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Abstract1

Infectious diseases are particularly challenging for genome-wide association studies (GWAS)2

because genetic e↵ects from two organisms (pathogen and host) can influence a trait. Traditional3

GWAS assume individual samples are independent observations. However, pathogen e↵ects on4

a trait can be heritable from donor to recipient in transmission chains. Thus, residuals in5

GWAS association tests for host genetic e↵ects may not be independent due to shared pathogen6

ancestry. We propose a new method to estimate and remove heritable pathogen e↵ects on a7

trait based on the pathogen phylogeny prior to host GWAS, thus restoring independence of8

samples. In simulations, we show this additional step can increase GWAS power to detect truly9

associated host variants when pathogen e↵ects are highly heritable, with strong phylogenetic10

correlations. We applied our framework to data from two di↵erent host-pathogen systems,11

HIV in humans and X. arboricola in A. thaliana. In both systems, the heritability and thus12

phylogenetic correlations turn out to be low enough such that qualitative results of GWAS do13

not change when accounting for the pathogen shared ancestry through a correction step. This14

means that previous GWAS results applied to these two systems should not be biased due to15

shared pathogen ancestry. In summary, our framework provides additional information on the16

evolutionary dynamics of traits in pathogen populations and may improve GWAS if pathogen17

e↵ects are highly phylogenetically correlated amongst individuals in a cohort.18

Introduction19

A key goal of genome-wide association studies (GWAS) is to understand the genetic basis of phe-20

notypic variation among individuals. In a typical GWAS, millions of genetic variants from across21

an organism’s genome are screened for statistical association with a trait of interest. Ideally, this22

procedure identifies variants that are located in, or are in linkage disequilibrium with, alleles that23

directly a↵ect the trait. If GWAS finds a variant strongly associated with a disease trait, the gene24

product may be a good drug target (Okada et al., 2014). Even if no single variant has a strong asso-25

ciation, many small associations can be aggregated into a polygenic risk score to identify susceptible26

individuals (Dudbridge, 2013).27

It is well-known that GWAS can be sensitive to confounding variables. Shared ancestry among28

individuals, especially between close relatives, can give rise to spurious genetic correlations with29

a trait. Corrections for these types of population structure in human GWAS cohorts are well-30

developed and widely accepted (Astle and Balding, 2009; Price et al., 2006). More recently, anal-31

ogous methods have been developed for microbial GWAS, where clonal reproduction exacerbates32

population structure (Power et al., 2017). Microbial GWAS-specific phylogenetic methods to ac-33

count for population structure in microbial GWAS include explicitly testing for lineage-specific34

e↵ects as in Earle et al. (2016) and modified association tests that account for phylogenetic re-35

lationships amongst samples as in Collins and Didelot (2018). These approaches are designed to36

quantify genetic e↵ects from one organism on a trait.37
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In the infectious disease context, genetic e↵ects from two organisms - the host and the pathogen38

- may a↵ect an infectious disease trait. GWAS using paired host-pathogen genotype data have39

previously been done to elucidate the marginal and interaction e↵ects of host and pathogen genetic40

variants. Methods to account for microbial population structure when testing for marginal host41

associations or host-pathogen interaction e↵ects include adding the microbial kinship matrix as a42

random e↵ect in a linear mixed model as in Wang et al. (2018) and using principle components43

derived from either this matrix or the pathogen phylogeny as covariates in a linear model as in44

Naret et al. (2018). These methods focus on capturing and accounting for correlations due to the45

pathogen phylogeny, without further investigating the nature of these correlations.46

In this work, we draw from the field of phylogenetic comparative methods to propose a new47

two-step framework that corrects for pathogen population structure and thus satisfies the GWAS48

assumption of independent samples. The introduced framework relies on paired pathogen-host49

genotyping and is envisioned specifically for continuous-valued traits that are highly heritable from50

infection partner to infection partner. We hypothesized that our approach should improve GWAS51

power to identify host genetic variants broadly associated with disease traits.52

In a first step, we fit an evolutionary model to trait data and the pathogen phylogeny. This53

first step provides an estimate of the correlation structure of the trait due to heritable pathogen54

e↵ects. The estimate is used to remove pathogen e↵ects on the trait. In the second step, the55

resulting corrected trait data is used in a GWAS with host genetic variants. The GWAS can be56

performed as normal under the assumption of independent samples. The main advantage of this57

two-step approach compared to the previously outlined methods to correct for pathogen population58

structure is that it generates additional information on the evolutionary dynamics of the trait in59

the pathogen population. The advances presented here are on the first step, while in the second60

step existing, highly optimized tools to perform GWAS association tests under a variety of models61

can be employed.62

In the following, we describe the evolutionary model for heritable, continuous-valued infectious63

disease traits upon which our method is based. We derive a maximum likelihood estimate for the64

pathogen part of a trait under this model. We then describe a new infectious disease GWAS frame-65

work assessing associations of the trait with host genetic variants using the maximum likelihood66

estimates. In simulations, we show that this framework can improve GWAS power to detect host67

genetic variants that a↵ect disease traits. Finally, we apply our framework to paired host-pathogen68

genotyping data from the Swiss HIV Cohort Study (SHCS) and a previously studied Arabidosis69

thaliana-Xanthomonas arboricola pathosystem. We show that associations with set-point viral load70

(spVL) and quantitative disease resistance (QDR) traits, respectively, are robust to a correction71

for pathogen e↵ects.72
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New Approaches73

A statistical model for heritable, continuous-valued infectious disease traits74

Variation in infectious disease traits like viral load or infection severity can come from several75

sources. These include host genetic factors, pathogen genetic factors, interaction e↵ects between76

the host and the pathogen, or non-genetic factors like healthcare quality or temperature. GWAS77

typically stratify samples or include covariates to correct for host genetic factors or non-genetic78

factors that may be correlated with a trait value. This leaves pathogen genetic factors as a remaining79

source of correlation, since close transmission partners may be infected with very similar pathogen80

strains. We aim to remove this pathogen-induced correlation in the trait data prior to performing81

GWAS on the host genomes.82

Broad-sense pathogen heritability H
2 quantifies the fraction of total variance in a trait that is83

“inherited” from infection partner to infection partner, i.e., due to pathogen factors. To characterize84

H
2 and the heritable and non-heritable factors that determine infectious disease traits, we use a85

phylogenetic mixed model (PMM) (Housworth et al., 2004). PMMs assume continuous traits are86

the sum of independent heritable and non-heritable parts. In the infectious disease GWAS case, we87

assume the heritable part comprises pathogen genetic factors and all other factors are non-heritable.88

