level was adjusted to each participants’ arm weight and kept constant during the three sessions.162
The location of the monitor, robot, arm-weight support, and response box were adjusted to the handedness163
of each participant before the start of the experiment and kept constant during the whole experiment.164
Participants performed the experiment with their dominant hand. Right- (left-)handed participants had the165
monitor and response box on the left (right) side of their sagittal plane and the arm-weight support on their166
right (left) side.167

Participants were asked to hold the end effector of the haptic device with their dominant hand at all times.168
Right- (left-)handed participants had the robot located on the right- (left-)side of their sagittal plane and169
aligned to the shoulder of the dominant arm. The chair height was adjusted such that the participant’s170
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Figure 1. Experimental set-up. The Delta.3 robot was located on a table next to a LED monitor, which
showed the virtual environment. Participants wore noise-canceling headphones and used an arm-weight
support system, which was adjusted to each participant’s individual arm weight. Note that the monitor is
located on the right-side of a right-handed user only for illustration purposes (during the experiment it was
located on the left side of the robot).

shoulder was not below the robot end effector in the center of the workspace. We exchanged the robot171
commercial end effector with a new 3D-printed handle to improve participants’ comfort. The participants’172
hands were secured to the robot end effector using a Velcro® strap. The participants were wearing active173
noise-canceling headphones and we delivered white-noise during the experiment to mask any auditory cues174
from the robot actuators.175

2.3 The haptic exploration task176

We designed a virtual environment to assess and train participants’ touch discrimination using haptically177
rendered virtual textures (i.e., stimuli) using Unity (Unity Technologies, USA). During the experiment, the178
participants were asked to discriminate the odd texture among three visually identical textures. We asked179
participants to select the odd texture by pressing a custom-made button on the response box with their180
non-dominant hand when they were on top of the texture they believed was different from the other two. If181
a participant pressed the button outside a texture, we registered the last texture explored as their response.182
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Table 2. The set of experimental stimuli. The standard stimulus St with spatial frequency fSt was kept
constant during the experiment. The spatial frequency of the comparison stimulus fCo was varied every
trial along with the more coarse and less coarse textures sets. Each Co stimulus was presented five times
during a block of 40 trials.

fSt (m−1)
fCo (m−1)

More coarse Less coarse

164 100 116 132 148 180 196 212 228

The virtual textures were displayed horizontally on the monitor. Each texture had the same dimensions in183
the physical (robot) workspace (0.176 m x 0.02 m), an area large enough to allow participants to move184
the robot end effector tangentially across the texture. The textures were located in parallel and separated185
0.01 m from each other along the x-axis (blue axis in Fig. 1).186

We rendered the virtual textures as sinusoidal gratings (see section 2.5 and Fig. 2) using the haptic device187
Delta.3. During each trial, participants explored the textures either with active or passive touch conditions188
(see section 2.6). Participants were allowed to explore each texture as many times as wanted and switch189
between textures when desired.190

2.4 Tactile stimuli191

The stimuli consisted of virtual sinusoidal gratings along the robot end effector y-axis (Fig. 2). The192
interaction forces between the participants’ hands and the gratings were rendered by the Delta.3 robotic193
device and generated by the following equation:194

Fg = C sin (2πfyEE). (1)

The grating forces Fg depended on the robot end effector position along the y-axis, yEE , and the spatial195
frequency f of the grating, i.e., the reciprocal of the spatial period defined as the distance between two196
consecutive crests (Fig. 2). The constant C = 3 N determined the amplitude of the sinusoidal and did not197
change between textures.198

Several different virtual textures were generated (see Table 2). They included eight comparison stimuli199
(Co) and one standard stimulus (St), which differed between them in terms of the value of the spatial200
frequency f . The standard stimulus was fixed during the experiment and employed as a basis for quantitative201
comparison against the set of comparison stimuli, i.e., stimuli with varying physical attributes. In every202
trial –defined as a single discrimination attempt of the odd texture in a set of three textures– the three203
virtual textures consisted of two types of stimuli, the St and a random stimulus selected from the set of204
Co. We employed the triangle testing method for sensory discrimination (described in Bi (2015), page205
3), i.e., two of the textures were equal with possible combinations sets: St/St/Co, St/Co/St, Co/St/St,206
Co/Co/St, Co/St/Co, St/Co/Co. The presentation order of the stimuli followed the method of constant207
stimuli (described in Gescheider (1997), page 46).208

The St was fixed through all trials, while the Co was varied in each trial, from the pool of preselected209
Co. Two preselected pools of Co were created, which spanned two ranges of textures: more coarse and210
less coarse textures (Table 2). The more coarse textures had a spatial frequency that ranged from 100 to211
148 m−1, and the less coarse textures ranged from 180 to 228 m−1. Each spanned set of the Co (i.e., more212
and less coarse sets) consisted of four different stimuli with equal inter-space distance between consecutive213
Co that was set to 16 m−1. The most coarse texture (100 m−1) corresponded to a spatial period of 10 mm,214
whereas the least coarse texture (228 m−1) corresponded to a spatial period of 4.38 mm. The St was set to215
164 m−1 –the mean of all Co spatial frequencies– and kept constant throughout the experiment. We chose216
the spatial frequency of the St to be the average of all Co spatial frequencies to avoid any bias toward either217
of the textures roughness directions.218
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Figure 2. Visual representation of a virtual sinusoidal grating. Each texture consisted of adjacent crests
along the y-axis. The spatial frequency f was defined as the inverse of the spatial period λ, i.e., the distance
between two consecutive crests. The blue ball illustrates the position of the robot end effector, yEE , in the
virtual environment. The scale and size of the texture and the ball are only for visual purposes and do not
represent the scale and size used in the experiment.

