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Abstract

The anterior cruciate ligament (ACL) is the most frequently injured ligament in the knee. The current method 
to treat the injured ligament is reconstruction using autografts and allografts. Reconstruction requires the 
regeneration of ligament, bone and their interface to ensure proper recovery. Recently, researchers have 
focused on using tissue-engineered scaffolds made of synthetic materials and biomaterials — such as collagen, 
decellularised tissues, silk and synthetic polymers produced following different manufacturing methods — 
for ACL reconstruction. Different materials can be easily processed using various fabrication methods for 
mimicking the mechanical properties of the ACL. The advances in technologies play an important role in the 
production of constructions that can mimic native ACL. The present review addresses integrative scaffold 
design, different challenges in the potential materials and manufacturing methods as well as future strategies 
for ACL repair. Furthermore, the review provides a road map to 3D printing combined with organ-on-chip 
technology to demonstrate the potential for cost-effective and user-friendly fabrication methods for ACL 
engineering. Finally, it underlines the potential of 3D bioprinting and organ-on-chip technologies for micro-
engineering of ligaments and their associated environment.
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 ACL rupture is treated surgically by reconstructing 
the ACL using a graft. The goal is to restore the 
stability of the knee and joint and potentially reduce 
the risk of subsequent articular damage (Kiapour 
and Murray, 2014). Historically, primary ACL 
repair was attempted by suturing the damaged 
ends of the ligament together (Duchman et al., 2017; 
Palmer, 2007). This approach was abandoned and 
replaced by graft reconstruction procedures due to 
the significant failure rate of the sutures during the 
cyclic stress of natural knee movements. Nowadays, 
clinically used grafts are divided into three categories: 
autografts, allografts and synthetic grafts (Lin et al., 
2020; Shaerf et al., 2014). Autografts include BPTB 
and hamstring tendons. Allografts are usually 
taken from the posterior tendon, Achilles tendon, 
Tibialis anterior tendon, BPTB and Peroneus longus 
tendons (Iosifidis and Alexandros, 2012). Puji et 
al. (2017) demonstrated that BPTB autografts have 
better outcomes following surgery, as assessed by 
the presence of knee and kneeling pain. Although 
autografts and allografts have excellent initial 
mechanical strength and encourage cell proliferation 
and new tissue growth, these techniques present 
some disadvantages: autografts require a second 
surgery for tissue harvesting while allografts can 
cause immunogenic responses (Duchman et al., 
2017; Panos et al., 2020). In a recent study on the 
decellularisation of allografts, release of IgE and 
IL-1 at the wound site was considerably lower at the 
early stage, indicating a decreased immunological 
response. However, tissue regeneration is likely to 
require proper inflammatory responses, which may 
be limited by high levels of proinflammatory cytokine 
(Li et al., 2020).

The history of ACL repair grafts
In the early 1980s, non-degradable synthetic grafts 
were employed to provide stability to the knee 
joint due to the concerns over the use autografts 
and allografts for ACL reconstruction. The FDA 
has approved different synthetic grafts for ACL 
reconstruction. However, these synthetic grafts are 
not recommended for primary ACL repair (West 
and Harner, 2005). Also, the use of permanent 
synthetic grafts can cause complications, including 
long-term rupture, foreign-body response and 
poor tissue integration (Chung et al., 2017). Table 
1 provides an overview of synthetic ligaments 
used for ACL repair and lists their advantages and 
disadvantages. For instance, Gore-Tex® is a single-
strand polytetrafluorethylene fibre that provides 
higher tensile strength than native ACL (Ventura et 
al., 2017). In addition, the use of other biomaterials 
such as collagen, which is the most common natural 
ligament ECM component, has been proposed (Bi et 
al., 2015; Del Pizzo et al., 1977; Legnani et al., 2010; 
Ouyang et al., 2002; Perrone et al., 2017; Roth et al., 
1985; Ventura et al., 2017).

L-PRP  leukocyte-rich platelet-rich plasma
LG-DMEM low glucose Dulbecco’s modified
   Eagle’s medium
MCL  medial collateral ligament
MEW  melt electrowriting
MKX  mohawk homeobox transcription
   factor
MMP  matrix metalloproteinase
MPC  mesenchymal progenitor cell
MSC  mesenchymal stromal cell
NEAA  non-essential amino acids solution
OA  osteoarthritis
P/S  penicillin-streptomycin
PBS  phosphate-buffered solution
PCL  posterior cross ligament
PDGF  platelet-derived growth factor
PEG  polyethylene glycol
PEGDA  polyethylene glycol diacrylate
PGA  polyglycolic acid
P(DTD DD) poly(desaminotyrosyl-tyrosine 
   dodecyl dodecanedioate)
PDS  polydioxanone
PLGA  polylactic-co-glycolic acid
PLLA  poly L-lactic acid
PL   patellar ligament
PLT  platelets
PPF  poly(propylene fumarate)
PPP  platelet-poor plasma
PRF  platelet-rich-fibrin
PRP  platelet-rich-plasma
RBC  red blood cells
RFU  relative fluorescence units
rhBMP  recombinant human bone
   morphogenetic protein
qPCR  reverse transcription-polymerase
   chain reaction
SB   single-bundle
SCXA  scleraxis A
SCXB  scleraxis B
SEM  scanning electron microscope
TC   tenocyte
TGF-β1  transforming growth factor beta 1
TNC  tenascin C
TNMD  tenomodulin
VEGF  vascular endothelial growth factor
vWF  von Willebrand factor
WBC  white blood cells

Introduction

Rupture of the ACL is one of the most common 
knee-ligament injuries due to the increase in  
physical activity (Nwachukwu et al., 2019). Over 
200,000 patients per year are diagnosed with ACL 
ruptures worldwide (Buller et al., 2014). Furthermore, 
ACL insufficiency further leads to instability and 
subsequent degenerative joint diseases (Simon et al., 
2015). Therefore, surgical treatments are crucial for 
restoring functional stability (Ateschrang et al., 2018).
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Tissue-engineering approaches for ACL repair
Tissue-engineering strategies typically aim to combine 
ACL reconstruction with bioactive molecules, such 
as cytokines and growth factors, that might improve 
the ACL healing process by promoting cellular 
differentiation and proliferation (Butler et al., 2008; 
Tolikas et al., 2017). For this purpose, clinicians 
have been using PRP to treat ruptured ACLs 
(Lopez-Vidriero et al., 2010; Mazzucco et al., 2009; 
Murray et al., 2006; Schnabel et al., 2007). PRP is the 
plasma fraction of autologous blood containing a 
high concentration of platelets and growth factors. 
According to Figueroa et al. (2015), PRP treatment 
of grafts could be a synergic factor in the faster 
maturation of grafts when compared to untreated 
grafts. The beneficial effects of PRP are demonstrated 
on ACL-derived LC in vitro (Cheng et al., 2012; Fufa et 
al., 2008; Krismer et al., 2017; Mastrangelo et al., 2011; 
Murray et al., 2009; Yoshida et al., 2014). However, it 
is critical to determine which technique to use when 
obtaining the PRP, as there are significant variances 
in the number of platelet obtained and whether or 
not white blood cells, such as leucocytes, are included 
(Krismer et al., 2017; Yoshida et al., 2014). For the 
classification of different PRPs, the reader is referred 
to Mishra et al. (2012). However, in the clinics, to the 
best of the authors’ knowledge, only one study found 
a significant beneficial healing effect with the addition 
of PRP (Vogrin et al., 2010). The authors showed more 
anteroposterior stability in ACL reconstructions when 
PRP was used. Other studies could not demonstrate 
such beneficial effects on ACL healing (Bissell et al., 
2014). Recently, mainly four growth factors have been 
used in ACL treatment, i.e. bFGF, TGFβ, VEGF and 
PDGF (Table 2) (Amiel et al., 1995; Joshi et al., 2009; 
Kobayashi et al., 1997; Kondo et al., 2005; Madry et 