The heritable pathogen part is modeled by a random process occurring in continuous time along89

the branches of the pathogen phylogeny, as in Figure 1A. The non-heritable part is modeled as90

Gaussian noise added to sampled individuals at the tips of the phylogeny.91

Figure 1: A high-level schematic of our phylogenetic Ornstein-Uhlenbeck mixed model (POUMM)-
based simulation framework in the context of HIV-1 set-point viral load (spVL). (A) shows how the
viral e↵ects on spVL evolve along the viral phylogeny according to an Ornstein-Uhlenbeck process.
(B) shows how human host genetic e↵ects are the sum of independent e↵ects from several causal
variants. Each variant can be present in 0, 1, or 2 copies. Half the variants have a positive e↵ect
of size � and half have a negative e↵ect of size �. (C) shows how other environmental e↵ects are
independently drawn from a Gaussian distribution centered at 0. These three e↵ects sum to the
trait value for each simulated individual.
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PMMs have previously been applied to the study of infectious disease traits using two di↵erent92

types of random processes to model trait evolution. The Brownian Motion (BM) process assumes93

unbounded trait values, i.e. the trait can attain any value. The Ornstein-Uhlenbeck (OU) process94

assumes trait values fluctuate around an optimal value, i.e. extreme trait values are unlikely. Here,95

we assume the more flexible OU process as it encompasses a wider variety of evolutionary scenarios.96

For example, Mitov and Stadler (2018) and Bertels et al. (2018) previously showed the OU process97

has higher statistical support for HIV-1 spVL. This makes sense given that spVL is likely under98

stabilizing selection to maximize viral transmission potential (Fraser et al., 2014). The full model99

is called the phylogenetic Ornstein-Uhlenbeck mixed model (POUMM) and is described in detail100

by Mitov and Stadler (2018). Here, we review the main points relevant to our method.101

Under the POUMM, the trait z is the sum of heritable genetic e↵ects g, i.e. due to the pathogen,102

and non-heritable “environmental” e↵ects ✏, i.e. host genetic e↵ects and other environmental or103

interaction e↵ects:104

z = g + ✏ (1)

g is a pathogen trait that evolves along the phylogeny according to an OU process. The OU105

process is defined by a stochastic di↵erential equation with two terms. The first term represents106

a deterministic pull towards an optimal trait value and the second term represents stochastic107

fluctuations modelled by Brownian motion (Butler and King, 2004):108

dg(t) = ↵[✓ � g(t)]dt+ �dWt

g(0) = g0

(2)

Here the parameter ↵ represents selection strength towards an evolutionarily optimal value109

represented by parameter ✓. The parameter � measures the intensity of stochastic fluctuations in110

the evolutionary process. Finally, dWt is the Wiener process underlying Brownian motion. The111

OU process is a Gaussian process, meaning that g(t) is a Gaussian random variable. Assuming g(t)112

starts at initial value g0 at time t = 0 at the root of the phylogeny, we can write the expectation113

for g(t) at time t:114

E[g(t)] = g0e
�↵t + (1� e

�↵t)✓ (3)

and the variance in g(t) if we were to repeat the random evolutionary process many times (Butler

and King, 2004):

V ar[g(t)] =
�
2

2↵
(1� e

�2↵t) (4)

g evolves independently in descendent lineages after a divergence event in the phylogeny. The115

5
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covariance between g(t) in a lineage i at time ti and another lineage j at time tj , Cov
�
gi(ti), gj(tj)

�
,116

increases with the amount of time between t0 and the divergence of the two lineages, t0(ij), and117

decreases with the total amount of time the lineages evolve independently, dij (Butler and King,118

2004):119

Cov
�
gi(ti), gj(tj)

�
=

�
2

2↵
[e�↵dij (1� e

�2↵t0(ij))] (5)

Next, we recall that ✏ is the non-heritable part of the trait. ✏ is modeled as a Gaussian random120

variable that is time- and phylogeny-independent. The expectation of ✏ is 0, meaning non-heritable121

e↵ects are equally likely to raise or lower the trait from the pathogen-determined level. The122

parameter �2
✏ measures the between-host variance of the non-heritable e↵ect.123

E(✏) = 0

V ar(✏) = �
2
✏

(6)

Finally, broad-sense trait heritability can be calculated as the fraction of total trait variance124

that is heritable:125

H
2
t =

V ar[g(t)]

V ar[g(t)] + V ar(✏)
=

�2

2↵(1� e
�2↵t)

�2

2↵(1� e�2↵t) + �2
✏

(7)

Teasing apart pathogen and non-pathogen e↵ects on a trait126

Given the assumptions of the POUMM, we can estimate a heritable pathogen e↵ect on a trait and a127

corresponding non-heritable, host and environmental e↵ect. Here, we derive a maximum-likelihood128

estimate for these values for individuals in a GWAS cohort, given measured trait values and a129

pathogen phylogeny linking the infecting strains.130

Let g(t) be a vector of g values, one for each individual in the cohort. t are the sampling times131

of each individual relative to the root of the phylogeny. To simplify notation, we omit the t from132

here on. g is a realization of a Gaussian random vector G ⇠ N
�
µOU ,⌃OU

�
. The expectation133

µOU is defined by equation 3, the diagonal elements of the covariance matrix ⌃OU are defined by134

equation 4, and the o↵-diagonal elements of ⌃OU by equation 5. Similarly, let ✏ be a vector of the135

non-heritable part of the trait for each individual. ✏ is a realization of a Gaussian random vector136

E ⇠ N
�
0,⌃E

�
, where ⌃E is a diagonal matrix with diagonal elements equal to �

2
✏ .137

Considering that G and E are independent random vectors and that their realizations g and ✏138

must sum together to equal the observed trait values z, we can write the following proportionality139

for the joint probability density of g and ✏:140
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f
�
g, ✏

�
/ N

�
g;µG,⌃G

�
(8)

where the expected value of g and the covariance matrix ⌃G are defined as:141

Exp(g) = µG = ⌃G
�
⌃�1

OUµOU +⌃�1
E z

�
(9)

⌃G =
�
⌃�1

OU +⌃�1
E

��1
(10)

Proof.

f
�
g, ✏

�
= f

�
g| ✏

�
⇥ f

�
✏
�

= f
�
g
�
⇥ f

�
✏
�

= N
�
g; µOU ,⌃OU

�
⇥N

�
✏; 0,⌃E

�

= N
�
g; µOU ,⌃OU

�
⇥N

�
z � g; 0,⌃E

�

= N
�
g; µOU ,⌃OU

�
⇥N

�
g; z,⌃E

�

(11)