The Co spatial frequency values in Table 2 had various levels of discrimination difficulty, i.e., the closer219
they were to the fSt the more similar they were perceived and more difficult to differentiate with respect to220
the St became. The values of the spatial frequencies of Co and St were selected after running a first pilot221
experiment with seven healthy participants such that they were within the range used in literature (Campion222
and Hayward, 2005; Cholewiak et al., 2010), considering the resolution of the robot (i.e., 0.02 mm), and223
stimuli that were not judged as too easy nor too difficult by the participants.224

2.5 Haptic rendering of virtual textures225

The virtual textures –visually represented in Fig. 3– were rendered using the grating force calculated in226
equation 1 (see section 2.4). The textures were rendered (i.e., through the force Frd) only on the y-direction227
and participants only perceived them when they were in contact with the texture, i.e., when the position of228
the robot end effector was below the virtual table height (zEE<ztbl = 0.001 m) and within the perimeter229
of the virtual textures in the xy-plane.230

Frd =

{
Fg if contact is True
0 else. (2)
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Figure 3. Visual representation of the three virtual textures. The coordinate center of the workspace is
denoted by (0,0,0) and was located in the center of the second texture. The robot end effector is depicted
with a blue ball whose center had the coordinates (xEE , yEE , zEE). The scale and size of the textures and
the ball are only for visual purposes and do not represent the scale and size used in the experiment.

The three virtual textures laid on top of a haptic table of 0.20m x 0.10m whose surface was rendered by231
the robot using a Proportional-Derivative (PD) controller:232

Fz =

{
Kz(ztbl − zEE) +Bz( ˙−zEE) if zEE < ztbl
0 else, (3)

where the rendered force in the vertical direction Fz was proportional (Kz = 1960 N/m) to the difference233
between the end effector vertical position zEE and the height of the virtual table ztbl = 0.001 m when234
the robot end effector height was below the height of the virtual table (zEE < ztbl). The force in the235
vertical direction was zero otherwise. We added a damping element (Bz = 28 N.s/m) to avoid excessive236
oscillations when the robot end effector was in contact with a rigid virtual surface (Colgate and Brown,237
1994). The robot was transparent in the x-direction at all times.238
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2.6 Exploration conditions: active and passive touch239

Participants explored the virtual textures under two different conditions: with active and passive touch.240
In this study, we employ the definition of passive touch provided by Symmons et al. (2004), i.e., the241
act of touching an object while being assisted by an external agent (Symmons et al., 2004). In our case,242
this external agent was the robot, which physically guided the participants’ dominant hands during the243
exploration of the virtual textures. The haptic guidance Fhg was provided using the PD controller described244
in equation 4:245

Fhg =

{
ÿR +Khg(yR − yEE) +Bhg( ˙yR − ˙yEE) if contact is True
0 else, (4)

where yEE was the y coordinate of the robot end effector position, i.e., the axis along the perceived246
textures, and ˙yEE its derivative. The stiffness Khg was set to 300 N/m, and damping Bhg to 60 N.s/m.247
The reference trajectory –defined by ÿR, ˙yR, and yR– was obtained following the cycloidal motion law248
(described in section 1 of the supplementary material).249

Participants were instructed to not oppose to the haptic guidance force and move along with the robot.250
They could move between textures by either exiting the textures sides in the XY -plane or by lifting the251
end effector (z-axis). Therefore, they were instructed not to lift the end effector while the guidance force252
was on.253

Taking together equations 2, 3, and 4, the total force applied by the robot at the end effector was:254

FTotal = Frd + Fz + Fhg. (5)

2.7 Study protocol255

Fig. 4 illustrates the experimental protocol of the within-subject experimental design. Participants256
completed three sessions, performing one session per day. There was a minimum of one to a maximum of257
two days between sessions.258

2.7.1 First session259

The first session started with a familiarization phase followed by two initial baselines (iBL), which260
included one baseline per condition (i.e., active and passive touch). During the familiarization phase, all261
participants familiarized themselves with the robot and the experimental stimuli. Participants were invited262
to explore a single texture of 100 m−1, i.e., the more coarse texture in Table 2. During familiarization, we263
also provided visual feedback that mapped the haptic sensation (see Fig. 5A) to facilitate the understanding264
of the virtual gratings. The dark color in Fig. 5A represents the grooves, while the light blue color represents265
the texture crests. Subsequently, in a single familiarization trial, we asked them to select the odd texture266
among three textures that looked identical (see Fig. 5B). The texture combination for all participants was267
228 m−1, 228 m−1, and 100 m−1, respectively, from Table 2.268

The first session included two initial baseline tests (iBL), one performed with the active and one with269
the passive condition. Half of the participants (randomly selected) performed the first iBL with the active270
condition and the second iBL with passive condition. The other half performed the iBLs in the contrary271
order. Each iBL included 40 trials, where each of the eight different comparison stimuli (Co) in Table272
2 was presented a total of five times. The order of presentation of the stimuli was randomized for each273
participant and each condition.274

Correct responses in each trial were registered following the criteria:275

Yi =

{
1 if the response is correct
0 else, (6)

where Yi represents the correctness of the response for each trial and stimuli i ∈ {1, 8}. The total number276
of correct responses was shown to the participant after finishing each iBL block. We saved the responses277
for all the 40 trials per iBL to compute the probability of correct responses (see section 2.8).278
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Figure 4. Experimental protocol. Participants completed three sessions on different days. The first session
included familiarization and an initial baseline (iBL) for each condition. Half of the participants (randomly
allocated) performed the first iBL in the active condition, whereas the second half had the passive condition
first. We performed a second randomization to define the order of the training conditions during sessions 2
& 3. Each second and third session consisted of baseline (BL), training, and retention (RT) with either,
passive or active conditions.