al., 2013; Mastrangelo et al., 2010; Nin et al., 2009; 
Spindler et al., 2006; Takayama and Kuroda, 2017; 
Takayama et al., 2015; Vavken and Murray, 2011; Wei 
et al., 2011). Table 2 summarises the outcomes and 
provides an overview of the different growth factors 
and their effects as observed in several in vivo and in 
vitro studies. Murray et al. (2016) and Karamchedu et 
al. (2021) were interested in the healing metabolism 
of the ACL. They compared the healing process of 
the MCL and ACL in a canine model (Murray et 
al., 2004; 2006; 2007). In canine knees, Murray et al. 
(2006) generated central defects in the MCL and/or 
patellar ligament as well as an intra-ACL. Then, the 
histological response to injury was assessed at 3, 7, 
21 and 42 d. When compared to ACL defects, MCL 
and patellar ligament defects had significantly more 
filling of the wound site and significantly higher 
levels of fibrinogen, fibronectin, PDGF-A, TGF-1, 
FGF-2 and vWF at the wound site at all time points. 
As a result, the study validated the hypothesis that 
there is a lack of provisional scaffold in the ACL’s 
intra-articular wound site and the loss is linked to 
a decrease in essential ECM proteins and cytokines. 
Murray et al. (2007) hypothesised that MCL and ACL 
have two different healing mechanisms. In the healing 
process of MCL, the ruptured ends are connected by 
a fibrin-platelet clot, which provides an environment 
for tissue ingrowth and remodelling. In addition, the 
ruptured ACL does not form a fibrin clot due to the 
upregulation of urokinase plasminogen activator in 
synoviocytes (Bakirci et al., 2020; Cesari et al., 2010; 
Flevaris and Vaughan, 2016). Urokinase plasminogen 
activator converts plasminogen into the active form 
of plasmin. Plasmin degrades fibrin and the clot loses 
the connection between the two ruptured ends. The 
loss of a clot could be the main reason for inhibition 

Synthetic ligaments Advantages Disadvantages References

Gore-Tex® Higher tensile strength than 
in the native ACL

The construct leads to 
progressive long-term 

loosening
Ventura et al., 2017

Dacron Higher tensile strength than 
in the native ACL

Leads to short-term stable low 
abrasion resistance Legnani et al., 2010

Leeds-Keio artificial 
ligament

The stiffness of this 
ligament is similar to the 

native ACL

Inclusion of fibrous tissue was 
identified 

An alignment of longitudinal 
collagen fibres was found

Del Pizzo et al., 
1977; Roth et al., 

1985

Collagen It promots more cellular 
ingrowth “Pure” mechanical properties Perrone et al., 2017

Silk
It provides sufficient 

mechanical properties for 
ACL reconstruction

The construct restricts 
neoligament regeneration Bi et al., 2015

Various polymeric 
scaffolds

Higher mechanical and 
structural properties of 

native ACL

The constructs generally loose 
mechanical strength over time Ouyang et al., 2002

Table 1. Advantages and disadvantages of synthetic ligaments for ACL repair.
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of tissue regeneration in ACL ruptures (Kiapour and 
Murray, 2014). Kiapour and Murray (2014) proposed 
that the presence of plasmin in the synovial fluid 
could be a primary reason for the poor wound-
healing in the ACL. However, recently, Bakirci et al. 
(2020) have not found any support for this relatively 
plausible hypothesis when performing real-time 
imaging and experimental wound healing assays 
using primary ACL cells from patients undergoing 
full-knee prosthesis surgery. Nevertheless, tissue-
engineered scaffolds combined with cells and growth 
factors should still be considered as a novel approach 
for replacing the fibrin clot in ACL injuries. Proffen 
et al. (2015) reported the use of a collagen scaffold 
soaked with PRP in combination with a novel bio-
enhanced primary repair technique using a suture 
stent, called BEAR technique.

Preclinical studies
Preclinical studies have shown that biomechanical 
properties of ACL replaced following the BEAR 
technique are equivalent to other ACL reconstruction 
techniques after 3, 6 and 12 months of healing in 
an animal model. Karamchedu et al. (2021) also 
studied the effects over 1 year of different surgical 
treatments on post-traumatic OA using a porcine 
ACL transection model. Results showed that surgical 
methods that protect the knee from maximum body-
weight load during movement minimise cartilage 
damage within 1 year. Furthermore, the first human 
trial of the BEAR technique showed that results 

depend on both patients’ features and surgical 
choices (Murray et al., 2019). In a randomised trial, 
the performance of this scaffold-based technique 
was compared to that of traditional reconstruction, 
revealing similar results in terms of subjective scores 
and arthrometric measurements: based on these 
findings, this scaffold-based approach for ACL 
healing may have the potential to reduce morbidity 
associated with tendon harvesting, maintain knee 
proprioception and shorten recovery times (Murray 
et al., 2019; 2020).
 PRP was also used for the activation of MSCs 
(Veronesi et al., 2018). The presence of a population 
of perivascular tissue-specific stem cells in the 
septum between the two bundles of the ACL is 
the basis for their use: if these cells are activated 
properly, they may have fibroblastic potential, which 
could accelerate ligament healing. Furthermore, 
both PRP and MSCs have immunomodulatory 
properties that help the ACL recover by reducing 
intra-articular inflammation (Roubelakis et al., 2014). 
Despite substantial preclinical research on the use 
of biological treatments to promote ACL healing in 
in vitro and in vivo models, the clinical literature is 
fragmented, with few clear recommendations for the 
future.
 Seijas et al. (2014) published a retrospective 
case series in which they focused on a small group 
of 19 football players who were treated with an 
arthroscopic intra-ligament injection of 4 mL of 
leukocyte-poor PRP, followed by a 6 mL intra-

Table 2. An overview of research on growth factors for ACL treatment.

FGF

In vitro
- stimulates cell proliferation and collagen production on TCs

In vivo
- enhances neovascularisation and formation of granulation tissue

Amiel et al., 1995
Madry et al., 2013

Kobayashi et al., 1997

TGF

In vitro
- increased both collagen and non-collagenous protein synthesis in TCs

In vivo
- improves the structural properties of the construct

- promotes angiogenesis of the reconstructed ligament

Kondo et al., 2005

Mastrangelo et al., 2010
Wei et al., 2011

VEGF

In vitro
- reduces angiogenesis

- promotes graft maturation and biomechanical strength

In vivo
- increases the matrix synthesis during its remodelling and healing 

processes

Takayama et al., 2015

Vavken and Murray, 
2011

PDGF

In vivo
- releases growth factors with a similar spatial and temporal sequence 

to healing extra-articular tissue
- promotes the proliferation potential of osteoblasts on the tendon-

