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ABSTRACT 

Purpose. To measure the flexural strength and Weibull characteristics of aged and non-aged 

printed interim dental material fabricated with different layer thickness. 

Material and methods. Bars (25 2 2 mm) were additively fabricated by using a polymer 

printer (Asiga Max) and an interim resin (Nexdent C&B MFH). Specimens were fabricated with 

the same printing parameters and postprocessing procedures, but with 7 different layer 
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thickness: 50 (control or 50-G group), 10 (10-G group), 25 (25-G group), 75 (75-G group), 100 

(100-G group), 125 (125-G group), and 150 µm (150-G group). Two subgroups were created: 

non-aged and aged subgroups (n=10). A universal testing machine was selected to measure 

flexural strength. Two-parameter Weibull distribution values were computed. Two-way ANOVA 

and Tukey tests were elected to examine the data (α=.05). 

Results. Artificial aging methods (P<.001) were a significant predictor of the flexural strength 

computed. Aged specimens acquired less flexural strength than non-aged specimens. The 

Weibull distribution obtained the highest shape for non-aged 50-G and 75-G group specimens 

compared with those of other non-aged groups, while the Weibull distribution showed the 

highest shape for aged 125-G specimens. 

Conclusions. The flexural strength of the additively fabricated interim material examined was 

not influenced by the layer thickness at which the specimens were fabricated; however, artificial 

aging techniques reduced its flexural strength. Aged specimens presented lower Weibull 

distribution values compared with non-aged specimens, except for the 125-G specimens. 

Keywords: 3D printing; additive manufacturing technologies; interim dental prostheses; 

provisional dental material; vat-polymerization technologies 

Digital light processing (DLP) procedures are considered vat-polymerization additive 

manufacturing (AM) techniques. DLP methods are clinically relevant methods to fabricate 

interim dental materials.1,2 While the methods and manufacturing technologies used to fabricate 

them have been evaluated, the chemical composition, optimal printing and post-processing 

parameters, and mechanical characteristics of vat-polymerized interim dental materials are still 

uncertain.3,4  
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The characteristics and physical properties of AM interim materials5-20 including 

manufacturing accuracy,11,16 chemical composition,9 color,5,12 surface roughness,9,11,14,20 

marginal and internal fit,13,16,19 mechanical properties,5,6,8,10,11,15,18 adhesion of the microbiota,11 

wear,7 and impact of accelerating aging techniques5,6,19,10 have been analyzed in dental 

literature. An association have been recognized between the elected fabricating protocols 

(printing parameters and postprocessing methods) and the characteristics of the 3D printed 

devices including interim dental restoration.4 Furthermore, there is a correlation among the 

additive technology, printer, and resin elected to process the dental device.4 Dental literature 

has not been able yet to determine the optimal printing protocol based on the manufacturing 

trinomial, manufacturing protocol, and dental device.  

Layer thickness has been recognized as one of the manufacturing variables that can 

affect the surface roughness, manufacturing accuracy, marginal and internal fit, fabricating time, 

and degree of conversion of 3D printed dental devices including interim dental 

restorations.3,13,14,17,21 Furthermore, printed interim restorations exposed to aging techniques 

demonstrated lower flexural strength,5,6,10 color stability,5 and internal and marginal 

discrepancies19 when compared to non-aged AM interim restorations. While many of the 

previously mentioned manufacturing variables have been evaluated in the scientific literature, 

the flexural strength and Weibull characteristics between aged and non-aged 3D printed interim 

materials fabricated with varying layer thickness remain unknown. 

The goal of this investigation was to measure the flexural strength and Weibull 

characteristics of aged and non-aged AM interim dental material fabricated with varying layer 

thickness (10, 25, 50, 75, 100, 125, and 150 µm). The null hypotheses were that no significant 

discrepancy on the flexural strength and Weibull characteristics would be found among the 

specimens manufactured using different layer thicknesses and that no significant discrepancy 



 

 

 

This article is protected by copyright. All rights reserved. 

 

5 

on the flexural strength and Weibull characteristics would be found between aged and non-aged 

specimens. 

Material and methods 

A digital bar-shape (25 2 2 mm)22 specimen was obtained by using a program (Blender, 

version 2.77a; The Blender Foundation). All the manufacturing methods were accomplished by 

a prosthodontist (M.S.) with more than 10 years of preceding experience managing vat-

polymerization printers.  

The virtual bar-shape design was used to additively fabricate all the interim bars by 

using a polymer vat-polymerization printer (Asiga Max; Asiga) and a resin designated for 

interim restorations (Nexdent C&B MFH Shade N1; 3D Systems). The printer was storage in a 

room with constant temperature of 23ºC and was calibrated accordingly to the manufacturer’s 

calibration procedure prior producing any specimen. A fresh bottle of resin was obtained to 

manufacture all the specimens. Except for layer thickness, the bars of each group were 

processed all together with identical printing protocol including same location in the build 

platform, print orientation, and supportive material (Fig 1). All the bars were positioned in the 

build platform so that the layer was perpendicular to the load to be applied in the fracture 

resistance test. 