2.7.2 Sessions 2 & 3: Training279

The sessions in the following experimental days included baseline (BL), training, and retention280
(RT) phases (Fig. 4). Half of the participants (randomly allocated) performed the second session in the281
passive condition and the other half in the active condition. This was reversed in the third session, i.e.,282
participants who performed the second session in the passive condition continued the third session with283
the active condition and vice versa. The BL and RT were consistent with the iBL session, i.e., the eight284
stimuli comparisons (Co) in Table 2 were presented a total of five times each. We randomized the stimuli285
presentation order for each phase (BL and RT).286

The training phase consisted of 120 trials, grouped into three blocks of 40 trials each. Participants could287
rest for 2 minutes between training blocks. Each 40-trial block consisted of eight different comparison288
stimuli presented five times each. The comparison stimuli during training differed from those used in the289
baseline and retention phases (see section 2.7.3). The stimuli presentation order was randomized for the290
first training block and repeated for the second and third training blocks.291

During training, after each trial, we provided terminal visual feedback to the participants (Fig. 6). This292
visual feedback consisted of 1) a texture turning green (i.e., the odd texture) and the two others red (i.e.,293
incorrect responses), and 2) black parallel lines along the x-axis that represented the location of the texture294
grooves. Participants had then the opportunity to re-explore the textures as desired.295
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Figure 5. Virtual environments during familiarization. A: The visual feedback that mapped the grating
rendering was shown to help participants understand the haptic stimuli provided during the experiment.
The dark color represented grooves, while the light blue color represented texture crests. Participants were
encouraged to actively explore the texture as much as desired. B: After the single texture familiarization,
participants were asked to discriminate the odd texture among three virtual textures with identical visual-
ization. The texture combination used for all participants was 228 m−1, 100 m−1, 100 m−1, respectively.

2.7.3 Comparison stimuli during training296

After completion of BL, we used a psychometric function to fit the probability of the participants having297
a correct response in BL based on the stimulus intensity –i.e., the absolute difference between the spatial298
frequency of the Co (fCo) and the spatial frequency of the St (fSt), divided by the spatial frequency of the299
St). We employed the logistic function:300

F (x|α, β) = 1

1 + exp(−(α + βx))
, (7)

where α and β are the intercept and slope of the logistic function, respectively. Two logistic regressions301
were computed after the BL data were collected, one for the more coarse textures and a second one for302
the less coarse textures. Once the logistic functions were fitted to the BL data, we computed the point of303
subjective equality (PSE) by selecting the probability of a positive response π = 0.50 –i.e., the point at304
which two stimuli are perceived as one– for each participant and for each texture set, i.e., more and less305
coarse sets, PSEmc and PSElc, respectively). We then used these calculated values to create two new306
spanned ranges of comparison stimuli that were employed during training, i.e., we adapted the set of Co307
that were employed during training to each participants’ performance during BL. Information about this308
process can be found in the supplementary material 2.309

The fitting of the logistic functions did not always converge, i.e., the PSE was not within the range of310
the BL difference ratio (i.e., between 0.39 (-) and 0.098 (-)). In those cases, the same Co stimuli used for311
BL and RT were employed during training.312

2.8 Outcome variables313

2.8.1 Task performance314

Probability of correct responses315

The participants’ texture discrimination performance was assessed using the probability of correct316
responses, calculated following the equation:317
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Figure 6. The terminal visual feedback provided after each trial during training. The green color repre-
sented the correct response (i.e., the odd texture), whereas the red color represented the twin textures (i.e.,
incorrect responses). The black lines were located along the grooves of the textures. Participants were
allowed to re-explore the textures as desired.

pi =
1

ni

ni∑
i=1

Yi. (8)

The probability of correct responses was calculated for each comparison stimulus, denoted by the318
subindex i ∈ {1, 8}. The total number of times the response was correct was divided by the number of319
times ni the Co stimulus was presented. For the iBL, BL, RT, and each training block of 40 trials, the total320
number of times each stimulus was presented was ni = 5. The probability of correct responses for each321
stimulus was then averaged across all eight Co stimuli (four from more and four from less coarse textures)322
for each participant.323

Point of subjective equality324

The participants’ psychometric task performance during BL and RT was also assessed using the point of325
subjective equality (PSE) (see equation S4). Compared to the probability of correct responses, the PSE is326
a performance metric that is more robust against participants’ guessed responses. We averaged the PSE327
values for both the more coarse and less coarse textures. We only included PSE values that were within328
the range of the difference ratios provided during the experiment. The PSE values included were between329
0.39 (-) and 0.098 (-). If a participant correctly responded to all trials, i.e., pi = 1, the PSE score for that330
specific phase (i.e., BL or RT) was set to the minimum value of the difference ratio (i.e., 0.098 (-) during331
BL and RT). The PSE could not be calculated when the logistic function did not converge. In those cases,332
we excluded from the data analysis paired cases in which PSE was not calculated either for BL or RT for a333
participant.334

2.8.2 Kinematic outcomes335

We also evaluated the participants’ texture exploratory behavior during BL and RT. In particular, per each336
trial, we calculated the scanning duration –i.e., the average time participants spent in contact with the three337
textures and moving faster than 0.01 m/s–, the path length –i.e., the path covered by the end effector over338
the texture averaged for the three textures– and the mean scanning speed –i.e., the mean end effector speed339
in y-direction.340
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2.8.3 Motivation outcomes341

We assessed the participants’ subjective motivation after completing each active and passive iBL in342
session 1. Participants responded to 12 items selected from four subscales (i.e., Effort/Importance, Perceived343
Competence, Interest/Enjoyment, and Pressure/Tension) of the original Intrinsic Motivation Inventory344
(IMI) (Ryan et al., 1990). Three items per subscale were included (see supplementary material 3, table S1345
for the selected items). Participants rated each item using a 7-point Likert scale, with 1 indicating “not at346
all true” and 7 denoting “very true”. We averaged the answers of the three items for each subscale.347

2.9 Data processing and statistical analysis348

2.9.1 System reliability349

We estimated the system test-retest reliability –i.e., the correlation between two measurements from the350
same participant under the same conditions at distinct time points (Koo and Li, 2016; Salter et al., 2005)–351
by comparing the probability of correct responses and PSE scores between iBL (day 1) and BL (day 2) for352
each condition (passive and active touch).353