bone interface or TCs

Clinical
- no discernible clinical or biomechanical effect was found

Joshi et al., 2009
Spindler et al., 2006

Takayama and Kuroda, 
2017

Nin et al., 2009
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articular injection at the end of surgery. The results 
were outstanding, with 16 out of 19 patients returning 
to former sport activity having stable knees, with 
Tegner Score patients returning to sport the fastest 
(Seijas et al., 2014). Centeno et al. (2015) published the 
results of a prospective trial in which patients were 
treated with a fluoroscopically guided intra-ligament 
injection of PRP, platelet lysate and BMSCs. Overall, 
the results were positive, with 7 out of 10 patients 
showing signs of ACL recovery on an MRI scan 3 
months following therapy. This evidence suggested 
that this strategy would be clinically effective but this 
would have to be demonstrated in a larger study.
 Recently, advancements in engineering led to 
the development of complex biological systems able 
to reproduce the functionality of an ACL. Ligament 
and tendon engineering has been using different 
technologies such as 3D bioprinting, electrospinning 
and cell sheet (Li et al., 2019; Sensini et al., 2021), 
which allow for placing different cell types and 
growth factors in the right locations to mimic the 
anatomical structure of the natural ACL. On the other 
hand, organ-on-chip devices are miniature systems 
in which cells are cultured in microfluidic channels. 
Microfluidics keeps the cells alive by flowing 
the culture medium for several weeks, creating 
conditions similar to those in vivo (pH, flow, pressure 
and nutrients). Researchers can also target one of 
these conditions or test the effect of various drugs 
on cell behaviour. They generate functional data for 
preclinical testing of potential drugs at the earliest 
stages. These technologies are also exciting as they 
open new possibilities for the field of orthopaedics, 
overcoming the so-called “valley-of-death” (Fig. 
1) (Butler 2008; Tolikas et al., 2017). In contrast, the 
present review focuses, for the first time, to the best 

of the authors’ knowledge, on ACL engineering from 
fundamental to 3D bioprinting and organ-on-chip 
technologies (Hao et al., 2016; Marieswaran et al., 
2018). In the first part, the healing mechanisms in ACL 
and the future of integrating different approaches 
to ligament tissue engineering are discussed; then 
challenges and potential future directions for the 
field are reviewed. Moreover, the future path of 3D 
printing combined with organ-on-chip technologies 
is envisioned to develop the next generation of 
ligament tissue engineering.

The healing mechanism of ACL ruptures
Injuries to the ACL are common and the result of 
high levels of sportive activities. Early reports on 
primary ACL repair demonstrated unsatisfactory 
outcomes, leading to unanimous abandonment of 
suture repair and widespread adoption of ACL 
reconstruction approaches (Murray et al., 2013). 
Currently, ACL reconstruction is considered to 
be the gold standard for the treatment of ACL 
injuries, especially in the active group of patients 
with symptomatic instability. Recent advances 
in tissue engineering and regenerative medicine 
have generated renewed interest in preserving the 
remnant ACL to maintain its native biomechanical 
properties (Murray et al., 2013; Taylor et al., 2015). 
Novel approaches rely on an understanding of the 
pathophysiological processes that occur within the 
wounded ligament and its surroundings (Hao et 
al., 2016; Taylor et al., 2015). Most studies that have 
investigated these processes have been performed 
in animals. Few research studies were conducted on 
human ACL tissue. Murray et al. (2000) studied 23 
human knee ACL remnants following rupture and 
identified 4 distinct histological stages of healing, 
including inflammation, an epiligamentous repair 
phase, proliferation and remodelling. The absence 
of a fibrin clot, the formation of a synovial cell 
layer with retraction capability on the surface of 
the ruptured ends and also the lack of any tissue 
bridging the rupture site were all highlighted as 
differences in response to injury from other dense 
connective tissues. At 3 to 10 weeks after surgery, 
some of the ligaments were extracted. Furthermore, 
Crain et al. (2005) examined 48 patients who had 
undergone ACL reconstructions. These researchers 
defined and divided the appearance of ACL remnants 
into 4 morphological kinds. The ACL remnant had 
adhered to the posterior cruciate ligament in the 
first type, the roof of the notch in the second, the 
lateral wall of the notch in the third and there was 
no scarring in the fourth. Crain’s classification of the 
ACL remnant has been utilised as a standard since 
it was published and is proof of the ACL biological 
healing potential. Kirizuki et al. (2018) examined the 
ACL residual tissues taken from patients who had 
undergone initial ACL restoration within 3 months 
following damage and used the Crain’s classification 
to determine the potential for proliferation and 
differentiation of the tissues. They showed that 

Fig. 1. Cartoon illustrating how 3D printing could 
bridge the so-called “valley-of-death” providing 
innovation from basic science to the patient’s 
bedside (Butler, 2008).
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during the subacute stage, in the non-reattachment 
group, ACL remnant tissue may be more likely to 
heal than in the reattached group. Nguyen et al. 
(2014) discovered that the human proximal third 
ACL had a natural healing ability similar to MCL in 5 
patients. Recently, the morphological and histological 
changes of a ruptured ACL showed a short reparative 
phase within 3 months of injury, followed by a long 
remodelling phase of the ruptured ACL that ended 
with the attachment of the remnant to the posterior 
cruciate ligament (Haviv et al., 2018).
 As discussed above, the ACL healing mechanism is 
a multi-factorial process that takes place in a dynamic 
environment (Murray and Fleming, 2013). Another 
fundamental challenge is the complex kinematics of 
the joint (Murray et al., 2013), which is cyclic loading 
during natural knee motion. Cyclic loading of a 
rigid fixation system leads to its failure (Buschmann 
and Bürgisser, 2017). For example, sutures are a 
rigid form of fixation, which often fails under cyclic 
loading (Bakirci et al., 2020; Vavken et al., 2013). In 
conclusion, knee motion and the biology of the ACL’s 
response to complete rupture are rather complicated 
processes (Murray et al., 2013; Perrone et al., 2017). 
There is an epi-ligamentous reparative phase and no 
bridging scar formation, which (Murray et al., 2000) 
distinguishes it from tissues that successfully repair. 
Additionally, the formation of a synovial layer over 
the epi-ligamentous tissue, which consists of cells 
with a contractile actin isoform, may partially account 
for the retraction of the remains that is unfavorable 
to a reparative bridging tissue (Murray et al., 2000). 
ACLs, differently from other intra-articular tissues 
that do not repair (such as articular cartilage), 
respond to rupture with a proliferative fibroblastic 
and angiogenic response.

Bioreactors and ACL culture
Bioreactors have been successfully proven to be 
useful devices for testing pre-clinical scenarios of 
how partial tendon explants respond to mechanical 
loading. Mainly uni-axial loading devices were 
designed that allow a strain-controlled culture of 
tendon explants (Butler et al., 2008; Cook et al., 2016; 
Dyment et al., 2020; Gantenbein et al., 2019; Janvier et 
al., 2020; Riehl et al., 2012; Stoffel et al., 2017; Wang et al., 
2013). Experiments using ex vivo bioreactor systems 
are instructive about specific mechanobiological 
loading regimes that seem to be beneficial for 
cultured tissues, such as loading frequencies around 
1 Hz, which correspond to relaxed walking (Benhardt 
and Cosgriff-Hernandez, 2009; Hohlrieder et al., 2013; 
Krismer et al. (2016) Strain-controlled organ culture of 
intact human anterior cruciate ligaments – an ex-vivo 
model to investigate degenerative and regenerative 
approaches. Proceedings of the ORS Annual Meeting, 
Orlando, FL, USA, conference abstract; Riley, 2008; 
Snedeker and Foolen, 2017; Woo et al., 2008). The 
design and engineering of how tendons are clamped 
to the loading device are essential (Snedeker and 
Foolen, 2017; Steiner et al., 2012; Wunderli et al., 