Equations 9 and 10 follow from eq. 11 and eq. 371, p. 42, section 8.1.8 “Product of Gaussian142

densities” in Petersen and Pedersen (2012).143

Importantly, equation 9 is the maximum likelihood estimate for g, the pathogen e↵ect on the144

trait, taking into account all available information - measured trait values, the pathogen phylogeny,145

and inferred POUMM parameters. This estimator is an inverse-variance weighted average of mea-146

sured trait (z) and information from the POUMM evolutionary model (µOU ). In other words, g147

will be closer to the measured trait value if the trait is not very heritable. If the trait is highly148

heritable, g will be closer to the expected value under the POUMM, i.e. take more information149

from the phylogenetic relationships between infecting strains.150

Given the estimator we just derived for g, we can now estimate ✏, the trait value without151

pathogen e↵ects:152

✏̂ = z � Exp(g) (12)

We will use this value to try to improve upon standard GWAS methods in infectious disease.153

A POUMM-based GWAS framework for infectious disease154

We propose to improve standard GWAS for infectious diseases by estimating and removing trait155

variability due to pathogen e↵ects. Our new framework is as follows:156

1. Sample paired host genotypes, pathogen genome sequences, and trait values from a cohort.157

7
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2. Construct a pathogen phylogeny using the pathogen genome sequences.158

3. Estimate the parameters of the POUMM based on the trait values and the pathogen phy-159

logeny. This can be done with the R package POUMM (Mitov and Stadler, 2017).160

4. Generate maximum-likelihood estimates for the pathogen and corresponding non-pathogen161

e↵ects on the trait using equations 9 and 12.162

5. Perform GWAS with only the non-pathogen e↵ects on the trait as the response variable.163

Results164

Simulation study165

To test the theoretical best-case performance of our method, we simulated data under the POUMM166

and applied our framework to the simulated data. We parameterized our simulation scheme with167

the time-scale and other parameters of an HIV-1 outbreak in mind, with spVL as the trait of168

interest.169

We first simulated a phylogeny of 500 tips with exponentially distributed branch lengths and170

mean root-to-tip time of 0.14 substitutions per site per year as in Hodcroft et al. (2014). Then, we171

simulated pathogen trait values g along this phylogeny using the POUMM package in R (Mitov172

and Stadler, 2017). This part of the simulation is illustrated in Figure 1A. For the simulation,173

we considered a range of pathogen heritability parameter values H2, from 15 to 75%, and a range174

of selection strength parameters values ↵, from 0.1 to 60 time�1. The intensity of stochastic175

fluctuations parameter � was determined based on H
2 and ↵ (a re-arrangement of equation 4,176

equation given in Table S1). As shown in Figure S1, higher ↵ values correspond to higher � values177

to maintain constant H2 under this parameterization. For each H
2 and ↵ value considered in the178

simulation, we recorded the simulated pathogen part of the trait value for each tip in the phylogeny.179

We paired each tip’s simulated pathogen trait value with a simulated host trait value. Simulated180

hosts had 20 genome positions. We sampled alleles (0, 1, or 2) for each position from a binomial181

distribution with probability 0.13. 10 random positions had an e↵ect size of 0.2 on the trait and 10182

had an e↵ect size of -0.2. This part of the simulation is illustrated in Figure 1B. Our parameter-183

ization produced roughly normally distributed host trait values centered at 0 with variance equal184

to 25% of the total trait variance, which we constrained to 0.73 based on the variance in log spVL185

values measured by Mitov and Stadler (2018). We used 25% host heritability for spVL based on186

McLaren et al. (2015).187

Finally, we sampled an additional random environmental e↵ect for each tip from a normal188

distribution centered at 0, as illustrated in Figure 1C. The variance of this distribution was scaled189

based on the pathogen heritability of the trait, from 0 (no a↵ect) in the scenario with 75% pathogen190

8
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heritability and 25% host heritability to 0.44 in the scenario with 15% pathogen heritability and191

25% host heritability. Figure S2 provides a more detailed schematic of this simulation framework192

and Table S1 gives the value or expression for each parameter.193

Estimator accuracy194

First, we evaluated how well our method estimated the additive host genetic e↵ects from the195

simulated data. Additive host genetic e↵ects represent an ideal (albeit unattainable) baseline for196

infectious disease GWAS. Figure 2A shows that our method incorporating phylogenetic information197

can more accurately estimate these value compared to the trait value. To ensure a fair comparison,198

we scaled trait values to have the same mean, zero, as host genetic e↵ects so as not to bias the199

root mean squared error (RMSE) by a constant factor. As shown in the supplemental material,200

we can calculate the expected RMSE using the scaled trait value across scenarios in our simulation201

scheme because the variance in the trait due to pathogen genetic e↵ects and environmental e↵ects202

is fixed. Thus, we expect the RMSE using the scaled trait value to be 0.74 across all simulation203

scenarios. By incorporating phylogenetic information, we can improve upon this error in scenarios204

where the trait is highly heritable, under low selection pressure, and with relatively moderate205

stochastic fluctuations compared to outbreak duration. Figure 3 gives some intuition for how this206

correction works by contrasting simulated scenarios with high and low heritability and low selection207

strength/ low stochastic fluctuations. Depending on these parameters, trait values are more or less208

phylogenetically correlated (see also Figure 4) and the phylogeny is more or less useful for accurately209

estimating the heritable pathogen and corresponding non-heritable, non-pathogen part of the trait210

values.211

Theoretical GWAS improvement212

Next, we characterized the evolutionary scenarios under which our framework can actually improve213

GWAS power. We used the true positive rate (TPR) to evaluate the fraction of simulated causal host214

genetic variants we could recover as being significantly associated with the trait. We performed215

three di↵erent GWAS for each simulated dataset: the first represents an ideal in which we can216

exactly know and remove pathogen e↵ects from trait values, the second is using our method to217

estimate this value and remove it, and the third represents a standard GWAS using the scaled trait218

value. Figure 2B shows that our framework can improve the TPR in simulated scenarios where219

selection strength < 10 time�1 and heritability > 45%. If we were able to perfectly estimate and220

remove pathogen e↵ects from a trait, the TPR would increase across all values of selection strength221

so long as the trait is more than marginally heritable. We estimate approximately 25% to be the222

heritability threshold above which GWAS power is negatively impacted by pathogen e↵ects. In223

summary, we show that it is theoretically possible to improve GWAS power for heritable infectious224