We used the Intraclass Correlation Coefficient (ICC). The ICC reflects the degree of correlation and354
agreement between the participants’ baseline (day 1 vs. day 2) measurements. The ICC value was355
estimated using the Python pingouin.intraclass corr function and selecting the output of average random356
raters (McGraw and Wong, 1996), i.e., considering an absolute agreement with multiple measurements.357
Reliability was considered excellent when ICC > 0.90, good when 0.75 < ICC ≤ 0.90, moderate when358
0.5 < ICC ≤ 0.75 and poor otherwise (Koo and Li, 2016).359

To analyze the ICC for each condition, we allocated participants who performed the active condition on360
the second session to ICCactive group, whereas those who performed the passive condition on the second361
day were allocated to the ICCpassive group. Each group included 18 participants. We then compared362
the baseline in the second session BL of each condition group to their corresponding iBL in session 1363
–note that on day 1, all participants performed an active iBL and a passive iBL. We did not consider BL364
on day 3 to avoid any training effects from the second day training. Absolute test-retest reliability was365
visually inspected using Bland-Altman plots for active and passive conditions for the probability of correct366
responses and the PSE.367

2.9.2 Training effects368

For each task performance and kinematic outcome, we calculated the mean of the participants’ BL and369
RT trials per condition –i.e., passive and active touch. The normal distribution of the outcome variables370
was verified using QQ-plots and the Shapiro-Wilk test.371

To study the training effects on the task performance and kinematic outcome variables for each condition,372
we performed repeated-measures one-way ANOVAs –with factor time: BL and RL – for data with normal373
distribution. We analyzed non-normal data with Friedman tests.374

We also evaluated the differences in training effects on touch sensibility between conditions –i.e.,375
condition effects: Passive vs. Active– by comparing the pre-post changes (RT-BL) in task performance376
between active and passive conditions using repeated-measures one-way ANOVAs for data with normal377
distribution, and Friedman test for non-normal distributed data.378

2.9.3 Motivation379

To analyze how active and passive conditions affected participants’ motivation, we performed separated380
repeated measures one-way ANOVAs for each subscale –with factor condition: Active and Passive– with381
normal-distributed data, and Friedman test for non-normal distributed data.382

The assumption of sphericity was met for all tests. We used the Python package “Pingouin” (Vallat, 2018)383
for all the statistical tests. Finally, all statistical tests were set at a significance level of α = 0.05.384
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Figure 7. Bland-Altman plots for the probability of correct responses in iBL and BL for the Active
condition (A) and Passive condition (B). The blue dashed line represents the mean difference between iBL
and BL. The lower and upper orange dashed lines represent the lower and upper 95 % confidence limits,
respectively.

3 RESULTS

3.1 System Reliability385

The ICC values for the probability of correct responses were computed for each condition. The386
active condition (ICC(2, k) = 0.497, 95 % CI [−0.170, 0.800], p = 0.055), and passive condition387
(ICC(2, k) = 0.518, 95 % CI [−0.260, 0.820], p = 0.069) showed poor and moderate reliability, re-388
spectively. Similarly, the ICC values for the PSE were computed for each condition. The active389
(ICC(2, k) = −1.885, 95 % CI [−12.530, 0.200], p = 0.955) had a poor reliability, whereas the passive390
condition (ICC(2, k) = 0.795, 95 % CI [0.010, 0.950], p = 0.025) showed a good reliability.391

The Bland-Altman plots for the probability of correct responses and PSE for active and passive conditions392
are shown in Fig. 7 and Fig. 8, respectively. From Fig. 7A it can be observed that in just one participant the393
difference between iBL and BL measurements for the probability of correct responses is over the upper394
bound of the 95 % CI, while the mean of the differences between baselines is around 0.06 (-). From Fig.395
7B, it can be seen that the difference between iBL and BL is closer to zero (-0.03 (-)) compared to the396
active condition. Fig. 8A shows that there was a participant whose PSE difference between iBL and BL for397
the active condition was outside of the CI. On the contrary, all data points in Fig. 8B for the PSE in passive398
condition were within the 95 % CI with zero mean.399

3.2 Task performance400

Participants significantly improved the probability of correct responses from BL to RT in the active401
(X2(1, 35) = 4.235, p = 0.039; Fig. 9A, Table 3) and passive conditions (F (1, 35) = 15.564, p < 0.001;402
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Figure 8. Bland-Altman plots for the point of subjective equality in iBL and BL for the Active condition
(A) and passive condition (B). The blue dashed line represents the mean difference between iBL and
BL. The lower and upper orange dashed lines represent the lower and upper 95 % confidence limits,
respectively.

Fig. 9A, Table 3). We found no significant differences between the active and passive conditions in the403
pre-post training changes in the probability of correct responses (Table 4).404

Participants did not significantly improve their PSE values from BL to RT in any of the conditions (Fig.405
9B, Table 3). There were also no significant differences in the RT-BL changes between the conditions406
(Table 4).407

3.3 Kinematic outcomes408

We did not find significant changes in the scanning duration or path length from BL to RT in any of the409
conditions, neither we found differences in the RT-BL changes between conditions (Fig. 10A & B, Table 3410
& 4). However, we found that participants performed faster exploratory movements after training with both411
conditions (active: F (1, 35) = 12.121, p = 0.001; passive: F (1, 35) = 17.989, p < 0.001; Fig. 10C, Table412
3). The increase in scanning speed was significantly higher in the active condition compared to the passive413
condition (F (1, 35) = 8.017, p = 0.008, Fig. 10C, Table 4).414

3.4 Motivation415

We did not find significant differences between active and passive conditions in the first experimental416
session in the IMI subscales Effort/Importance, Interest/Enjoyment, and Pressure/Tension (Table 5).417

However, we found a significant difference between active and passive conditions in the Perceived418
Competence subscale (F (1, 35) = 9.701, p = 0.004, Table 5).419
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Figure 9. Task performance during baseline (BL), retention (RT), and the changes between baseline and
retention (RT-BL) for the active and passive conditions. A: Probability of correct responses. B: Point of
subjective equality (PSE). Statistically significant differences are marked by ∗(p < 0.05), ∗∗(p < 0.001).
The error bars represent the confidence intervals.