2020). Specific bioreactors were also designed for 
ACL culture (Gantenbein et al., 2019; Hohlrieder et 
al., 2013). Most devices are based on a linear stage 
to control for displacement and force to infer way-
stress diagrams (Wunderli et al., 2017). Most studies 
used sinusoidal loading regimes and only in rare 
cases random loading profiles were investigated 
but keeping net energy uptake of the tendon tissue 
constant over time (Steiner et al., 2012) (Fig. 2). This 
assumes that human movement in most cases is of a 
sinusoidal nature (Buschmann and Bürgisser, 2017). 
Furthermore, in terms of frequency and duration of 
loading, a consensus is still missing. However, it is 
assumed that about 1 Hz loading is associated with 
walking in humans (Bramson et al., 2021). Fewer 
studies focused on the importance of culture media 
and whether perfusion of the culture chamber is 
essential or whether static cultures are sufficient. 
Concerning the effects of increasing glucose 
concentrations towards a more hyperglycaemic/
diabetic condition, there are a few reports (Gautieri et 
al., 2017; Snedeker 2016). These studies demonstrated 
a stiffening effect and, in particular, effects on the 
collagen fibre orientation by an increase in glucose 
concentration (Snedeker and Gautieri, 2014). In terms 
of hydrogel cultures used for mechanical stretching, 
also relatively few studies investigated these effects 
(Gautieri et al., 2017; Issa et al., 2011; Snedeker, 2016). 
It seems to be a common conclusion that some level 
of basic mechanical loading is required to maintain 
the homeostasis of tendon explants (Schubert et al., 
2021; Wang et al., 2021).

The effect of mechanical loading upon ligament 
homeostasis
The cells inhabiting the niche of the ligament are 
referred to as LCs for ligaments and as TCs for 
tendons (Murray et al., 2013). Morphologically, 
these are referred to as fibroblast-like cells, mainly 
producing collagen type I/III and, to some extent, 
proteoglycans. TCs and LCs are found in dense 
connective tissues, which are well-organised and 
arranged in rows between parallel thick fibres. 
They provide the primary resistance to tensile 
force (Van Eijk et al., 2004). Also, tenomodulin is 
a type II transmembrane glycoprotein specific to 
the development and maturation of tendons and 
ligaments. Interestingly, TCs and LCs have a lower 
proliferation and migration rate (Amiel et al., 1995) 
and lower responsiveness to growth factors (Spindler 
et al., 1996) and adhesion strength (Yang et al., 1999) 
compared to other cell types. As for different central 
ECM genes of the tendon, tenascin C is highly 
relevant, as is MKX (Liu et al., 2015; Otabe et al., 
2015). MKX overexpression by an adenovirus induces 
MSC differentiation and stimulates collagen type I/
III and SCX expression (Otabe et al., 2015). Recently, 
MKX has been identified as a critical player in the 
regulation of mechano-sensing properties of tendon 
(Kayama et al., 2016). Moreover, essential genes 
for tissue homeostasis are scleraxis and tenascin C 
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(Berthet et al., 2013; Hasegawa et al., 2013; Nichols 
et al., 2018) and cyclic mechanical loading onto LCs 
does have a beneficial effect on the cell phenotype 
by modulating MKX (Nam et al., 2015; Otabe et al., 
2015; Xu et al., 2015).
 The mechanical behaviour of TCs and LCs was 
extensively studied by several research groups 
(Buschmann and Bürgisser, 2017). The fundamental 
question of general interest is whether mechanical 
loading is beneficial and would help accelerate the 
wound healing potential in the case of tendinopathy. 
Understanding the latter is a big challenge and there 
are many unsolved questions. Many studies stated 
that the trigger from anabolism to catabolism is the 
initiator where the ACL and/or tendons lose their 
healing capacity. Thus, most of the literature stated 
that ligaments seem to have a very poor wound 
healing mechanism (Ackermann and Hart, 2016; 
Snedeker and Foolen, 2017).
 It is essential to recognise the different 
biologically relevant microenvironments (Yates et 
al., 2012). Snedeker and Foolen (2017) pointed out 
the significant difference between the “extrinsic 
tendon compartment” that represents “synovium-
like” tissues that connect to the immune, vascular 
and nervous systems and the “intrinsic tendon 
compartment” that involves the single fascicles. The 
extrinsic compartments are usually ignored for the 
organ culture experiments, so an active immune 
system or nerves and their cells are excluded to 
reduce the number of cells.
 The cell population in tendon and ligament 
also contains some progenitor cells, which 
exhibit universal stem-cell characteristics, such as 
clonogenicity, a high proliferative capacity and 
multi-differentiation potential (Costa-Almeida et 
al., 2015; Hirzinger et al., 2014). It is important to 
note that cell-specific differences exist between LCs 

and TCs. Bi et al. (2007) reported that fibromodulin 
and biglycan, two major components of the ECM, 
provide a niche environment for stem cells. Tendon 
and ligament-specific progenitor cells were identified 
using cluster of differentiation marker expression 
and flow cytometry. How these cells can be used to 
improve tendinopathy is yet unclear and needs to be 
elucidated.

Challenges in ligament tissue engineering

ACL reconstruction is a very common surgery 
(Murray, 2021; Pujji et al., 2017). The focus of 
surgery is to restore the functional stability of the 
ACL, which provides for flexion strength and tibial 
rotation (Duchman et al., 2017; Perrone et al., 2017). 
Recently, engineered ligaments have shown promise 
in overcoming the drawbacks of autografts, allografts 
and synthetic grafts (Nau and Teuschl, 2015; Perrone 
et al., 2017). However, the unique mechanical 
properties and poor healing capacity of ACL are the 
main limitations for tissue engineering solutions for 
ACL ruptures (Murray et al., 2013). The stiffness of 
ACL is around 242 N/mm in samples from 22 to 35 
year old donors (Dargel et al., 2007). The ultimate load 
and stiffness of the ACL decrease with age (Woo et 
al., 1991). It is difficult to find the proper material for 
reconstruction. This depends not only on the bulk 
mechanical properties but also on the anisometric 
structure and viscoelastic properties, which allow 
for differential load support during knee movement. 
Until now, none of the materials used as grafts has 
been able to reproduce these complex mechanical 
properties. Current research has focused on using 
biological and synthetic polymers, such as collagen, 
silk and polymeric scaffolds, to overcome the failure 
of autografts and allografts. The ideal grafts should 

Fig. 2. Scheme of current problems and  
proposed strategies to regenerate the 
knee and its ligaments. (a) Overview 
of the knee joint. (b) Extrusion-based 
3D-printing strategies to create a tendon/
ligament-like microenvironment using 
bio-inks. (c) Microfluidics lab-on-
chip approaches for high-throughput 
screening. (d) Loading chambers of 
bioreactors for tendon / ligament organ 
explant cultures.
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provide immediate joint stability and should also 
gradually degrade and reduce in strength as the 
ligament regenerates and remodels. The selection of 
the suitable material and the manufacturing methods 
are critical factors for the regeneration of ligaments. 
In recent years, collagen, silk, composite materials 
and biodegradable synthetic polymers have all been 
studied as potential materials for ACL reconstruction.

Scaffolds in ACL engineering

Ideal scaffolds for ACL reconstruction should 
be biocompatible 3D constructs with mechanical 
properties capable of withstanding the forces 
normally experienced by the original tissue. A wide 
range of biology-based materials, such as alginate 
(Majima et al., 2005), chitosan (Sarukawa et al., 2011), 
collagen (Gantenbein et al., 2015), silk (Snedeker 
and Foolen, 2017; Teh et al., 2011) or hyaluronic 
acid (Huang et al., 2007), has been used in tissue 
engineering and regenerative medicine. Also, 
composite materials have been investigated for ACL 
reconstruction in order to improve the mechanical 
properties and biocompatibility. This part of the 
review provides an overview of the biomaterials that 
have been used for ACL regenerations.

