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Abstract

The study of the intimate connection occurring at the interface between cells and titanium

implant surfaces is a major challenge for dental materials scientists. Indeed, several imaging

techniques have been developed and optimized in the last decades, but an optimal method

has not been described yet. The combination of the scanning electron microscopy (SEM)

with a focused ion beam (FIB), represents a pioneering and interesting tool to allow the

investigation of the relationship occurring at the interface between cells and biomaterials,

including titanium. However, major caveats concerning the nature of the biological struc-

tures, which are not conductive materials, and the physico-chemical properties of titanium (i.

e. color, surface topography), require a fine and accurate preparation of the sample before

its imaging. Hence, the aim of the present work is to provide a suitable protocol for cell-tita-

nium sample preparation before imaging by SEM-FIB. The concepts presented in this paper

are also transferrable to other fields of biomaterials research.

1. Introduction

The interaction among tissue components and titanium surfaces is crucial in order to ensure

a successful clinical outcome in implant dentistry. More in details, implants stability is deter-

mined by the intimate structural and functional connection, which occurs at the interface

between titanium and the alveolar bone, namely osseointegration [1–3]. Furthermore, in order

to ensure a successful clinical outcome, tight soft tissue attachment around implant abutment

is also regarded as important as osseointegration. Indeed, the formation of a proper seal

around implant neck avoids complications such as biofilm formation with consequent peri-

implant tissue inflammation and related issues [4, 5].

At a cellular level, both the osseointegration and the seal formation are controlled by the

firm attachment, adhesion and spreading of the local tissue-resident cells to the titanium
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surface. Therefore, detailed in vitro study of the interactions occurring between these cellular

components and titanium could be informative and provide important insights into the mech-

anisms behind the success of these clinical options.

Over the last decades, numerous microscopy techniques have been proposed to study the

adhesion and the shape of cells on different type of biomaterials, including titanium [6–8].

However, to the best of our knowledge, no clear winning method has been described to quali-

tatively and quantitatively study the interaction among cells and the underlying surface. Opti-

cal techniques, such as fluorescence interface contrast microscopy (FLIC), reflection

interference contrast microscopy (RICM) or total internal reflection fluorescence microscopy

(TIRF) require the use of transparent substrates for the study of cell-surface junction, which is

obviously not applicable to titanium [9–12]. While, on the other hand, also high-resolution

and powerful techniques, such as transmission electron microscopy (TEM), present some limi-

tations: they require the sectioning of the samples in ultra-thin slices (<100nm), which are not

suitable for volumetric reconstructions [13, 14]. Additionally, all the current methods of imag-

ing present limitations in studying the interaction of cells with materials that present high

structured and complex surface topography, adding further challenge to the study of the inter-

actions occurring between cells and intricated structures, such as microrough implant

surfaces.

Among electron microscopy techniques, scanning electron microscopy (SEM) has long

been recognized as the most viable option to image and study the three-dimensional (3D)

structure of objects, with no arguably instrument with its breadth of applications. Its function

is based on the use of an accelerated electron beam, with a wavelength 100000 shorter than

that of light photons, which makes possible to enhance the magnification power of light

microscopies (200nm) to 1000-fold (0.2nm). In details, SEM works thorugh an high energy

electron beam, which scans across the surface of a conductive specimen, thus inducing the

emission of other electrons (secondary), which are collected, processed and converted into 2D

images. Over the past years, SEM has been improved with numerous investigation tools.

Recently, SEM coupling with an additional column capable to generate a focused ion beam

(FIB) for the live milling or cross-sectioning of samples at a glancing defined angle has been

proposed [15, 16]. Accordingly, we hypothesized to use SEM-FIB microscopy as a viable tool

to study the interaction occurring at the cell-titanium interface [17]. However, the analysis of

cellular and biological structures at these high resolution has always been a challenge, because

of their intrinsic non-conductive nature.

Based on these premises, this protocol was developed specifically to prepare cell-titanium

specimen before SEM-FIB analysis, in order to determine and study what happens at their

interface. Additionally, we would like to aknowledge that the concepts presented here are fur-

ther transferrable to the study of other types of biomaterials.

2. Materials and methods

The protocol described in this peer-reviewed article is published on protocols.io, at the follow-

ing doi number dx.doi.org/10.17504/protocols.io.36wgq42kyvk5/v1. Additionally, the

described protocol is also included for printing as S1 File with this article.

2.1 Titanium discs

Commercially pure, grade 4 (ISO5832/2) titanium discs with sandblasted/acid etched surface

were kindly provided by Sweden&Martina (Due Carrare, Padova, Italy). Samples were pro-

vided as sterile discs of 3.5mm (thickness) and 8.0 mm (diameter) to fit in a 48-well plate. In

order to increase the hydrophilicity of the specimens and to obtain the hydrophilic-Ti sample,
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part of the discs was thermally treated at 300˚C for 2h in a programmable oven (Programat

P60, Ivoclar Vivadent, Schann, Lichtenstein).