Table 3. Overview of results for task performance and kinematic outcome variables in active and passive
conditions during the baseline (BL) and retention (RT) phases. Mean and standard deviation (in brackets)
are reported when the data were normally distributed and median and mean absolute deviation (in brackets)
when the data were non-normal. Statistically significant values are highlighted in bold.

Training Effects
Independent Variables Active Passive

BL RT p-value BL RT p-value
Task performance
Probability of correct responses (-) 0.644 (0.120) 0.725 (0.116) 0.039 0.660 (0.124) 0.733 (0.105) <0.001
Point of subjective equality (-) 0.206 (0.058) 0.193 (0.073) 0.450 0.192 (0.068) 0.172 (0.053) 0.163
Kinematic outcomes
Scanning duration (s) 4.418 (1.537) 4.125 (1.624) 0.153 3.969 (1.569) 3.954 (1.514) 0.931
Path length (m) 0.804 (0.281) 0.842 (0.338) 0.356 0.820 (0.259) 0.788 (0.221) 0.343
Scanning speed (m/s) 0.175 (0.043) 0.194 (0.053) 0.001 0.172 (0.009) 0.176 (0.007) <0.001

4 DISCUSSION

We developed and evaluated a novel virtual reality-based haptic system to assess and train touch discrimina-420
tion. The novelty of our system is that the haptic rendering forces of the textures are applied tangentially to421
the hand and do not depend on the normal force that participants exert on the texture surface, as is the case422
when using real textures. Thus, by disentangling the tangential and normal forces, we aimed to provide423
more controlled stimuli within and between participants.424

Thirty-six healthy participants were asked to discriminate virtual textures using active and passive425
conditions, i.e., with the robot not guiding their movements vs. the robot guiding their hands. We evaluated426
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Figure 10. Kinematic outcomes during baseline (BL), retention (RT), and the changes between baseline
and retention (RT-BL) for the active and passive conditions. A: Scanning duration. B: Path length. C:
Scanning speed. Statistically significant differences are marked by ∗p < 0.05, ∗∗p < 0.001. The error bars
represent the confidence intervals.

Table 4. Overview of results comparing the pre-post changes from baseline (BL) to retention (RT) in
active versus passive conditions. Mean and standard deviation (in brackets) are reported when the data
were normally distributed and median and mean absolute deviation (in brackets) when the data were
non-normally distributed. Statistically significant values are highlighted in bold.

Active vs Passive
Independent Variables Active Passive

RT-BL RT-BL p-value
Task performance
Probability of correct responses (-) 0.046 (0.124) 0.074 (0.112) 0.323
Point of subjective equality (-) 0.013 (0.087) 0.020 (0.063) 0.285
Kinematic outcomes
Scanning duration (s) -0.293 (1.203) -0.015 (1.028) 0.261
Path length (m) 0.039 (0.248) -0.033 (0.206) 0.151
Scanning speed (m/s) 0.020 (0.034) 0.004 (0.006) 0.008

the reliability of our system and the potential to train tactile sensibility in a within-subjects three-session427
experiment.428

4.1 The system reliability429

We evaluated our system reliability by comparing the baseline tests on two different days. We found430
that the reliability with respect to the probability of correct responses ranged from poor to moderate in431
active and passive conditions, respectively. The reliability relative to the PSE differed between conditions;432
although our system showed good reliability in the passive condition, the reliability in the active condition433
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Table 5. The results for each motivation subscale comparing the differences between initial baseline
(iBL) active and initial baseline passive. Mean and standard deviation (in brackets) are reported when the
data were normally distributed and median and mean absolute deviation (in brackets) when the data were
non-normal. Statistically significant values are highlighted in bold.

Active vs Passive
Independent Variables Active Passive

iBL iBL p-value
Motivation
Effort/Importance (-) 5.213 (1.130) 5.028 (1.018) 0.108
Perceived Competence (-) 2.833 (1.085) 3.296 (1.041) 0.004
Interest/Enjoyment (-) 4.574 (1.407) 4.694 (1.470) 0.245
Pressure/Tension (-) 2.000 (1.061) 2.000 (0.877) 0.368

was rather poor. This is in line with our hypothesis of better reliability in the passive condition as by guiding434
the movements with the robot, we provided a more controlled texture exploration.435

It is recommended that the test-retest ICC value should be at least 0.90 if the system is aimed to assess436
or evaluate the treatment of a patient (Salter et al., 2005). Our system did not reach excellent reliability437
in any of the performance metrics evaluated with 36 healthy participants (18 subjects per condition). Yet,438
several studies have shown poor to moderate reliability for sensory assessment in a healthy population, e.g.,439
when using robotic devices (Rinderknecht et al., 2018), and physical textures (Ofek et al., 2018). It has also440
been observed lower reliability values in robotic sensory assessments in the unimpared limb compared to441
the impared limb in stroke patients (Rinderknecht et al., 2018). This has been suggested to be due to the442
dependency of the ICC on the between subject variability, that in a healthy population is usually small.443
Thus, we expect that including brain-injured patients in future studies would result in higher reliability444
values, especially when testing the impaired limb – e.g., excellent reliability in a tactile discrimination445
test that required stroke patients to discriminate differences in physical finely graded ridged surfaces was446
observed in an experiment with 35 patients (Carey et al., 1997).447

There may be other reasons for the limited reliability observed in our system. First, contrary to Carey448
et al. (1997), we did not account for a possible lack of familiarization in the first session. Although we449
did include a short familiarization phase, it only included one trial. Thus, probably between the two450
sessions, learning occurred. Furthermore, the familiarization was only performed with the active condition.451
Second, in our three-day experiment, participants experienced both conditions in the first session. Some452
participants, therefore, first had an active and then passive baseline condition on day one, followed by an453
active condition on day two, while some participants had an active and then passive baseline on the first454
day, followed by a passive condition on the second day. Thus, in some cases, there was a baseline with the455
other condition between two baselines of the same type (iBL and BL) that could have served as “training”,456
potentially hampering the reliability. Thus, our results support the idea that more extensive familiarization457
trials should be performed prior to clinical assessments. Finally, the variance of the outcome measurements458
between sessions may be a result from the spontaneous fluctuations (i.e., noise) of the somatosensory459
system (Ribeiro et al., 2016).460