9
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disease traits by estimating and removing pathogen e↵ects using information from the pathogen225

phylogeny.226
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Figure 2: Results from the simulation study. We simulated host, pathogen, and environmental
e↵ects on a trait under the phylogenetic Ornstein-Uhlenbeck mixed model (POUMM) with di↵erent
heritability (H2; y-axis) and selection strength (↵; x-axis) parameters. For each simulated dataset,
we applied our method to estimate the non-pathogen e↵ects and performed GWAS with these
values. (A) shows the root mean squared error (RMSE) of our estimator (left) compared to un-
corrected trait values, scaled by their mean (right) under each simulated evolutionary scenario.
The RMSE is with reference to the true (simulated) host part of the trait values. Thus, more
accurate estimates (lower RMSE) mean the trait value used for GWAS will be closer to the true
host part of the trait value. (B) shows how genome-wide association study (GWAS) power can
improve given the true, simulated non-pathogen e↵ect on spVL (left) and using our estimate for
this value (middle) compared to using the scaled trait value (right). Each tile’s color corresponds
to the average value across 20 simulated datasets of 500 samples. The points highlight specific
heritability and selection strength values from the A. thaliana-X. arboricola quantitative disease
resistance (QDR) analysis, HIV-1 spVL analysis, and four simulated scenarios that are presented
in more detail in Figure 4.
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Figure 3: Simulated data from two evolutionary scenarios where a phylogenetic correction to trait
values improves genome-wide association study (GWAS) power (right side) and where it does not
(left side). These examples correspond to two of the unfilled points in Figure 2. (A) and (B)
show total trait values for 12 randomly selected tips from the simulated phylogeny with pathogen
heritability H

2 of 15 and 75%, respectively. Depending on the pathogen heritability, trait values are
more or less correlated at clustered tips. (C) compares our method’s estimate for the non-pathogen
part of trait values (y-axis) with true simulated host trait values (x-axis) with pathogen heritability
of 15 and 75%. The solid line is the y=x line. Selection strength ↵ was fixed to 0.1 time �1 for
both scenarios and all other parameters were fixed as in the full simulation study.
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Figure 4: Correlations between trait values in pairs of tips in four simulated scenarios. These
examples correspond to the four unfilled points in Figure 2. Correlations are calculated for pairs
of tips binned by phylogenetic distance (into deciles) across the 20 replicate simulations for each of
the four evolutionary scenarios. Trait values are only noticeably correlated for closely clustered tips
under the scenario with high pathogen heritability H

2 and low selection strength ↵/ low stochastic
fluctuations � (upper left facet).

Application to HIV-1 set-point viral load227

We applied our framework to empirical data from two di↵erent host-pathogen systems with di↵erent228

experimental setups (Figure 5). First, we used data collected by the Swiss HIV Cohort Study229

(SHCS) from 1,493 individuals in Switzerland infected with HIV-1 subtype B between 1994 and230

2018. The SHCS provided viral load measurements, pol gene sequences, and human genotype231

data for these individuals. We followed the method outlined above to estimate the pathogen and232

non-pathogen e↵ects on spVL for the cohort from these data. Figure S3 shows the calculated233

(total) spVL values, which vary between approximately 1 and 6 log copies/mL in the cohort. We234

estimated spVL heritability in this cohort to be 45% (95% highest posterior density, HPD, 24 -235

67%) and selection strength to be 58 time�1 (95% HPD 19 - 95) (Figure S4, Table S2). To put236

these values into the context of our simulation study, they are shown as points on Figure 2. The237

highest expected correlation in trait values between any two tips in the HIV-1 phylogeny under238

the POUMM was 0.45. However, Figure S5 shows that this trait is not obviously phylogenetically239

structured in the cohort in general, despite high heritability. Finally, figure S6 shows that the240

estimated non-pathogen e↵ects on spVL correlate quite strongly with total spVL.241
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Figure 5: A high-level schematic of the experimental setup for the two application datasets. For (A)
HIV-1 set-point viral load (spVL) in the Swiss HIV Cohort Study, data are paired viral and human
genotypes and associated spVL measurements. We fit the phylogenetic Ornstein-Uhlenbeck mixed
model (POUMM) to the viral phylogeny and spVL values associated with each infected individual
(z1, z2, ..., z1493). For (B) A. thaliana-X. arboricola quantitative disease resistance (QDR) from
Wang et al. (2018), data are bacterial and plant genotypes with QDR measurements for all possible
combinations of pathogen and host plant strains. We fit the POUMM to the bacterial phylogeny
and mean QDR calculated for each pathogen strain across all the hosts plant types (z̄1, z̄2, ..., z̄22).

We compared our proposed GWAS framework with a more standard approach by performing two242

di↵erent GWAS on the same SHCS human genotypes. We retained 1,392 individuals of European243

ancestry for the GWAS. In the (i) “GWAS with standard trait value” we used the total trait value,244

calculated spVL values, as the GWAS response variable. In the (ii) “GWAS with estimated non-245

pathogen part of trait” we used our estimates for the non-pathogen e↵ects on spVL. Figure 6A shows246

that results are qualitatively similar between the two GWAS. Q-Q plots show the distribution of p-247

values are very similar as well (Figure S7). Figure 6B shows how the strength of association changed248

for some variants in the MHC and CCR5 regions. Taking into account phylogenetic information249

slightly decreased association strength for most variants in the CCR5 region. Association strength250

increased for some variants in the MHC, for example, SNP rs9265880 had the greatest increase in251

significance in the MHC region, from a p-value of 3.5 ⇥ 10�07 to 7.7 ⇥ 10�09. However, the top-252

associated variants in the MHC and CCR5 regions were consistent regardless of the GWAS response253

variable used (Table S3). Finally, Table 1 shows how our GWAS results compare for the two top-254

associated SNPs identified by McLaren et al. (2015), who performed the largest standard GWAS255

for HIV spVL to date. E↵ect sizes are smaller with a phylogenetic correction and p-values are256

slightly increased. We repeated the analysis using three di↵erent approximate maximum-likelihood257

phylogenies and these results were consistent (see Materials and Methods; Table S4). In summary,258
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there are no clear patterns that point to new regions of association in the human genome with259

spVL when we take into account the pathogen phylogeny.260

Figure 6: Results from comparative genome-wide association studies (GWAS) on HIV-1 set-point
viral load (spVL) data. (A) shows association p-values for the same host variants from the Swiss
HIV cohort in GWAS with two di↵erent response variables. On the left, we used unmodified (total)
spVL values. On the right, we used our estimates for the non-pathogen e↵ects on spVL. The
alternating shades correspond to di↵erent chromosomes. (B) compares the strength of association
for variants in the CCR5 and MHC regions between the two GWAS (positions 45.4 - 47Mb on
chromosome 3 and 29.5 - 33.5Mb on chromosome 6 for the CCR5 and MHC, respectively). Base
positions are with reference to genome build GRCh37. The color of each point represents the
di↵erence in -log10 p-value between the two GWAS. Red means taking into account phylogenetic
information decreased the strength of association and blue means it increased it. The dashed lines
show genome-wide significance at p = 5⇥ 10�8.
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Table 1: Top association results from McLaren et al. (2015) compared to results from this study.
Results from this study are for host variants from the SHCS in GWAS with two di↵erent response
variables. “Standard trait value” means we used the unmodified (total) spVL value and “Estimated
non-pathogen part of trait” means we used our estimates for the non-pathogen e↵ects on spVL.

