Systematic errors in Satellite Laser Ranging validations of microwave-based low Earth orbit solutions

D. Arnold¹ A. Couhert² O. Montenbruck³ C. Kobel¹ E. Saguet^{2,4} H. Peter⁵ F. Mercier² A. Jäggi¹

¹Astronomical Institute, University of Bern, Switzerland ²Centre National d'Etudes Spatiales, Toulouse, France ³Deutsches Zentrum für Luft- und Raumfahrt, Wessling, Germany ⁴Collecte Localisation Satellites, Toulouse, France ⁵PosiTim UG. Seeheim-Jugenheim. Germany

> COSPAR 2022, 44th Scientific Assembly, PSD.1 Athens, Greece 18 July 2022

Introduction (1)

- Satellite Laser Ranging (SLR) is a core technique in many geodetic applications.
- SLR measurements to active Low Earth Orbiters (LEOs) mainly used as independent validation tool for microwave-based (GNSS/DORIS) orbits
 - → Analysis of 3D orbit errors.

• Wide range of observation qualities among stations of the International Laser Ranging Service (ILRS), numerous non-negligible biases.

Introduction (2)

- Biases will affect SLR validation results → reliability (e.g., for altimetry missions)?
 - → Restriction to subset of stations with small biases?

GGOS requirements on terrestrial reference frame (Plag and Pearlman, 2009)

- Accuracy: 1 mm
- Stability: 0.1 mm/yr
- Short-time precision of SLR observations at few mm level, but
- Systematic errors / biases are a major obstacle towards fully exploiting SLR measurement accuracies for geodetic applications.

Introduction (3)

 Microwave-based LEO orbits have reached generally very high qualities (e.g., due to carrier phase ambiguity fixing and advances in dynamical modeling).

• SLR measurements to active LEO satellites are less prone to satellite signature effects (broadening of returned signal due to reflection from multiple cube corner reflectors).

Laser retroreflector on Sentinel-3

Many SLR observations to active LEOs!

Goal

Use SLR observations to multiple active LEOs to investigate systematic measurement errors.

 GNSS processing: Produce state-of-the-art dynamic orbit solutions for multiple LEO missions (to lower impact of geographically correlated orbit errors).

Sentinel-3A/B

Sentinel-6A

Swarm-A/B/C

GRACE-FO C/D

Jason-3

- 9 LEOs
- Undifferenced GNSS processing with carrier phase ambiguity fixing using CODE GNSS products & Bernese GNSS Software
- Sentinel-6A: GPS + Galileo

- GNSS processing: Produce state-of-the-art dynamic orbit solutions for multiple LEO missions (to lower impact of geographically correlated orbit errors).
- Introduce microwave-based LEO orbits as fixed and compute SLR residuals (observed minus computed range) based on
 - known LEO satellite orbit, attitude, geometry, reflector characteristics

- GNSS processing: Produce state-of-the-art dynamic orbit solutions for multiple LEO missions (to lower impact of geographically correlated orbit errors).
- Introduce microwave-based LEO orbits as fixed and compute SLR residuals (observed minus computed range) based on
 - known LEO satellite orbit, attitude, geometry, reflector characteristics
 - known station locations (SLRF2014)

- GNSS processing: Produce state-of-the-art dynamic orbit solutions for multiple LEO missions (to lower impact of geographically correlated orbit errors).
- Introduce microwave-based LEO orbits as fixed and compute SLR residuals (observed minus computed range) based on
 - known LEO satellite orbit, attitude, geometry, reflector characteristics
 - known station locations (SLRF2014)
 - state-of-the-art models (ILRS standards)

- GNSS processing: Produce state-of-the-art dynamic orbit solutions for multiple LEO missions (to lower impact of geographically correlated orbit errors).
- Introduce microwave-based LEO orbits as fixed and compute SLR residuals (observed minus computed range) based on
 - known LEO satellite orbit, attitude, geometry, reflector characteristics
 - known station locations (SLRF2014)
 - state-of-the-art models (ILRS standards)
 - outlier threshold of 20 cm, elevation cutoff of 10°

- GNSS processing: Produce state-of-the-art dynamic orbit solutions for multiple LEO missions (to lower impact of geographically correlated orbit errors).
- Introduce microwave-based LEO orbits as fixed and compute SLR residuals (observed minus computed range) based on
 - known LEO satellite orbit, attitude, geometry, reflector characteristics
 - known station locations (SLRF2014)
 - state-of-the-art models (ILRS standards)
 - outlier threshold of 20 cm, elevation cutoff of 10°
- Compute partials of range measurements w.r.t. parameters to estimate (e.g., station range or timing biases, coordinate corrections, ...)