The ICC has been shown to be sensitive to intra- and inter-subject variability and that reporting the CI for461
reliability is also important (Germanotta et al., 2018). Yet, reporting ICC values together with the CI alone462
might provide insufficient information for a reliability analysis (Rankin and Stokes, 1998). Therefore, to463
extend our system reliability analysis and visually inspect the agreement between the first (iBL) and second464
measurements (BL), we performed Bland-Altman plots for both performance metrics. Bland-Altman plots465
on the proportion of correct responses and PSE can be employed to observe the magnitude of measurement466
error of each test-retest difference (iBL-BL). In the case of the passive condition, the difference between467
the two measurements was relative low and all the data points laid within the limit of confidence (chosen468
as 95 %) in both performance metrics. However, in the active condition some data points laid outside469
the CI boundaries in both performance metrics. Thus, using the robot to guide the movements during470
passive texture exploration seems a more reliable assessment tool than allowing participants to freely471
explore. This finding will guide next experiments with brain-injured patients. It seems reasonable to472
not include active touch during follow-up experiments with patients. This will reduce the duration of473
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future experiments, leveraging more promising techniques while preventing patients from engaging in too474
exhausting interventions.475

4.2 Passive and active robotic somatosensory training enhances the discrimination of476
virtual textures477

Consistent with our hypothesis, we found an improvement in virtual texture discrimination after training478
with both active and passive conditions. Participants significantly improved their tactile acuity of virtual479
textures, as reflected in a significant increase in the probability of correct responses from baseline to480
retention after three training blocks of active or passive conditions. Although we also observed a decrease481
in the PSE after training with active and passive conditions, the difference did not reach significance. This482
might be due to the lower number of sample points included in the PSE statistical analysis, compared to483
the larger sample in the probability of correct responses analysis. Several BL and RT trials (active: 22 out484
of 72, and passive: 30 out of 72) had to be removed from the statistical analysis as the fitting of the logistic485
function did not converge.486

Our results are in line with several studies that evaluated the potential of sensory retraining strategies,487
e.g., Elangovan et al. (2017); Ballardini et al. (2018); Carey et al. (1993). Most studies to date focused488
on training proprioception rather than tactile perception. For example, Elangovan et al. and Yeh et al.489
found enhanced proprioceptive function after an active proprioception retraining intervention that required490
healthy participants (Elangovan et al., 2017) and stroke patients (Yeh et al., 2021) to balance a virtual491
ball on a virtual table. Improvements in tactile perception were also found in a few studies that evaluated492
tactile training interventions in healthy (e.g., Ballardini et al. (2018)) and stroke patients (e.g., Carey et al.493
(1993)). Ballardini et al. found enhanced tactile sensitivity after a sensory retraining task that required494
healthy participants to discriminate and replicate skin-brushed stimuli that were applied by the end effector495
of a robotic device on the palm of their dominant hand (Ballardini et al., 2018). In each training trial,496
participants were asked to actively move their non-dominant hands and reproduce the stimulus that they497
previously experienced at several target locations on the palm of their dominant hands. Further, Carey et al.498
found clinically and statistically significant improvements in the ability to discriminate differences in tactile499
stimuli after 13–16 weeks of training (Carey et al., 1993). Carey et al. assessed and trained touch sensibility500
using a set of fine plastic gratings, which differed only by their spatial periods. Textures were presented in501
sets of three, with and odd texture among two identical ones, and –as in with our experiment– patients502
were asked to select the odd texture. However, unlike our work, Carey et al. did not adjust the difficulty of503
the training based on the specific baseline performance of the patients. As a novelty, our sensory retraining504
strategy followed an adaptive intervention that adjusted the difficulty of the task to meet the specific needs505
of the participants. However, we did not compare differences on the effect of training with adaptive vs.506
fixed difficulty levels on tactile discrimination, and therefore, conclusions about the suitability of our507
adaptive training program cannot be driven.508

Carey et al. (1993) and Sathian and Zangaladze (1997) reported that training effects appear to be stimulus-509
specific and task-specific. Therefore, improvements in texture discrimination due to our intervention may510
not be transferable to other types of tactile perception tasks –e.g., recognition of haptic letters (Vega-511
Bermudez et al., 1991). Further, we cannot rule out that the performance improvements observed after512
our tactile discrimination training may result from a better understanding of the task rather than reflect513
improvements in individual touch sensibility. The addition of visual feedback after each training trial514
could have helped participants to better understand the task and, consequently, improve their performance.515
However, it should be noted that most of the participants trained with spatial frequencies that were different516
from those presented during baseline and retention as we adapted the training comparison stimuli based on517
the participants’ individual PSE at baseline. More precisely, for the active training sessions, the logistic518
regression for the less coarse textures converged in 25 of the 36 participants (and therefore assembling a519
new set of training comparison stimuli), and for the more coarse textures in 23 of 36 participants. For the520
passive training sessions, the logistic regression converged in 24 of 36 participants for both less and more521
coarse textures. The fact that participants trained with stimuli different from those presented at baseline522
and retention minimizes the possibility that our findings reflect stimulus-specific training effects.523

Although we found significant differences in the participants’ discrimination performance after training,524
these did not seem to be related to pre-post training changes in the textures exploration behavior. We did525
not find significant changes in the scanning duration nor the path length on the textures after training.526
However, we did find a small, albeit significant, increase in the scanning speed after training for both active527
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and passive conditions. Yet, several researchers showed that tactile perception is invariant to changes in528
exploration speed (Lamb, 1983; Lederman, 1983; Boundy-Singer et al., 2017).529