McLaren

et al.

Standard

trait value

Estimated non-pathogen

part of trait

Region Variant p-value E↵ect size p-value E↵ect size p-value

MHC rs59440261 2.0⇥ 10�83 -0.4 3.3⇥ 10�11 -0.22 2.6⇥ 10�10

CCR5 rs1015164 1.5⇥ 10�19 0.15 7.5⇥ 10�7 0.078 8.5⇥ 10�6

Application to the A. thaliana-X. arboricola pathosystem261

Next, we applied our method to data collected from the A. thaliana-X. arboricola pathosystem by262

Wang et al. (2018). Wang et al. (2018) performed a fully-crossed experiment in which they infected263

genetically diverse A. thaliana accessions with genetically diverse strains of the phytopathogenic264

bacteria X. arboricola. They scored quantitative disease resistance (QDR) on a scale of 0 (resistant)265

to 4 (susceptible) for up to four infected leaves for three replicates of each A. thaliana-X. arboricola266

pairing. Our method requires a single trait value per pathogen strain, so we used mean QDR267

calculated for each pathogen strain across all the host A. thaliana types (Figure 5B). Figure S8A268

shows the inferred X. arboricola pathogen phylogeny annotated with the mean QDR trait value269

used for each strain. Mean QDR was generally low, varying between 0.11 for strain NL P126 and270

0.78 for strain FOR F21. Fitting the POUMM yielded very low selection strength ↵ and intensity271

of stochastic fluctuations � parameter estimates (posterior mean 0.03 with 95% HPD 0.0 - 0.05 and272

0.03 with 95% HPD 0.0 - 0.06, respectively; Table S5). These values deviated significantly from the273

respective priors (Figure S9). Heritability, on the other hand, was quite uncertain (posterior mean274

0.33 with 95% HPD 0.0 - 0.77; Table S5). The posterior mean selection strength and heritability275

values are also shown in the context of the simulation study as points on Figure 2.276

Given the posterior mean estimates for the POUMM parameters, expected correlation in trait277

values between tips were very low (maximum value 3.2 ⇥ 10�12 compared to maximum value of278

0.45 in the HIV-1 spVL application). Thus, the phylogeny is not very informative for a trait value279

correction. Indeed, the estimated pathogen part of the QDR trait calculated by our method is280

simply a scaling of the total QDR trait value (Figure S10). We anyways selected 22 random host-281

pathogen strain pairings to perform a comparative GWAS analogous to that for HIV-1 spVL, where282

each host is infected with a single pathogen strain. In the first GWAS, we used the specific QDR283

measurement for each selected host-pathogen pairing. I.e., with reference to Figure 5, we selected284

z11 for the first sample, z23 for the second sample, and so on. In the second GWAS, we used our285

estimates for the non-pathogen e↵ects on QDR for each pairing. Since our method did not utilize286
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phylogenetic information in this case, the estimated non-pathogen part of the trait is simply the287

specific QDR for each selected host-pathogen pairing, minus mean QDR for the respective pathogen288

strain, calculated across all the host A. thaliana types. I.e., with reference to Figure 5, we used a289

scaled version of z11� z̄1 for the first sample, z23� z̄2 for the first sample, and so on. Figure 7 shows290

that results are qualitatively similar between the two GWAS, with a slight decrease in association291

strength for the top-associated variants. Q-Q plots show the distribution of p-values are also very292

similar (Figure S11). In the first, standard GWAS, one A. thaliana loci just exceeds the threshold293

for significant association after correction for multiple testing. In the second, corrected GWAS, no294

A. thaliana variants are significantly associated with QDR to X. arboricola.295

Figure 7: Results from comparative genome-wide association studies (GWAS) on A. thaliana quan-
titative disease resistance (QDR) to X. arboricola. The two facets show association p-values for the
same host A. thaliana variants in GWAS with two di↵erent response variables. On the left, we used
unmodified (total) QDR values for each of the 22 selected host-pathogen pairings on which these
results are based. On the right, we used our estimates for the non-pathogen e↵ects on QDR for
these samples. In this case, estimated non-pathogen e↵ects are the specific QDR for each selected
host-pathogen pairing, minus mean QDR for the respective pathogen strain, calculated across all
the host A. thaliana types. The alternating shades correspond to di↵erent chromosomes. The
dashed lines show significance at significance level 0.05 with a Bonferroni correction for multiple
testing.

Discussion296

In this paper, we presented a new phylogeny-aware GWAS framework to correct for heritable297

pathogen e↵ects on infectious disease traits. By using information from the pathogen phylogeny,298

we show that it is possible to improve GWAS power to detect host genetic variants associated with299

a disease trait. This improved power is envisioned to contribute to a better understanding of which300

host factors are broadly protective against a disease versus which increase susceptibility or disease301

severity.302
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The main novelty of our approach is to estimate parameters governing the evolutionary dynamics303

of a trait in the pathogen population and use these estimates to correct infectious disease trait values304

prior to performing GWAS, thereby estimating and removing pathogen e↵ects. In simulations, we305

show that when trait heritability due to shared pathogen ancestry amongst infection partners is306

greater than approximately 25%, GWAS power to detect host genetic variants associated with the307

same trait is reduced. Our method can correct for this e↵ect in certain evolutionary scenarios by308

using information from the full pathogen phylogeny. Based on our simulation results, our method309

is anticipated to be very useful for disease traits that are highly heritable from donor to recipient310

and maintain a high correlation between sampled individuals. In simulations, we showed this is the311

case when pathogen heritability is high, selection strength is low, and trait values are not subject312

to strong stochastic fluctuations. In summary, cohort-level, phylogenetically structured di↵erences313

in the measured trait value are necessary for our approach to outperform state of the art methods.314