Natural biomaterials and scaffolds
Many collagen-based constructs have been used 
in ACL reconstruction because of their chemical 
and structural similarity to native tissue, since the 
primary and natural component of the native ACL 
matrix is collagen type I (Goulet et al., 2011). In the 
late 1990s, Bellincampi et al. (1998) used the viability 
of rabbit ACL fibroblasts and their adhesion property 
to extruded collagen fibrils to form scaffolds for 
in vivo and in vitro studies. The results showed 
that the potential benefit of these constructs was 
limited because of the decreasing cell numbers over 
time. More recently, Robayo et al. (2011) reported 
that the mechanical strength of collagen scaffolds 
decreases over time. Several approaches have been 
investigated to increase the mechanical properties 
of collagen scaffolds. Crosslinking of collagen using 
UV or chemical reagents significantly improves the 
scaffolds’ mechanical properties (Caruso and Dunn, 
2005). The advantage of using crosslinkers is to retard 
the scaffold’s degradation (Caruso and Dunn, 2005). 
However, the mechanical strength of the collagen 
scaffold is still weaker than native tissues. Due to the 
difficulty in mimicking the native crosslinking, the 
predominantly used crosslinking agents are chemical, 
such as glutaraldehyde, formaldehyde, acyl azide, 
carbodiimides and hexamethylene diisocyanate 
(Zeugolis et al., 2009). The main drawback of these 
chemicals is their potential toxicity. Fleming et al. 
(2008) reported no significant improvement in suture 
repair with the use of a collagen scaffold alone. 
However, the authors further demonstrated that ACL 
repair significantly improves by combining a collagen 

scaffold with autologous platelets, when compared 
to using them separately (Fleming et al., 2009). The 
mechanism behind this is unclear; however, it may be 
due to a synergistic effect between collagen, PRP and 
other ECM molecules. Previous work demonstrated 
the cell compatibility of commercially available 
porcine- or bovine-derived collagen types I and III 
patches with human ACL cells and bone-marrow-
derived MSCs (Gantenbein et al., 2015). The results 
showed that the combination of commercial collagen 
patches with a dynamic intraligamentary stabilisation 
system would be a novel technique to repair ACL 
ruptures.
 Another natural material used in ligament tissue-
engineering is silk as it has remarkable strength and 
toughness compared to other natural and synthetic 
biomaterials (Kasoju and Bora, 2012; Petrigliano et 
al., 2006). In addition, it degrades slowly in vivo, 
allowing adequate time for host-tissue infiltration 
and eventual stabilisation (Leong et al., 2014). For 
biocompatibility, Bombyx mori silk requires the 
removal of the surface protein layer sericin, which is 
known to cause immune responses (Fan et al., 2009). 
After removal of the sericin, the silk fibres support 
cell attachment, migration, cell proliferation and 
differentiation (Meinel and Kaplan, 2012). The use of 
silk has also been promising for many in vivo studies 
due to good biocompatibility, slow degradability 
and remarkable mechanical properties (Chen et al., 
2010; Cornish and Musson, 2013; Fan et al., 2008; Li 
and Snedeker, 2013; Li et al., 2014a; Li et al., 2014b; 
Panas-Perez et al., 2013; Petrigliano et al., 2006; Seo et 
al., 2009). The unique mechanical properties of silk 
combined with different fabrication methods, such as 
braiding or knitting, make silk an attractive candidate 
for ACL reconstruction. Altman et al. (2002) were the 
first to employ a braided silk fibroin scaffold seeded 
with MSCs for ACL reconstruction in 2002. Then, 
Chen et al. (2006; 2010) demonstrated that modifying 
silk fibroin with polypeptide chains could increase 
cellular attachment and proliferation. Furthermore, 
Murphy et al. (2008) changed the functional groups 
on the tyrosine residues in silk derivatives to promote 
cell proliferation. However, the limited internal 
space in twisted or braided fibre scaffolds restricted 
the neo-ligament tissue regeneration. Therefore, the 
use of different materials is attempted to investigate 
possible means of ACL reconstructions. Collagen and 
hyaluronan were used to improve silk substrates. 
Collagen- and hyaluronan-treated substrates increase 
the rates of cell migration when compared to silk 
scaffolds alone. Specific composite scaffolds seemed 
to favour angiogenesis, which is crucial for the initial 
repair phase of damaged ligaments and solving the 
blood supply problem in damaged ligaments (Panas-
Perez et al., 2013; Seo et al., 2009). Recently, Dong et al. 
(2020) demonstrated that use of laponite/regenerated 
silk fibroin hybrid fibres using wet-spinning 
techniques worsened the mechanical properties of 
regenerated silk fibroin fibres. Furthermore, an in 
vivo study in a rat ACL reconstruction model showed 
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that the presence of laponite could significantly 
improve the graft osseointegration process (Dong 
et al., 2020). In comparison to other synthetic or 
natural biomaterials, silk clearly has a dominant role 
in biomedical applications (Fan et al., 2009; Kasoju 
and Bora, 2012; Meinel and Kaplan, 2012). For silk-
based materials with more intricate designs, current 
breakthroughs in nanofabrication technology, as well 
as multilayer alterations, seem promising (Wu et al., 
2021). Furthermore, efforts should be made to design 
manufacturing methods that are eco-friendly, easy 
to scale up, simple and time-saving as well as have 
low batch-to-batch variations, in order to transition 
from academic research results to clinical settings. 
Furthermore, the ability of highly concentrated 
regenerated silk aqueous solution feedstock to be 
stored for a long time should be considered. Another 
inherent problem of natural polymers is that they are 
brittle.
 In this part of the review different natural 
biomaterials have been introduced as potential 
scaffolds for ACL tissue engineering. Ideally, the 
scaffold must be biocompatible and its mechanical 
properties should be as close as possible to natural 
ACL. It must also be biodegradable to allow tissue 
ingrowth, which is critical for the formation of the 
ligament.

Synthetic biomaterials and scaffolds
Several polymeric scaffolds such as PGA, pDTD DD, 
PDS, PLGA and PLLA are used for ligament tissue-
engineering due to the possibility of modifying their 
physicochemical and mechanical properties (Silva et 
al., 2020). Different manufacturing methods such as 
knitting, braiding, bioprinting and electrospinning 
allow these polymers to have improved mechanical 
properties. Cells are proven to spontaneously 
orientate along the direction of the fibres, leading to 
abundant ECM secretion rich in collagen type I and 
III. Ouyang et al. (2002) studied the adhesion and 
proliferation of ACL cells and MSCs on different 
polymer substrates. The primary outcome of the 
study was that MSCs proliferate faster on PLGA and 
D-PLA and have a higher degree of cell attachment 
and proliferation than ACL cells on all other polymer 
substrates studied. Tovar et al. (2010) compared 
p(DTD DD) and PLLA fibre for the potential use 
of ACL reconstruction scaffolds. Results showed 
that p(DTD DD) possesses greater strength, less 
stiffness as well as more favourable degradation 
rate and cellular compatibility than PLLA. Although 
polymeric scaffolds have shown excellent mechanical 
strength, they did not facilitate enough cell adhesion, 
proliferation and subsequent function because of the 
lack of signalling molecules and hydrophobicity. 
Lu et al. (2005) fabricated a 3D braided scaffold of 
PGA, PLAGA and PLLA to investigate the effects 
of fibre formulation on mechanical properties and 
biodegradability. PLGA and PLLA filaments and 
fibronectin were used to improve cell adhesion. 
SEM results showed that cells seeded on PLLA-Fn 

and PLAGA-Fn scaffolds produced the most ECM. 
Rapid degradation of PGA in vitro resulted in matrix 
disruption and cell death over time. The rate of 
degradation of the scaffold must match the speed of 
tissue growth. In addition, the elastic and viscoelastic 
mechanical properties of the native ligament should 
be considered. Furthermore, improving the strength 
and biological integrity of the ligament-to-bone 
interface should be critical in developing a novel 
scaffold and in vitro model.
 In most of the studies considered, synthetic 
materials promote continuous tissue remodelling 
using different functional and biological agents. 
Additionally, the most important properties of these 
materials are biocompatibility, chemical stability, 
degree of polymerisation, absence of soluble 
additives, low water absorption and mechanical 
properties, which are higher or similar to that of 
native ACL.