4.3 No differences between active and passive conditions in training effects on touch530
sensibility531

As hypothesized, we did not find differences in the effect of active vs. passive conditions on pre-532
post changes regarding the probability of correct responses nor PSE values. Our results are consistent533
with previous findings, which revealed no differences between active and passive conditions (Lederman,534
1981; Vega-Bermudez et al., 1991; Lamb, 1983). Lederman (1981) found no differences between active535
and passive conditions when their participants estimated magnitudes of the roughness of metal gratings536
(Lederman, 1981). Vega-Bermudez et al. (1991) found no differences in tactile recognition of letters537
between active and passive conditions (Vega-Bermudez et al., 1991). Further, Lamb (1983) found no538
differences between active and passive conditions in discriminating between plastic strips with raised539
dots (Lamb, 1983). However, contrary to our experiment, in all these studies (Lederman, 1981; Vega-540
Bermudez et al., 1991; Lamb, 1983) participants received the passive stimulation with their arms and hands541
immobilized, e.g., by using a drum stimulation. Thus, the active conditions did not provide an advantage542
over the passive condition due to the addition of, for example, kinesthetic cues associated with the active543
movement.544

Vega-Bermudez et al. reported that the majority of experiments that found differences between active and545
passive conditions employed tasks in which proprioceptive information represented a critical component546
for the success of the sensory task (Vega-Bermudez et al., 1991). In our study, we compared the active547
condition to a passive condition in which the robot guided the participants’ hands and thus also provided548
proprioceptive information during the tactile discrimination task. Our findings, therefore, extend previous549
studies by suggesting that there are no differences between active and passive touch even when controlling550
for kinesthetic information between conditions.551

A potential rationale behind the lack of differences between passive and active conditions is that in both552
conditions participants explored the textures using indirect contact, i.e., through the robot end-effector. In553
the haptics field, tactile texture perception has been investigated in two modes of touch contact: direct and554
indirect contact. Direct contact refers to participants touching (or being touched by) an object with (in) their555
bare skin –e.g., their fingertips–, whereas indirect contact refers to touching objects using an intermediary556
link –e.g., gloves, tools, or robotic devices (Lederman et al., 1999; Klatzky and Lederman, 2006). During557
direct touch, the roughness of the texture is spatially coded by the central nervous system using tactile558
information sensed by mechanoreceptors on the glabrous skin. Temporal cues are also temporally coded559
using vibration cues (Ryan et al., 2021). The weight of the relative use of spatial and temporal cues seems560
to vary depending on the spatial period of the texture (Klatzky and Lederman, 2006). However, when561
people explore a texture indirectly through a tool, the roughness perception of textures seems to be mainly562
coded via temporal cues (Klatzky and Lederman, 2006). During indirect touch, the spatial information563
of the texture is usually no longer available as the spatial deformation of the skin relates to the shape of564
the probe rather than the properties of the scanned texture (Yoshioka et al., 2007). Consequently, in our565
indirect touch experiment, participants received similar vibratory cues to perform the sensory task under566
both conditions, which may explain the lack of significant differences between the active and passive touch567
conditions.568

4.4 Participants’ motivation569

We hypothesized that haptic guidance during training would improve participants’ perceived competence.570
As expected, we found that participants reported significantly higher competence during passive than active571
exploration, which may be a positive indicator for using passive exploration with brain-injured patients. The572
robotic guidance during training might allow participants to focus on the sensory input, without the need to573
think about how to explore the textures (instead, the robot takes the “responsibility”), therefore, increasing574
their subjectively reported perceived competence. Physically and cognitively impaired patients could likely575
even further benefit from this guidance, as it allows them to focus on the task instead of the exploration576
strategy, potentially increasing the effects of sensory training. We also hypothesized that during active577
exploration, participants would report higher levels in effort, pressure, and interest/enjoyment than during578
passive exploration, as exploring the textures themselves may make the training more engaging, but may579
also be associated with the challenge to choose an optimal exploration strategy. Contrary to our hypothesis,580
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we found no differences between active and passive conditions on the IMI subscales Effort/Importance,581
Interest/Enjoyment, and Pressure/Tension. This result may indicate that participants remained engaged in582
the task under both conditions, even though they did not need to actively move along the textures during583
training with the passive condition. However, overall, we found high Effort/Importance reportings, whereas584
the perceived competence was quite low, indicating that the experiment was rather challenging. Hence, in585
future experiments and especially with brain-injured patients, it is important to lower the difficulty of the586
task, e.g., by reducing the number of stimulus comparisons or augmenting the interstimulus distance to587
simplify the task. Additionally, attention may influence the perception of virtual textures.588

4.5 Study limitations and future work589

Our study suffers from several limitations. First, participants were allowed to freely explore the textures,590
without any time limitation. We decided to allow for “free” exploration while measuring the kinematic data591
–i.e., scanning duration, end effector path length, and scanning speed– during exploration to evaluate the592
effect of training with the different conditions on the exploration strategies after training. Second, the long593
duration of the training blocks might have triggered the so-called paresthesia, i.e., the sensation experienced594
as a numbness or tingling sensation on the skin (O’Tool, 2017) and a result of excessive sensory stimulation595
without long enough resting periods. Yet, we still found improvements in the discrimination of the virtual596
textures right after the training finished (in short-term retention). Third, contrary to (Carey et al., 1993)597
and (Ballardini et al., 2018), we did not blindfold the participants, i.e., we did not occlude the vision of598
the hands and/or robot. Instead, we provided visual feedback using a virtual environment to motivate599
participants. Yet, the use of the virtual environment to provide visual feedback on the participant’s hand600
position with respect to the virtual textures, which was located in a different space than the robot/hand601
movements, probably limited participants to look at their own hands as they were focused on the screen602
visualization.603