2.2 Titanium discs characterization

To observe any difference in the surface microtopography between Ti and hydrophilic-Ti

discs, samples were analyzed by SEM, using a dual beam Zeiss Auriga Compact system

equipped with a GEMINI Field-Effect SEM column (Zeiss, Oberkochen, Germany). The anal-

ysis was performed at 5keV. Furthermore, surface hydrophilicity was assessed by measuring

the contact angles between the surface and 5μl water droplet using 10 titanium surfaces per

group.

2.3 Cell culture

Human osteosarcoma-derived MG-63 were obtained from the American Type Culture Collec-

tion (LGC, Standards s.r.l., Sesto S. Giovanni, MI, Italy). Cells were cultured in Dulbecco’s

Modified Eagle Medium (DMEM, Thermo Fisher Scientific, Waltham, MA, USA), 1% L-Glu-

tamine (Thermo Fisher Scientific) and 1% Penicillin and Streptomycin (PenStrep, Thermo

Fischer Scientific). Upon confluence cells were trypsinized and seeded on titanium specimen

at a final concentration of 10000cells/disc.

2.4 Immunofluorescence

24h after seeding, cells were fixed in 4% paraformaldehyde (PFA, Sigma-Aldrich, Saint-Louis,

CA, USA) for 20min at room temperature (RT), rinsed 3 times in PBS, permeabilized with

0.1%v/v Triton-X-100 (Sigma-Aldrich) at RT, blocked in BSA 1%w/v for 30min at RT and

incubated with a primary mouse anti-vinculin antibody (Clone 7F9, FAK100, Sigma-Aldrich)

for 1h at RT. Cultures were washed 3 more times with PBS, incubated with a secondary anti-

mouse fluorescent FITC-labeled secondary antibody (Molecular Probes, Thermo Fisher Scien-

tific) and TRITC-conjugated phalloidin for 1h at RT protected from the light, washed 3 more

times in PBS, incubated with DAPI (FAK100, Sigma-Aldrich) for 5min at RT and finally

mounted under glass cover slips using the anti-fade-mounting medium (P7481, Thermo

Fisher Scientific) for photo bleaching reduction.

All the samples were analyzed under an equipped for fluorescence Zeiss Axio Imager A.2

(Carl Zeiss, Jena, Germany).

2.5 SEM-FIB

24h after seeding, cells were washed in PBS and fixed in 2.5%w/v glutaraldehyde in 0.1M

sodium cacodylate buffer for 30min at RT and rinsed in 0.1M sodium cacodylate buffer for

5min at RT. Subsequently, samples were dehydrated in ethanol (EtOH) at increasing concen-

trations (35%, 50%, 70%, 95% and 99%). Each EtOH was maintained for 10min at RT. There-

fore, samples were critical point dried with liquid carbon dioxide (CPD 030 Baltec, BALTEC,

Wallruf, Germany) and covered by a nm thick gold layer (PLANO, Wetzlar, Germany) using a

SCD 040 Coating device (Balzer Union, Wallruf, Germany).

Specimens were analyzed using a dual beam Zeiss Auriga Compact system equipped with a

GEMINI Field-Effect SEM column and a Gallium FIB source (Carl Zeiss). SEM analysis was

performed at 5keV, while the Gallium ion beam for the cross-sectional analysis was accelerated

at 30kV with a 500pA current. SEM-FIB images were analyzed while acquiring. Cell-titanium

distance and cell thickness were indeed investigated for 10 cells on each samples with the des-

ignated tool of the interface software.

PLOS ONE Cell-biomaterial interaction analysis by SEM-FIB

PLOS ONE | https://doi.org/10.1371/journal.pone.0272486 August 2, 2022 3 / 7

https://doi.org/10.1371/journal.pone.0272486


2.6 Statistical analysis

Data were analyzed using Prism7 (GraphPad, La Jolla, CA, USA) and are reported as the mean

±SD. Differences between groups were evaluated with t-test and considered significant when

p<0.05.

All the experiments were performed three times in multiple replicates.

3. Expected results

To assess the potential of the described protocol for the preparation of the cell-titanium sam-

ples before SEM-FIB imaging, we would like to report a practical example.

In the latest 20 years, major achievements in dental implants amelioration have been

obtained by targeting implant surface characteristics. Most importantly, chemical modifica-

tions to increase the hydrophilicity of microrough surfaces have been shown to drastically

optimize the osseointegration of implantable materials by increasing the bone-to-implant con-

tact (BIC) and accelerating new osteogenesis [18, 19]. However, in spite these modifications

have been successfully employed in preclinical [20, 21] and clinical studies [22–24], the way

the bone cells adhere when in contact with these surfaces is still largely unexplored. Exploiting

the protocol described in this article, we were the firsts able to show how bone-like cells inter-

act with titanium surfaces during adhesion [17, 25, 26].