We applied this model to two di↵erent host-pathogen systems where paired host and pathogen315

genetic data was generated alongside a measure of pathogen virulence. First, we fit the POUMM316

to set-point viral load data from individuals living with HIV in Switzerland. We estimated HIV-1317

spVL heritability to be 45% (95% HPD 24 - 67%) in this cohort. Compared to previous studies,318

this estimate is at the higher end (see Mitov and Stadler (2018) and references therein). Also using319

the POUMM, Bertels et al. (2018) estimated a spVL heritability of 29% (N = 2014, CI 12 - 46%)320

from the same cohort and Blanquart et al. (2017) estimated 31% (N = 2028, CI 15 - 43%) from a321

pan-European cohort. We note that our sample size (N = 1493 individuals) is smaller than in these322

other studies. This might be because we restricted samples based on having pol gene sequences323

with at least 750 non-ambiguous bases. Our aim was to reconstruct a high-quality phylogeny, since324

the POUMM does not account for phylogenetic uncertainty and the POUMM parameter estimates325

are key to our downstream trait-correction method. Although our heritability estimate is rather326

high, the confidence interval largely overlaps with the intervals of other studies and we note that327

estimating heritability per se was not our primary focus.328

For comparison, we also fit the POUMM to quantitative disease resistance measurements from329

A. thaliana infected with the phytopathogenic bacteria X. arboricola. We estimated X. arboricola330

virulence heritability to be 33% (95% HPD 0 - 77%). (Wang et al., 2018) originally estimated a331

QDR heritability of 44% in this dataset, falling within the wide range of our estimate. We note332

that Wang et al. (2018) used a linear mixed model in which the experimental unit is QDR scored333

on individual leaves, whereas our estimate is based on much coarser binning of QDR scores into a334

mean score across all leaves on all host accessions and all replicates (N = 22). Furthermore, the335

QDR score trait values were not truly continuous (scores were measured on an integer scale from336

0 to 4). Thus, these data partially violate the assumptions of the POUMM. We estimate very337

low selection strength for virulence in X. arboricola. As Wang et al. (2018) explain, X. arboricola338

strains with di↵ering virulence can co-inhabit populations of A. thaliana. This might also point to339
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low selection on X. arboricola virulence. Furthermore, expected correlation in virulence between340

related strains of X. arboricola was smaller than for HIV-1.341

Given our estimates for trait heritability and selection strength on HIV-1 spVL and A. thaliana342

QDR to X. arboricola, our simulation results reveal that we cannot expect a significant improve-343

ment in GWAS power for these systems (Figure 2). Indeed, while certain pairs of samples in the344

HIV-1 cohort were expected to have phylogenetically correlated spvL values (maximum expected345

correlation between any two samples was 0.45), the overall e↵ect on GWAS is small. For HIV-1346

spVL, our phylogenetic correction slightly decreases p-values for variants in CCR5 and slightly de-347

creases some and increases other p-values for variants in the MHC (Figure 6B). Simulations show348

we shouldn’t expect a net p-value decrease, but our simulations represent an ideal scenario since we349

simulate under the POUMM. For the empirical data, un-modeled evolutionary pressures like drug350

treatment and host-specific HLA alleles might cause the reduced p-values. However, the overall pic-351

ture is consistent between the two GWAS (Figure 6A). For A. thaliana QDR to X. arboricola, the352

trait value correction does not utilize phylogenetic information because phylogenetic correlations353

between samples are too weak (maximum expected correlation between strains was 3.2 ⇥ 10�12).354

We anyways corrected QDR trait values based on average QDR for each pathogen strain across the355

full range of host types. Results show slight decrease in p-values for the most-associated variants356

in this application as well, but the overall picture is consistent with previous GWAS results from357

Wang et al. (2018). That study found no significant A. thaliana variants associated with QDR358

using a linear mixed model jointly accounting for host genetic e↵ects, pathogen genetic e↵ects, and359

interaction e↵ects. As with HIV-1 spVL, our results do not challenge this previous finding. There-360

fore, we conclude that GWAS for host determinants of HIV-1 subtype B spVL and A. thaliana361

determinants of QDR to X. arboricola are robust to our correction for pathogen e↵ects.362

Our method has several limitations. When POUMM parameter estimates are highly uncertain,363

correcting trait values based on posterior mean or maximum likelihood parameter estimates neglects364

this uncertainty. Then, as in the A. thaliana-X. arboricola application, fitting the POUMM may365

reveal that expected phylogenetic correlations between samples are not strong enough to justify366

using our method to correct trait values in a GWAS. In this case, one may wish to use a linear367

mixed model as in Wang et al. (2018), where the pathogen e↵ect is co-estimated as a random e↵ect.368

The expected correlation structure estimated under the POUMM could be used for the covariance369

of the random e↵ect, taking the phylogeny into account di↵erently but still utilizing information370

from the evolutionary model. Finally, as we show here, our method is not anticipated to be useful371

in certain evolutionary scenarios. For instance, traits like antimicrobial resistance may be under372

strong selection pressure and be highly heritable. In these instances, our simulations do not point373

to a large improvement when adding our pre-processing step. In any case, such traits might violate374

the POUMM assumption that trait values vary as a random walk in continuous space if they are375

caused by few mutations of strong a↵ect, meaning our approach would not apply. In this situation,376
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one would rather account for antimicrobial resistance as a covariate in the GWAS association model.377

The primary advantage of our approach is that it is complementary to previously developed378

methods for infectious disease GWAS. First, it provides additional information on the evolutionary379

dynamics of the trait in the pathogen population. Then, it is a convenient pre-processing step380

for GWAS because it simply produces a corrected response variable for GWAS association tests.381

In cases where a correction can be estimated and applied using our method, the corrected trait382

values are envisioned to be used in any of the previously developed GWAS models for the actual383

association testing (we used a linear model approach implemented in PLINK (Chang et al., 2015),384

though a more advanced method would be to use a linear mixed model with host ancestry as a385

random e↵ect). Further, additional model complexity can be added to the GWAS association tests.386

For instance, our method does not account for co-infection, which might add additional variance387

to trait values and decrease GWAS power. In this case, one could add co-infection status as a388

covariate in the GWAS association test to account for this variable.389

Our method relies on the freely available R package POUMM (Mitov and Stadler, 2017),390

which scales to trees of up to 10,000 tips (Mitov and Stadler, 2019). All code for the sim-391

ulations and HIV spVL analysis presented in this study is available on the project GitHub at392

https://github.com/cevo-public/POUMM-GWAS. Future applications of our method might inves-393

tigate other clinically significant disease traits and outcomes that are a↵ected by both host and394

pathogen genetic factors, for instance Hepatitis B Virus-related hepatocellular carcinoma (An et al.,395