Although our system showed moderate to good reliability values with 18 healthy participants per604
condition, the reliability evaluation would benefit from including more healthy participants, and especially605
brain-injured patients. It has been observed lower reliability values in healthy compared to stroke patients606
(Rinderknecht et al., 2018; Ofek et al., 2018), and thus, we expect to observe higher reliability values when607
assessing texture discrimination in a brain-injured population. Moreover, in future experiments, we plan to608
test the feasibility and acceptability of our system with brain-injured population, as the majority of robotic609
devices in neurorehabilitation are tested with healthy population instead of patients. Yet, several changes610
must be performed to our protocol before bringing our system to the clinics. First, we suggest performing611
the experiment with brain-injured patients only with the passive condition, as our results with healthy612
participants suggest that training effects would not differ between conditions and the passive condition613
shows higher reliability. Second, the training duration should be reduced to prevent paresthesia, e.g., by614
reducing the number of trials and repetitions per stimuli. Third, we may need to adapt the location of the615
monitor to account for patients with visual neglect, as it was found that visual neglect might interfere with616
the assessment of somatosensory impairment probably due to attention deficit (Meyer et al., 2016). Further,617
we may need to adjust the level of discrimination difficulty accordingly to the patients’ deficits. Finally, to618
increase the system reliability, we suggest increasing the familiarization time, controlling the time between619
sessions (with a minimum of 24 h between sessions) and the time of the day the intervention is delivered.620

5 CONCLUSION

Despite the high prevalence of sensory deficits after stroke, somatosensory treatment is currently neglected621
in neurorehabilitation interventions. Crucially, there is a lack of high-quality research demonstrating622
benefits of somatosensory (re)training on stroke recovery and a need for reliable quantitative assessments623
of sensorimotor deficits. Further, to date, somatosensory assessments and interventions are labor-intensive624
and require therapists to guide the paretic limbs of the patients. The goal of this study was to develop and625
evaluate the reliability of a novel virtual reality-based robotic texture discrimination task that allows to626
assess and train touch sensibility with (i.e., passively) and without (i.e., actively) guidance for potential627
clinical application.628

In our sample of healthy young participants with expected low between-subject variability, our system629
showed poor (in active condition) to moderate/good (in passive condition) reliability. Furthermore, we found630
that participants significantly improved their task performance after training and that these training effects631
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did not differentiate between active and robotic-guided passive exploration. Similarly, both conditions632
did not differ in motivation, except that passive touch sensibility training was associated with increased633
perceived competence.634

Together, our virtual reality-based robotic haptic system may be a key asset for the evaluation and635
retraining of sensory loss with minimal supervision, especially for brain-injured patients who require636
guidance to move their limbs.637
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Supplementary Material

1 THE CYCLOIDAL MOTION LAW

The reference trajectory –defined by ÿR, ˙yR, and yR– was obtained following the cycloidal motion law
(described in Biagiotti and Melchiorri (2008), page 44):

yR(t) = yR0 + dS

(
t

T
−

sin (2π t
T )

2π

)
, (S1)

from which

˙yR(t) =
dS

T

(
1− cos (2π

t

T
)

)
ÿR(t) =

2πdS

T 2

(
sin (2π

t

T
)

)
,
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where yR0 is the y-position of the end effector when the participant entered or landed into the texture.
Participants could enter the texture from any of the four sides of each rectangular texture or lift the robot
end effector and land on top of the texture. The displacement dS was calculated each time the participant
entered the texture as the maximum distance between yR0 and the farthest short-edge of the texture (Fig. 3
in the main manuscript). Thus, participants were guided in the y-direction towards the end of the texture
that was farthest away from the initial position. The t represented the internal clock of the robot controller
with a sampling rate of 4 kHz and T was set to 1 second (i.e., the time needed to finish the movement).
By using the cycloidal motion law we could ensure a smooth trajectory reference each time a participant
entered a texture.

2 ADJUSTED COMPARISON STIMULI FOR TRAINING

Once the logistic functions were fitted to the BL data, we computed the point of subjective equality (PSE)
by selecting the probability of a positive response π = 0.50 –i.e., the point at which two stimuli are perceived
as one– for each participant and for each texture set, i.e., more and less coarse sets, PSEmc and PSElc,
respectively). The PSEs were calculated from the inverse of the logistic function as:

x = F−1(π|α, β) = 1

β

(
log

π

1− π
− α

)
(S3)

PSE = F−1(0.5|α, β) = 1

β

(
log

0.5

0.5
− α

)
= −α

β
. (S4)

We used the PSEmc and PSElc calculated for each participant to create two new spanned ranges of
comparison stimuli that were employed during training, i.e., we adapted the set of Co that were employed
during training to each participants’ performance during BL.

1
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We used the mathematical expressions in equations S5 to S8 to set the new frequency difference between
consecutive comparison stimuli (fixed to 16 m−1 during BL and RT) for the more coarse textures fmc and
less coarse textures flc.

fpsemc = |fSt − PSEmc · fSt| (S5)

fpselc = |fSt + PSElc · fSt| (S6)

fmc =
|fSt − fpsemc|

n
(S7)

flc =
|fSt − fpselc|

n
, (S8)

where n is the number of new comparison stimuli employed during training per coarse type, that was fixed
again to n = 4. Thus, the new set of comparison stimuli for the more coarse textures was set to:

fComore coarse = [fSt − fmc, fSt − 2fmc, fSt − 3fmc, fSt − 4fmc] (S9)

while the new set of comparison stimuli for the less coarse textures was set to:

fColess coarse
= [fSt + fmc, fSt + 2fmc, fSt + 3fmc, fSt + 4fmc]. (S10)

3 MOTIVATION QUESTIONNAIRE

Table S1. Subscales and items selected from the “Intrinsic Motivation Questionnaire” (Ryan et al., 1990).

Subscale Questions
Effort/Importance I tried very hard on this activity.

I put a lot of effort into this.
It was important to me to do well at this task.

Perceived Competence I am satisfied with my performance at this task.
I think I am pretty good at this activity.
I was pretty skilled at this activity.

Interest/Enjoyment The task was fun to do.
I thought this activity was quite enjoyable.
I would describe this activity as very interesting.

Pressure/Tension I felt very tense while doing this activity.
I felt pressured while doing these.
I was anxious while working on this task.

2
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