Seven groups were produced depending on the layer thickness chosen to fabricate the 

specimens: 10 (10-G group), 25 (25-G group), 50 (control or 50-G group), 75 (75-G group), 100 

(100-G group), 125 (125-G group), and 150 µm (150-G group). The 50-G group was treated as 

the control group because 50-µm is the layer thickness endorsed by the manufacturer (Table 1).  

After completing the manufacturing procedures, the postprocessing rinsing and 

polymerization procedures were completed following the manufacturer’s protocol. First, a 
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spatula was used to remove the specimens from the build platform. Then, the specimens were 

washed in a 91% isopropyl alcohol (IPA) (Isopropyl alcohol 91%; Cumberland Swan) bath for 3 

minutes, followed by a second 91% IPA clean bath for another 2 minutes. The specimens were 

dried on a paper towel and polymerization procedures were completed (LC-3DPrint Box; 3D 

Systems) at 300-550 nm for 30 minutes. Lastly, a removal tool was used to remove the 

supportive material. The bars were stored in a light-proof bottle until the tests were performed. 

Twenty bars per group were obtained, and arbitrarily distributed into 2 subgroups by 

using a shuffled deck of cards depending on the artificial aging techniques: non-aged and aged 

subgroups (N=20, n=10). Sample size was stablished based on previous investigations.6 In the 

aged subgroup, the bars were exposed to thermocycling methods which included 6,000 cycles of 

3 successive sequences each: (1) 20 seconds (dwelling phase) at 5°C; (2) 5 seconds (transfer 

phase) at ambient air temperature at 23°C; and (3) 20 seconds (dwelling phase) at 55°C. 

A universal testing machine (Universal Testing Machine; ZwickRoell) at a 

crosshead speed of 1mm/min on a 10-mm span was elected to measure flexural strength 

(MPa).
22

 The bars were loaded to failure and fracture load (N) data were documented. The 

flexural strength (  ) was calculated using the formula:   
        

      
, where Fmax is the 

failure load (force) at the fracture point (N), L is the length of the support span (10 mm), b 

is the width, and d is the thickness of the bar.
17

 

Weibull distribution maximum likelihood estimation without a correction factor was 

used including the Weibull modulus, scale (m), and shape (0) to interpret the predictability and 

reliability of the flexural strength tests (Minitab Software V.16; Minitab).23 

The Shapiro-Wilk and Kolmogorov-Smirnov tests disclosed that the data presented a 

normal distribution (P<.05). Two-way ANOVA and post hoc multiple pairwise comparison 
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Tukey tests were elected to examine the data (α=.05) (IBM SPSS Statistics for Windows, v26; 

IBM Corp). 

Results 

Two-way ANOVA indicated that only the accelerating artificial aging methods (df=1, 

MS=238829, F=583.16, P<.001) was a significant predictor of the flexural strength measured 

(Fig 2a, Table 2). Additionally, the artificial aging techniques explains the 80.33% of difference 

in the flexural strength obtained, while the layer thicknesses evaluated explains the 1.49% of 

the disparity in the flexural strength computed.  

With respect to the group factor, Tukey pairwise comparison revealed no significant 

flexural strength differences among the differing layer thicknesses tested. With respect to the 

subgroup predictor, Tukey pairwise comparison demonstrated significant flexural strength 

discrepancies between non-aged (mean of 289.77 MPa) and aged specimens (mean of 

207.17 MPa) (Fig 2b). 

The Weibull distribution obtained the highest shape for non-aged 50-G (control) (45.98) 

and 75-G group specimens (42.24) compared with those of other non-aged groups (11.36 to 

27.12), while the Weibull distribution showed the highest shape for aged 125-G specimens 

(68.18) compared with those of other aged groups (10.62 to 44.58) (Fig 3).  

Discussion 

The results of this investigation demonstrated that the specimens fabricated with different layer 

thicknesses using the polymer vat-polymerization DLP 3D printer tested, with its specific 

manufacturing protocol described, obtained no significant discrepancies in the flexural strength 

computed. But accelerating artificial aging techniques caused in a significant reduction in the 
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flexural strength mean values of the 3D printed interim material tested. Hence, only the second 

null hypothesis was rejected.  

The differing layer thicknesses assessed on the specimens manufactured using the 

selected interim dental resin, DLP printer, and manufacturing protocol tested on this 

investigation did not significantly influence the flexural strength values obtained. Therefore, just 

considering the flexural strength characteristics, interim dental restorations could be 

manufactured using any of the layer thicknesses tested. However, dental literature has shown a 

correlation between layer thickness, surface roughness, manufacturing accuracy, fabricating 

time, and degree of conversion of AM dental devices.13,14,17,21 Additionally, the generalization of 

the results is not recommended as the characteristics of the printed device are the result of 

multiple manufacturing variables such as technology, printer, and resin chosen, printing 

parameters, or postprocessing processes performed. Therefore, additional studies might be 

needed to assess the influence of the layer thickness on the mechanical properties of varying 3D 

printed devices before further conclusions can be done. 