2018), Hepatitis C treatment success (Ansari et al., 2017), and susceptibility to or severity of cer-396

tain bacterial infections, e.g. Donnenberg et al. (2015); Messina et al. (2016). Transcriptomic data397

has also previously been modeled as an evolving phenotype using an Ornstein-Uhlenbeck model398

(Rohlfs et al., 2014). Thus, one could also estimate pathogen e↵ects on host gene expression.399

In summary, we present a coherent infectious disease GWAS framework that takes the pathogen400

phylogeny into account when searching for host determinants of a disease trait. We further show401

that the pathogen phylogeny only has an impact on the GWAS outputs if heritability of the trait402

amongst infection partners is > 25%. For the systems studied here, spVL in individuals living403

with HIV and QDR for X. arboricola infections in A. thaliana, the phylogenetic correction does not404

change GWAS results. Our findings indicate previously published GWAS results for these systems405

are not biased by shared evolutionary history amongst infecting pathogen strains.406

Materials and Methods407

Simulation model408

Whenever possible, we tried to parameterize our simulation model using empirical data on the spVL409

trait. We set the total variance in spVL to 0.73 log copies2 mL�2 based on UK cohort data (Mitov410
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and Stadler, 2018). Other studies have estimated slightly lower values though (Table S6). After411

allotting 25% of this variance to a host part of spVL h based on results by McLaren et al. (2015), we412

partitioned the remaining variance between a viral part g and an environmental part e in di↵erent413

ratios to assess estimator performance across a range of spVL heritabilities. h was simulated as414

the sum of contributions from 20 causal host genetic variants, 10 of which had an e↵ect size of 0.2415

log copies mL�1 and 10 of which had an e↵ect size of -0.2 log copies mL�1. Host genetic variants416

were generated from a binomial distribution with probability p calculated such that h had the417

appropriate variance (see Table S1). We generated a random viral phylogeny with branch lengths418

on the same time scale as a previously inferred UK cohort HIV tree (Hodcroft et al., 2014) using419

the R package ape (Paradis and Schliep, 2018). g was simulated by running an OU process along420

the phylogeny using the R package POUMM (Mitov and Stadler, 2017) and sampling values at the421

tips. For the OU parameters ✓ and g0 we used 4.5 log copies mL�1 based on previous estimates of422

mean spVL (Table S6). This is similar to values previously inferred for HIV (Table S7). To assess423

our estimator’s performance under a range of evolutionary scenarios, we co-varied the heritability424

H
2 and selection strength ↵ parameters. The intensity of random fluctuations � was determined425

based on these parameters (Table S1, Figure S1). Finally, the environmental part of spVL e was426

generated from a normal distribution with mean 0. For a full graphical model representation of the427

simulation scheme, see Figure S2.428

We performed GWAS on the simulated data using a linear association model as implemented429

in the “lm” function in R. For each simulated dataset, we performed three association tests: (i)430

using the true (simulated) non-pathogen part of the trait (host + environmental parts), (ii) using431

the estimated non-pathogen part of the trait according to the method presented in this paper, and432

(iii) using the total trait value, scaled by its mean. We assessed the significance of each associations433

at a significance level of 0.05 with a Bonferroni correction for multiple testing. For our main434

results (Figure 2) we simulated 20 truly associated variants, as described above. To also check the435

false positive rate (FPR), we re-ran the simulations with an additional 80 non-associated variants.436

Across all the association tests in this second simulation setup (7 H
2 levels ⇥ 10 ↵ levels ⇥ 100437

variants ⇥ 20 replicates per scenario = 140,000 association tests), FPR was 0.0005 using the true438

(simulated) non-pathogen part of the trait, 0.0005 using the estimated non-pathogen part of the439

trait, and 0.0006 using the scaled total trait value. These rates are comparable to the expected440

FPR of 0.0005 at significance level 0.05 corrected for 100 tests. Given the stricter correction for441

multiple testing in this second simulation setup, the TPR decreased significantly across all three442

GWAS response variables used.443
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Swiss HIV-1 data444

Human genotypes, viral load measurements, and HIV-1 pol gene sequences from HIV-1 positive445

individuals were all collected in the context of other studies by the Swiss HIV Cohort Study (SHCS)446

(www.shcs.ch, Scherrer et al. (2021); Schoeni-A↵olter et al. (2010)). All participants were HIV-447

1–infected individuals 16 years or older and written informed consent was obtained from all cohort448

participants. The anonymized data were made available for this study after the study proposal was449

approved by the SHCS.450

For phylogenetic inference, we retained sequences from 1,493 individuals with non-recombinant451

subtype B pol gene sequences of at least 750 characters and paired RNA measurements allowing for452

calculation of spVL, as well as 5 randomly chosen subtype A sequences as an outgroup. We used453

MUSCLE version 3.8.31 (Edgar, 2004) to align the pol sequences with –maxiters 3 and otherwise454

default settings. We trimmed the alignment to 1505 characters to standardize sequence lengths. We455

used IQ-TREE version 1.6.9 (Nguyen et al., 2014) to construct an approximate maximum likelihood456

tree with -m GTR+F+R4 for a general time reversible substitution model with empirical base457

frequencies and four free substitution rate categories. Otherwise, we used the default IQ-TREE458

settings. After rooting the tree based on the subtype A samples, we removed the outgroup. Viral459

subtype was determined by the SHCS using the REGA HIV subtyping tool version 2.0 (de Oliveira460

et al., 2005). We calculated spVL as the arithmetic mean of viral RNA measurements made prior461

to the start of antiretroviral treatment. For a comparison of several di↵erent filtering methods, see462

Figure S3.463

For GWAS, we retained data from 1,392 of the 1,493 SHCS individuals with European ancestry464

who were not closely related to other individuals in the cohort (Table S8). These were 227 females465

and 1165 males. Ancestry was determined by plotting individuals along the three primary axes of466

genotypic variation from a combined dataset of SHCS samples and HapMap populations (Figure467