The engineered bone-ligament interface
The integration of an engineered ligament into 
bone tunnels is still a significant problem for 
ACL reconstruction (Saccomanno et al., 2016). 
Current fixation methods do not provide the 
biomimetic properties of an interface tissue. A 
heterogeneous scaffold design, with a gradient 
in chemical composition and cellular content, is 
necessary to replace the tissue to minimise the stress 
concentration and mediate load transfer between 
soft and hard tissues. Therefore, the research focus 
has been changed to produce a multi-tissue unit for 
ACL reconstruction. Several materials have been 
investigated as an alternative to native interface 
tissue, such as the composite of polylactic acids and 
polydopamine tyrosyl-tyrosine ethyl ester carbonate 
(Bourke et al., 2013). Paxton et al. (2009) investigated 
the potential of PEGDA hydrogel incorporated with 
HA and the cell adhesion peptide RGD as a material 
for the BLB interface. Results demonstrated that HA 
increases the mechanical strength of the hydrogel 
and generates a better interface formation, with a 
more significant proportion of calcium phosphate 
in the interface tissue. Wang et al. (2021) developed 
an in vivo model for ligament-bone regeneration 
using decellularised rabbit tendons and genetically 
modified osteoblasts and chondrocytes. The outcomes 
showed that decellularised tendon grafts improve 
cellular interaction and matrix formation in the 
bone-ligament interface. In addition, Li et al. (2016) 
fabricated a triphasic silk scaffold customised with 
three regions mimicking the ligament, fibrocartilage 
and bone layer in the ligament-bone insertion. 
They modified each region with a different coating: 
silk fibroin coating for the ligament; silk fibroin, 
chondroitin sulphate and hyaluronic acid sodium salt 
for the fibrocartilage region; silk fibroin solution and 
HA for the bone region (van Hengel et al., 2020). Three 
different cell types, such as BMSCs, chondrocytes and 
osteoblasts, were seeded onto the ligament, cartilage 
and bone regions of the three-phase silk scaffold, 
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respectively. The cells seeded onto the silk scaffold 
showed high proliferation ability and enhanced 
differentiation capacity into the corresponding cell 
line. On the other hand, surgeons use a bone-to-bone 
technique for ACL reconstruction using autograft; it is 
a gold standard and bone-to-bone repairs heal better 
than other methods. Recently, metal screws are used 
primarily to fix tendon grafts, which cause pain stress-
shielding phenomena and local irritation. Also, metal 
screws might be associated with tissue destruction 
and osteoporosis in the surrounding bone tissues. 
Therefore, this procedure requires secondary surgery 
to remove the screws. Nevertheless, bioresorbable 
and biodegradable screws have been considered as 
an effective fixation system with several advantages 
over metal screws, such as no corrosion and no need 
for second surgery.

Towards 3D bioprinted ACL-on-chip
3D bioprinting is the automated manufacture of 
tissues and organs to address medical problems. It 
combines cells, hydrogels and materials into a single 
construct that can replace damaged or wounded 
tissue, using AM. The final product is frequently 
complex, containing a variety of structural and 
cellular components (Mironov et al., 2009).
 Over the last two decades, advances in 3D 
printing have provided excellent opportunities for 
personalised treatment and production of in vitro 
models due to several advantages, among which 
the technique low cost and ease of use. Table 3 
provides an overview of recent advances in AM in 
the field of tendon research. AM can be used for ACL 
reconstruction (Bakirci et al., 2017; Bernal et al., 2019; 

Castilho et al., 2021; Choi et al., 2016; Ge et al., 2009; 
Grigoryan et al., 2019; Hochleitner et al., 2018; Kajave 
et al., 2020; Le Guéhennec et al., 2020; Loterie et al., 
2020; Luo et al., 2020; Merceron et al., 2015; Pitaru 
et al., 2020; Regehly et al., 2020; Toprakhisar et al., 
2018; Zorlutuna et al., 2011). Studies focused on the 
potential of using AM technologies to successfully, 
rapidly and economically print customised implants 
at medical clinics (van Hengel et al., 2020; Youssef 
et al., 2017) (Fig. 2). In addition, AM allows for 
biomaterials and cells to be reassembled in their 
natural order, provides structurally and mechanically 
heterogeneous scaffold designs, improves cell 
attachment and growth and promotes cell interaction 
and matrix heterogeneity (Afghah et al., 2019; Groen 
et al., 2017).
 Recent advances in AM also provide new 
fabrication opportunities for in vitro models (Miri et 
al., 2019). Some studies have shown the use of AM 
for ACL reconstruction. Liu et al. (2016) used a 3D 
bioprinter to produce screw-like scaffolds, combined 
with MSCs, to fix tendon grafts and promote tendon 
graft healing within the bone tunnel in a rabbit ACL 
reconstruction model. Results showed that PLA/HA 
scaffolds loaded with MSCs facilitate the healing 
process of tendon grafts in the bone tunnel in terms 
of the high level of bone ingrowth and bone graft 
interface formation. The study is promising for using 
easily operated, low-cost 3D-printed structures. 
Recently, Parry et al. (2017) developed a 3D-printed 
PPF scaffold with delayed delivery of rhBMP 
encapsulated on PLGA microspheres. The scaffolds 
improve bone filling after bioabsorbable implant 
fixation. The study has provided promising results 

Table 3. Additive manufacturing methods for ACL engineering.