Different manufacturing variables can affect the characteristics of AM interim 

specimens.5-21 To limit these factors, the specimens were fabricated from a single bottle of 

dental resin with the same printing parameters (except for the layer thickness), location in the 

build platform, and post-processing methods. Furthermore, the bar-shape specimens were 

fabricated following the ISO recommended dimensions22 with the layer orientation positioned 

perpendicular to the load direction of the 3-bend test to optimize the flexural strength of the 

printed interim material.15 

Limited studies have tested the flexural strength of interim materials processed using 

AM technologies.5,6 Scotti et al5 reported a flexural strength value of 105.10 ±9.80 MPa for the 

same interim material tested (Nexdent C&B MHF). However, the specimens had different 
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dimensions (10 2 2 mm) and no details were provided regarding the printer, printing 

parameters, or postprocessing techniques selected to manufacture the specimens. Hence, 

comparisons with the data obtained in this investigation are difficult.  

Scherer et al6 assessed the influence of different post-polymerization times (25, 30, 35, 

40, and 45 minutes) and conditions (dry, or inside a container containing water or glycerin) on 

the flexural strength of aged and non-aged bar-shape (25 2 2 mm).22 The specimens were 

fabricated using a resin designated to fabricate interim restorations (Nexdent C&B MHF) and a 

polymer printer (Nexdent 5100; 3D Systems). In the present investigation, the same resin was 

used, but a different polymer printer was elected (Asiga Max; Asiga). Variations on the printing 

or supportive parameters can be expected between both studies; however, further 

interpretations of how these discrepancies might impact on the outcome of the printed 

specimens is unknown. Additionally, the postpolymerization methods were completed in dry 

conditions and performed for 30 minutes of time; thus, the results of the present investigation 

could be compared with the 30-minute and dry-condition post-polymerization groups. Scherer 

et al.6 reported a mean flexural strength value of 274.85 ±15.64 MPa for non-aged samples and 

of 267.84 ±34.34 MPa for aged samples. Those results agree with the data obtained in this 

investigation.  

Additional dental literature has evaluated the properties of printed interim 

restorations;8,24 however, variations on the research methodology such as crown-shape 

specimens, fabricating protocols, and testing procedures make comparisons with the data 

obtained in this investigation challenging.   

Thermal cycling techniques aim to reproduce the deterioration of the material in the 

oral environment.25 The flexural strength of AM interim materials seems to be affected by 

artificial aging procedures.5,6,10 The results of this investigation obtained a significant difference 
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between non-aged (mean of 289.77 MPa) and aged specimens (mean of 207.17 MPa). While the 

phenomenon is multi-factor, water absorption and matrix degradation of the resin is the 

suggested cause for this finding.26,27 However, all the bars tested achieved a clinically acceptable 

flexural strength.28  

Artificial intelligence (AI) models have been reported for optimizing manufacturing 

procedures.29,30 This might be a tool in the future for stablishing printing protocols based on the 

manufacturing trinomial and clinical application of the printed dental device. While the broad 

availability of printers and materials provide wider manufacturing options for dental 

professionals, there is a need of scientific literature that assess the properties of these new 

materials, as well as, stablishing the optimal manufacturing protocol. 

This investigation has limitations such as reduced additive technologies, 3D printers, 

and materials examined. Studies are suggested to further assess the influence of the different 

printing parameters on the fabricating accuracy, marginal and internal discrepancies, and 

physical characteristics of printed interim dental restorations.  

Conclusions 

With the limitations of this in vitro investigation, the varying layer thickness tested did not 

influenced on the flexural strength and Weibull characteristics of the interim material selected 

manufactured with its described DLP printer and printing protocol. However, artificial aging 

techniques reduced the flexural strength of the printed interim material assessed. Additionally, 

the Weibull distribution of flexural strength values on aged specimens were lower than those on 

non-aged specimens, with the exception of the 125-G specimens. 
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TABLES 

Table 1. Characteristics of the groups assessed. 

Group Subgroup Layer thickness Aging methods 

10-G 

Aged 

10 µm 

Yes 

Non-aged No 

25-G 

Aged 

25 µm 

Yes 

Non-aged No 

50-G 

Aged 

50 µm 

Yes 

Non-aged No 

75-G 

Aged 

75 µm 

Yes 

Non-aged No 

100-G Aged 100 µm Yes 
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Non-aged No 

125-G 

Aged 

125 µm 

Yes 

Non-aged No 

150-G 

Aged 

150 µm 

Yes 

Non-aged No 

FIGURES 

Figure 1. (a) Representative specimen orientation. (b) Representative AM specimen. AM, 

Additively manufactured 

 

Figure 2. (a) Boxplot of flexural strength values obtained among the groups. (b) Main effects plot 

for flexural strength obtained among the groups.  
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Figure 3. Weibull modulus for all the groups tested.  
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