S12). Kinship was evaluated using PLINK version 2.3 (Chang et al., 2015); we used the –king-cuto↵468

option to exclude one from each pair of individuals with a kinship coe�cient > 0.09375. Initial469

host genotyping quality control and imputation were done as in Thorball et al. (2021). Subsequent470

genotyping quality control was performed using PLINK version 2.3 (Chang et al., 2015). We used471

the options –maf 0.01, –geno 0.01, and –hwe 0.00005 to remove variants with minor allele frequency472

less than 0.01, missing call rate greater than 0.05, or Hardy-Weinberg equilibrium exact test p-value473

less than 5x10�5. After quality filtering, approximately 6.2 million genetic variants from the 1,392474

individuals were retained for GWAS (Table S9).475

A. thaliana-X. arboricola data476

A. thaliana and X. arboricola genotyping and quantitative disease resistance (QDR) measurements477

were generated by Wang et al. (2018) and are described in detail in that publication. Briefly, Wang478
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et al. (2018) infected di↵erent A. thaliana host accessions with di↵erent X. arboricola pathogen479

strains in a fully-crossed experimental design. They infected up to 4 leaves on each of three480

biological replicates for each host-pathogen pairing. Then, they scored QDR for each leaf on a481

scale of 0 (resistant) to 4 (susceptible). We downloaded the genotype matrix with allele dosage of482

33,610 SNPs for the 22 X. arboricola pathogen strains generated by Wang et al. (2018) from their483

supplemental material. We additionally downloaded a VCF file with allele dosage of 12,883,854484

SNPs for the di↵erent A. thaliana accessions from the 1001 Genomes project (Alonso-Blanco et al.,485

2016). QDR measurements were provided directly by the Wang et al. (2018) authors.486

For phylogenetic inference, we used the “dist.gene” and “nj” functions from the ape package487

in R to construct a pairwise genetic distance matrix and then a neighbor-joining tree from the X.488

arboricola pathogen genotype matrix. The inferred tree topology (Figure S8) closely matches the489

hierarchical clustering presented in (Wang et al., 2018), which was generated using the unweighted490

pair group method with arithmetic mean (UPGMA). Compared to UPGMA, the neighbor-joining491

method we used relaxes the assumptions of a strict molecular clock and sampling all at the same492

time-point. For the trait value to fit the POUMM, we calculated mean QDR across all leaves493

infected on all hosts for each X. arboricola strain (see Figure 5B) We used PLINK version 2.0 to494

select bi-allelic variants from the VCF file using option –max-alleles 2. We then used options –maf495

0.1 and –max-maf 0.9 to remove variants with minor allele frequencies less than 0.1 as in Wang et al.496

(2018). After filtering, approximately 1.1 million genetic variants from A. thaliana were retained497

for GWAS (Table S10).498

POUMM parameter inference499

We used the R package POUMM version 2.1.6 (Mitov and Stadler, 2017) to infer the POUMM500

parameters g0,↵ ,✓,� , and �e from the HIV-1 and X. arboricola phylogenies and associated spVL501

and QDR trait values. The Bayesian inference method implemented in this package requires spec-502

ification of a prior distribution for each parameter. For HIV-1 spVL, we used the same, broad503

prior distributions as in Mitov and Stadler (2018), namely: g0 ⇠ N (4.5, 3), ↵ ⇠ Exp(0.02),504

✓ ⇠ N (4.5, 3), H2
t̄ ⇠ U(0, 1), and �

2
e ⇠ Exp(0.02). For X. arboricola QDR, we modified the505

g0 and ✓ priors to match the empirical mean and standard deviation of QDR trait values in the506

dataset: g0 ⇠ N (0.4, 0.2) and ✓ ⇠ N (0.4, 0.2). We ran two MCMC chains for 4x106 samples507

each with a target sample acceptance rate of 0.01 and a thinning interval of 1000 for both analyses.508

The first 2x105 samples of each chain were used for automatic adjustment of the MCMC proposal509

distribution. Figures S4 and S9 show the posterior distributions for inferred parameters for HIV-1510

spVL and X. arboricola QDR, respectively. Tables S2 and S5 give the posterior mean values used511

for subsequent calculations.512
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Phylogenetic trait correction513

We estimated the pathogen and non-pathogen e↵ects on HIV-1 spVL in humans and X. arbori-514

cola mean QDR in A. thaliana using the method described in this paper. For each individual,515

we estimated the pathogen part of the trait value using equation 9 and the corresponding non-516

pathogen part using equation 12. This is implemented in the function “POUMM:::gPOUMM” in517

the R package POUMM. In the HIV-1 case, each sample corresponds to one HIV-1 strain with518

one spVL value. In the X. arboricola case, each sample corresponds to one X. arboricola strain519

and the mean QDR score for that strain across all host types (see Figure 5). To calculate the520

expected correlation in trait values between tips in the pathogen phylogeny, we used the function521

“covVTipsGivenTreePOUMM” in the same package. For the POUMM parameters ↵, �, ✓, and �e,522

we used the posterior mean estimates generated as described above. All the code used to implement523

the method is available at https://github.com/cevo-public/POUMM-GWAS.524

Association testing525

We performed two comparative GWAS for each system, using the same host genotype data across526

the two GWAS. For the first “GWAS with standard trait value” we used the total (uncorrected) trait527

values (z) as the response variable for association testing, replicating a standard GWAS set-up. For528

the second “GWAS with estimated non-pathogen part of trait” we replaced total trait values with529

the estimated non-pathogen component of the trait (✏̂) as the response variable. Association testing530

was performed using a linear association model in PLINK version 2.3 and 2.0, respectively (Chang531

et al., 2015) with the top 5 principle components of host genetic variation included as covariates.532

For the HIV-1 spVL GWAS, we additionally included sex as a covariate. The sex and principle533

components covariates were included to reduce residual variance and control for confounding from534

host population structure, respectively.535

Phylogenetic uncertainty536

Our method assumes the phylogeny accurately reflects the evolutionary relationships between537

pathogen strains. Previously, Hodcroft et al. (2014) observed HIV spVL heritability estimates538

based on pol gene sequences were robust to including or not including resistance-associated codons.539

Our analysis includes these codons. For the HIV application, we additionally tested the sensitivity540

of the inference to phylogenetic uncertainty. We inferred the phylogeny again, this time using the541

IQ-TREE option -wt to output all locally optimal trees. We fit the POUMM to two randomly542

selected trees from this set and repeated the trait correction and association testing steps using543

these trees and the corresponding POUMM parameter estimates.544
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Data availability545

The simulated data underlying this article can be re-generated using the code available on the546

project GitHub at https://github.com/cevo-public/POUMM-GWAS. The HIV pathogen genome547

sequences, clinical data, and human genotypes cannot be shared publicly due to the privacy of548

individuals who participated in the cohort study. The data may be shared on reasonable request549

to the Swiss HIV Cohort Study at http://www.shcs.ch. The X. arboricola pathogen genotypes are550

available in the supplemental material of (Wang et al., 2018), the A. thaliana host genotypes are551

available at https://1001genomes.org/, and the A. thaliana-X. arboricola QDR measurements are552

available on request to the authors of (Wang et al., 2018).553
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