Additive 
manufacturing 

methods

Possible materials 
to use for ACL 
reconstruction

Advantages (+) and 
disadvantages (-) References

Stereolithography
PEG, PEGDA, HA, 

decellularised ECM, 
CaP

+: high resolution and cell 
viability

-: crosslinking demands 
translucent and photosensitive 

bioinks, which limits the selection 
of adjuncts and cell density

Le Guéhennec et al., 
2020

Luo et al., 2020
Pitaru et al., 2020

Zorlutuna et al., 2011

Volumetric printing
Photo crosslinking 
hydrogels, gelatine 

methacryloyl 

+: fast processing, high 
resolution, no need for support

-: complex systems

Bernal et al., 2019
Grigoryan et al., 2019

Loterie et al., 2020
Regehly et al., 2020

Fused deposition 
modelling

Thermoplastic 
polymer and 

composites (PCL, 
PLGA, thermoplastic 

polyurethane

+: no post-processing needed, 
cheap

-: chance of degrading materials 
due to the high processing 

temperature

Choi et al., 2016
Ge et al., 2009

Merceron et al., 2015

MEW
Thermoplastic 

polymers and their 
composites, hydrogels

+: high resolution to mimic 
collagen fibres

-: relatively slow printing speed

Castilho et al., 2021
Hochleitner et al., 2018

Extrusion-based 3D 
bioprinting

Hydrogels, cells, 
bioglass

+: incorporate bioactive molecules
-: slow processing

Bakirci et al., 2017
Kajave et al., 2020

Toprakhisar et al., 2018
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concerning the use of 3D-bioprinted bioabsorbable 
screws in ACL reconstruction treatments. The 
future milestones for the development of ideal 
bioabsorbable screws include optimising their 
composition material, production properties and 
degradation characteristics to improve fixation 
and bone integration while overcoming the tissue’s 
foreign body response. Similar to Parry et al. (2017) 
work, Park et al. (2018) investigated the effectiveness 
of using 3D-bioprinted scaffold sleeves of MSCs 
to increase osteointegration. Results showed 
improved osteointegration between tendon and 
tunnel bone in a rabbit model ACL reconstruction  
as assessed by haematoxylin and eosin staining, 
immunohistochemical staining of type II collagen 
and micro-computed tomography (Park et al., 2018). 
Recently, a BLB construct has been described that 
recapitulates the bone-ligament interface (Fig. 3) (Lui 
et al., 2019; Mussig et al., 2010). The authors succeeded 
in controlling deposition of different cell types, which 
could produce a bone-ligament interface (Ede et 
al., 2018). Gwiazda et al. (2020) used MEW for the 
development of a bone-ligament construct to mimic 
cell alignment in native tissues. They investigated 
MSCs orientation on aligned, crimped and random 
MEW fibres for 4 weeks. The scaffolds were rolled in 3 
braided bundles combined with the bone component, 
osteogenically induced hMSCs on MEW scaffolds. 
The mechanical properties of non-cellularised and 
cellularised bone-ligament constructs were tested 
under both quasi-static and cyclic conditions. Results 
showed that in vitro maturation leads to significantly 
softer tissue in the constructs and that the mechanical 

properties improved the resilience due to ECM 
production. As previously mentioned, the ACL is 
composed of a highly organised collagen matrix and 
progress in the development of collagen printing 
could also help print ACLs that are similar to the 
natural tissue (Lee et al., 2019; 2021).
 Advanced in vitro models, such as organ-on-chip 
systems, combine cell culture settings with cutting-
edge methodologies to create more consistent 3D 
microenvironments that simulate the physiological, 
chemical and mechanical characteristics of native 
tissues. These systems pioneer the way by stimulating 
and controlling critical tissue properties in a single 
device, including concentration gradients, shear 
stress, cell patterning, tissue borders and tissue-organ 
interactions (Kiener et al., 2021; Miri et al., 2019; Yang 
et al., 2022). Organ-on-chip technologies (Bhatia and 
Ingber, 2014; Guenat et al., 2020; Tavakol et al., 2021) 
aim to reproduce the cellular microenvironment to 
mimic the physiological and pathological conditions, 
such as tension and flow-induced shear, that can help 
to develop a more feasible model for ACL treatment. 
Cells can be exposed to a variety of biomechanical and 
biochemical cues in organ-on-chip devices, which can 
better mimic in vivo cell response. Biomechanical cues 
can be passive or active on organ-on-chip devices and 
they are often external to the cell. Substrate stiffness, 
geometric confinement and topographic signals are 
examples of passive biomechanical stimuli, whereas 
tensile stretch and compression, fluid shear stress, 
interstitial fluid flow and hydrostatic pressure are 
all active stimuli (Mainardi et al., 2021). Several 
microfluidic platforms aimed at exposing tissues 

Fig. 3. Recent advancement of bio-engineered microenvironments of the interface between bone and 
ligament. (a) SEM image of adhesion of a gingival fibroblast on micropillar heads with pillar distances of 
5 mm according to Mussig et al. (2010). The inlet shows a higher magnification of the direct interactions 
between the adhesion sites of the gingival fibroblast and the immobilised fibronectin on the pillar tops. 
Gingival fibroblasts were seeded onto a micropillar surface at a density of 7 × 103 cells/mL and cultivated for 
24 h. (b,c) SEM images of multiphasic BLB scaffold at two different magnifications with a porous interface 
using 3D-printing and cell-sheet technology for the reconstruction of the dorsal scapholunate interosseous 
ligament made of medical-grade polycaprolactone scaffolds (Lui et al., 2019). (b) Bottom view of 350 µm bone 
compartment. (c) Bottom view of 600 µm bone compartment. (d,e) Haematoxylin and eosin and Masson’s 
Trichrome staining of BLB interphase in samples implanted for 8 weeks including cell sheets (Lui et al., 
2019). All figure parts were reproduced with permission from the publishers. 
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to mechanical forces have been reported in the last 
decade (Guenat and Berthiaume, 2018). Fascinatingly, 
they managed to integrate compression and 
elongation or mimic the cyclic strain of breathing 
motion (Zamprogno et al., 2021) status reply.
 In the last decade, organ-on-chip platforms have 
rapidly evolved, combining previously specified 
technologies (iPSCs, biomaterials, bioreactors and 
AM) to replicate both healthy and pathological 
situations in numerous organs and tissues (Dyment 
et al., 2020). Various organs have been recreated on a 
chip, including lung, liver, heart, gut, muscle, arteries 
and bone. These have been created for purposes such 
as toxicological evaluation, vascularisation and drug 
testing on tissue-specific functions. These models 
have been designed to examine the basic mechanisms 
of organ function and disease.
 Combined with AM and other biofabrication 
techniques, organ-on-chip technologies will provide 
a dynamic environment to perfuse, vascularise and 
cyclic load the bioprinted tissue. Therefore, organ-on-
chip technology can better recapitulate the complex 
interactions between ligaments, tendons and bones 
in health and disease. In addition, as a small number 
of cells is needed in these systems, patients’ cells will 
be cultured in parallel, allowing for the optimisation 
of culture parameters and screening of therapeutic 
compounds. Organ-on-chip systems combine cell 
culture settings with cutting-edge methodologies to 
create more consistent 3D microenvironments that 
simulate the physiological, chemical and mechanical 
characteristics seen in native tissues. These systems 
pioneer the way by stimulating and controlling 
critical tissue properties in a single device, including 
concentration gradients, shear stress, cell patterning, 
tissue borders and tissue-organ interactions. Lyu et 
al. (2020) produced an organ-on-chip that provides 
a concentration gradient of osteogenic induction 
medium. They established a method that optimises 
the ratio between the different stem cells to obtain the 
best outcomes for the composition transition under 
the medium concentration gradient as maintained 
by the microfluidic chip in vitro. Then, the scaffolds 
were implanted into a rat model of tendon tear injury 
to evaluate the effectiveness of the repair. Results 
showed that their method is a powerful approach to 
mimic the native tissue and has the potential to be 
translated for patient treatment.
 3D printing and organ-on-a-chip technologies 
have the potential to reform and advance biomedical 
research by leading to the production of highly 
accurate and functional in vitro tissues, organs 
and disease models (Gold et al., 2019). It is critical 
to mimic the microenvironment as well as the 3D 
spatial distribution of cells and ECM to ensure 
native-like functionality at both the single-cell and 
tissue/organ levels. Researchers are still far from fully 
solving these problems and both 3D printing and 
organ-on-a-chip technologies have their limitations. 
Nevertheless, due to their different advantages, both 
technologies have real applications in different areas 