In Fig 1 the look of human MG-63 cultured on a microrough (Ti) or on hydrophilic micro-

rough titanium (hydrophilic-Ti) surface is presented (see surface characterization is reported

in S1 Fig and [27]). To highlight the potential of SEM-FIB microscopy in adding qualitative

and quantitative information to our analysis, we compared the images obtained by SEM-FIB

investigation, to the images obtained by fluorescence microscopy, which is a largely used tech-

nique to visualize cells on titanium.

Fig 1. Interface intimate relationship between human MG-63 and microrough titanium implant surfaces with

normal or enhanced hydrophilicity. Human MG-63 were cultured on microrough titanium implant surface with

standard (Ti) or enhanced hydrophilicity (hydrophilic Ti), thus prepared and analyzed by fluorescence or by SEM-FIB

microscopy. (a) Immunofluorescence staining for actin (red), vinculin (green) and cell nuclei (blue) reveals the

polygonal shape of human MG-63 when cultured on titanium surfaces. Scale bar: 50μm. (b) SEM images before and

after FIB cross-sectioning reveals the shape and the intimate connection established by the cells (red) with the

underlying surface by human MG-63. Scale bar: 2μm. Scale bar close up: 0.2μm. The intimate relationship between

cells and titanium was further quantified by measuring cell thickness and the distance occurring between the cell

border and titanium. � = p<0.05. Green dashed lines indicate the top and bottom border of the cells, while white stars

indicate air bubbles entrapped between cells and titanium.

https://doi.org/10.1371/journal.pone.0272486.g001
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By fluorescence microscopy, the informations connected to the adhesion of human MG-63

to different titanium surfaces are limited to the shape the cells. On both the tested surfaces,

human MG-63 present with a typical healthy spindle-like shaped morphology (Fig 1a).

Although with IF analysis, it is possible to quantify the number of focal adhesion expressed by

the cells on the two surfaces, which may correlate with the strength of cell adhesion to the

underlying surface [25], no clear conclusion on the way the cells interact with surface itself can

be properly drawn. On the other hand, SEM-FIB analysis produced significant more informa-

tions regarding the different type of adhesion of human MG-63 to Ti or to hydrophilic-Ti sur-

faces (Fig 1b). SEM analysis shows that hydrophilicity promotes a closer adhesion of the cells

to the surface, further allowing to glimpse the underlying micro-texture of titanium. Con-

versely, this is not distinguishable under the cell soma of cells cultured on the canonical Ti

surface. However, with the SEM observation only, a more accurate investigation, of the inter-

actions that occur underneath the cell body is not possible. Amazingly, after FIB cross-section-

ing of the cells, it is evident that the standard Ti surface is prone to the entrapment of air

bubbles that interfere with the tight and close adhesion of the cells to the surface (Fig 1b close
up yellow star). As a consequence, cells remained suspended and did not properly flatten on

the Ti sample. Additionally, even though the SEM analysis hardly allowed to distinguish the

layout of cells on the hydrophilic-Ti, the FIB cross-sectional analysis evidences the prominence

of the biological material. Noteworthy, no air bubbles were found to be entrapped under the

cell soma in this case. Furthermore, by analysing the FIB-cut cross-section of the sample, it has

been possible to measure the cleft distance in between cell membrane and titanium, as well as

the thickness of the cells. In both the cases, significant differences have been found between

the two different surfaces (cell-titanium distance p = 0.0017; cell thickness p<0.0001). To the

best of our knowledge, it is not yet clear whether a closer adhesion of the cells to the titanium

surface is responsible for the improved outcomes derived from the use of more hydrophilic

surfaces. However, former studies have shown that a pre-coating of titanium surfaces with

fibronectin, a well-known protein involved in cell adhesion, improve cell adhesion in similar

ways and fashion [26]. Hence, we can speculate that increased hydrophilicity of titanium

implants may cause a better adhesion of the cells generating similar effects to the one produced

by fibronectin pre-adsorption. Moreover, we previously showed that when cultured on more

hydrophilic titanium surfaces, murine MC3T3-E1 osteoblasts expressed more focal contact

points, which is known to be putative for a better cell adhesion [28]. Here, we add further evi-

dence to this observation, and we can further speculate that a higher number of focal adhesion,

homogeneously distributed in the whole cell can be correlated to the closer adhesion we could

observed by SEM-FIB analysis. Clearly, a more depth investigation could be performed by

using an immunogold labelling approach for vinculin. However, we must admit we did not yet

optimized a protocol for our purposes.

In conclusion, these images provide clear evidence of the potential of the proposed investi-

gation protocol, and further provide an unprecedent possibility to investigate the spatial and

geometric relationship among cells and biomaterials.

Supporting information

S1 File. Protocol for SEM-FIB preparation from protocols.io.

(DOCX)

S1 Fig. Surface characterization of titanium implant surfaces with normal or enhanced

hydrophilicity.

(TIF)
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