of biomedical research and they are complementary 
rather than alternatives to each other. It is well known 
that 3D printing methods that combine deposition 
modelling and stereolithography are mainly used 
for the fabrication of microfluidic devices (Au et al., 
2016). 3D printing technologies greatly simplify the 
processing of traditional lithography methods by 
minimising the need for experimental procedures 
with operators, while dramatically reducing 
processing costs and time due to automated operating 
software and a user-friendly interface. These are 
the main reasons for the progress in the use of 3D 
printed organ-on-chip devices. There are three ways 
to combine 3D printing technology with organ-on-
chip devices: i) fabrication of microfluidic devices 
through 3D printing technology; ii) printing of ACL 
cells onto prefabricated organ-on-chip devices; iii) 
direct printing of the entire organ-on-chip constructs, 
including mechanical microfluidic devices and 
biofunctional units.
 Ingber (2022) mimicked different organs outside 
the body even though he established multiple organ-
on-chip devices to investigate the crosstalk between 
organs. This study can provide a good foundation 
for future integration of  the ACL-on-chip inside the 
joint-on-chip and checking the crosstalk between 
different ligaments and the dynamic environment 
of the ACL healing. The future direction requires a 
novel organisational model so that the fundamental 
discovery can be used in medical technology and 
commercial translation at the academic-industrial 
interface (Tolikas et al., 2017).

Conclusion

The number of people who suffer from ACL injury 
is constantly increasing. New options for ligament 
repair are necessary to overcome the limitations of 
current treatments. Interest in ACL reconstruction 
has persisted over the years due to the drawbacks 
of surgical techniques. Despite successful recovery 
reports of acute ACL injuries (Ateschrang et al., 
2018), the treatment of chronic ACL insufficiency 
with tissue deficiency has not yet been achieved. 
The recent advances in manufacturing methods 
and materials science have facilitated the further 
development of ligament tissue engineering. 
Treatment approaches to such lesions would 
necessitate biocompatible scaffolds that incorporate 
sufficient mechanical properties with controllable 
degradation. The specific characteristic of the ACL, 
such as distinctive expression of ECM components, 
different cell morphology and function as well as 
higher metabolic rate, should be considered for future 
scaffold designs. The progress of high resolution 3D 
bioprinting facilitates further complexity, such as 
creating complex multi-material structure designs 
and controlling spatial distributions of cells and 
bioactive molecules. Also, organ-on-chip technology 
is essential for producing more physiologically 
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relevant environments. Such environments could 
provide a better understanding of the complex 
interactions between ligaments, tendons and bones 
in both health and disease conditions. The technology 
could revolutionise drug discovery and personalised 
treatment for ACL healing.
 In summary, understanding the ACL’s biological 
structure and healing metabolism is an essential step 
toward clinical treatments. In addition, advances 
in engineering, materials science and organ-on-
a-chip technologies enable designing novel ACL 
reconstruction methods, fixation screws and 
development of drugs.
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Discussion with Reviewers

Eithne Comerford: How near is this development to 
ultimate clinical translation?
Authors: The BEAR implant is the only option 
currently available in the clinic for ACL reconstruction 
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using allografts, autografts or suture-only. Unlike 
standard reconstruction, this implant does not require 
the use of harvested tendons for ACL repair. The 
BEAR implant is an absorbable implant. It bridges the 
space between the patient's torn ACL ends, is made of 
bovine collagen and is sutured into place. During the 
surgical procedure, the patient's blood is infused into 
the implant to form a protected clot that promotes the 
body's healing process. It is absorbed and replaced by 
the body's own tissues within approximately 8 weeks 
after BEAR implantation. Another concrete example 
is the use of bovine collagen membranes, which are 
already being used in clinics. However, advanced 
manufacturing methods such as 3D printing can 
improve the design of the implant, such as alignment 
of collagen fibres and different scaffolds, and shorten 
the healing process.

Eithne Comerford: How do the authors think this 
structure will react to the osteoarthritic environment 
of most knee joints in which it will be placed?
Authors: Injuries to the ACL frequently lead to 
early-onset osteoarthritis. Furthermore, current ACL 
reconstruction practice seems unable to stop these 
degenerative changes despite the recent advances. 
However, to the best of our knowledge, anatomic 
graft placement is crucial to reproducing normal knee 
kinematics and might slow the progression of joint 
degeneration following ACL reconstruction.

Rahul Gawri: Gold standard autografts are tendons 
implanted at the ACL site for reconstruction. What 
are the authors’ thoughts on using stem cells and 
their differentiation towards TCs over LCs? Does 
differentiation towards TCs offer a better integration 
at the bone interface or will LCs offer similar 
integration results?
Authors: Stem cell therapy is a very exciting and yet 
challenging approach to regenerate joints in general 
(Nöth et al., 2005, additional reference; Wang et al., 
2021). The problems of this research field lie in the 
superficial understanding of how these additional 
transplanted cells will get the right survival factors and 
micro-environmental parameters to thrive again to a 
fully differentiated LC or TC. In the cell therapy field 
open questions reside in the selection of patients that 
would suit this personalised therapy. Furthermore, 
outcome criteria, such as shortened time of disability, 
pain scores and other parameters to judge a good to 
very-good outcome for the patient, are unclear. The 
joint connective tissues generally presents a lower 
cell density compared to other tissues. Furthermore, 
the tissue homeostasis is relatively slow, in the range 
of years, to renew the ECM. Also, if these tissues are 
encapsulated, for instance in the knee joint, then, 
these are called “immune-privileged” regions, which 
are usually not so much exposed to immune cells. 
Of course, then, mechanical damage and pathology 
lead to inflammation and possible onset of arthritis. 
Thus, “boosting” the healing potential of these 
regions might sound tempting at first sight but as 

long as the fate and proper differentiation of such 
additional transplanted MSCs or even endogenous 
progenitor cells into the “native” LCs or TCs cannot 
be confirmed, the therapy might be causing more 
problems than provide benefits. MSCs can reduce the 
inflammatory response indirectly by the release of 
vesicles and a specific secretome. Maybe secretomes 
of such regenerative cells will be key for future 
therapy.

Rahul Gawri: ACL ruptures are not immediately 
repaired due to swelling in the joint as well as 
loss of range of motion post-injury and repair is 
performed after some time. The intra-articular 
inflammation post-injury also causes inflammation 
in the synovial membrane and adipose tissue, which 
might contribute to weakened/failed graft integration 
at the bone site due to the release of inflammatory 
adipokines. Would the authors like to comment 
on incorporating adipocytes under inflammatory 
challenge in the organ-on-chip model for ACL repair 
evaluation to gain insights into the repair potential 
and osteointegration of the candidate material under 
near physiological conditions?
Authors: So far, there are not many studies on that 
topic. For instance, Matsumoto et al. (2021, additional 
reference) showed that adipose-derived stem cells 
“sheets” surrounding transplant grafts applied 
during ACL reconstruction enhance tendon-bone 
healing and biomechanical strength. In addition, 
organ-on-chip devices might be used in the near 
future to study the different inflammatory molecules 
and their effects on ACL due to their capacity to 
mimic the microenvironment of tissues. In this 
respect, biofabricated ACL constructs could be 
produced in vitro with innovative methods with 
specific inflammatory molecules concentration 
gradients and speed through the microfluidic device. 
For instance, ACL could be printed using the FRESH 
method or by MEW biofabrication methods (Böhm 
et al., 2022; Dufour et al., 2022; Shiwarski et al., 2022, 
additional references). FRESH is known as the gold 
standard for collagen printing, which is the most 
common ECM component in the ACL. MEW is one of 
the highest resolution biofabrication methods already 
used in in vitro studies for ACL reconstruction.
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