Arnold et al. (2019): Satellite Laser Ranging to Low Earth Orbiters: Orbit and Network Validation. Journal of Geodesy, 93(11), 2315-2334, doi:10.1007/s00190-018-1140-4

- GNSS processing: Produce state-of-the-art dynamic orbit solutions for multiple LEO missions (to lower impact of geographically correlated orbit errors).
- Introduce microwave-based LEO orbits as fixed and compute SLR residuals (observed minus computed range) based on
 - known LEO satellite orbit, attitude, geometry, reflector characteristics
 - known station locations (SLRF2014)
 - state-of-the-art models (ILRS standards)
 - outlier threshold of 20 cm, elevation cutoff of 10°
- Compute partials of range measurements w.r.t. parameters to estimate (e.g., station range or timing biases, coordinate corrections, ...)
- Form and solve normal equations to minimize residuals for considered satellites and time span.

Astronomical Institute, University of Bern **AIUB**

 In the frame of the Copernicus Precise Orbit Determination (POD) Quality Working Group (QWG), a study was initiated, to address SLR station biases and their determination from residual analysis to active LEOs.

• First steps: Software and model comparisons.

Differences of estimated range biases for June 2017, based on a single set of Sentinel-3A orbit. Up to 2 mm differences due to choice of mean pole model.

- Then estimation of yearly range biases for 2016-2019 using independent orbit sets.
- Testing different elevation cutoffs and co-estimation of station coordinates.

Yearly range bias estimates for station Haleakala, Hawaii (coordinates co-estimated),

Good agreement of biases, in particular when co-estimating station coordinate corrections.

Publication on the way.

Station errors

- Range biases
- Coordinate errors
- Timing biases
- Troposphere-related errors
- Distance-dependent errors
- ..

- Coordinate errors
- Timing biases
- Troposphere-related errors
- Distance-dependent errors

Orbit errors

- Incorrect CoM location
- Incorrect offset vectors (microwave sensors. laser reflector)
- deficiencies in force models

Orbit errors (1)

Satellite	dR [mm]	dT [mm]	dN [mm]
Jason-3	-0.1	12.9	0.5
Swarm-A	5.3	-2.3	-3.5
Swarm-B	0.4	-2.5	0.5
Swarm-C	3.8	-3.0	-3.1
GFO-C	4.1	-7.0	-3.4
GFO-D	5.4	-5.1	-2.1
Sentinel-3A	3.4	-1.0	-2.0
Sentinel-3B	2.1	0.9	1.7
Sentinel-6A	1.1	-0.6	-2.0

dR: Radial dT: Along-track dN: Cross-track

Orbit errors (2)

Experiment: Take these offsets for granted and shift orbits accordingly. Redo SLR analysis (including screening, so slightly different obs.):

Satellite	dR [mm]	dT [mm]	dN [mm]
Jason-3	-0.0	0.5	-0.2
Swarm-A	-0.0	0.2	-0.1
Swarm-B	-0.0	0.0	0.0
Swarm-C	-0.1	0.1	0.0
GFO-C	-0.5	-0.4	-0.1
GFO-D	0.3	-0.3	0.2
Sentinel-3A	0.0	-0.6	0.2
Sentinel-3B	0.0	0.0	0.0
Sentinel-6A	0.0	-0.1	0.1

How will these shifted orbits influence station parameters?

Sensitivity to orbit errors (1)

Station parameters for June 2021 estimated based on "true" orbits:

Station	ID	dE [mm]	dN [mm]	dU [mm]	dr [mm]	$dt\;[\mus]$
Svetloe	1888	2.0	1.7	-5.6	-3.2	0.6
Badary	1890	4.0	3.7	16.2	28.5	-0.5
Irkutsk	1891	8.2	12.2	1.3	-2.9	-0.7
Katzively	1893	4.1	-22.1	-73.5	-44.4	0.6
Yarragadee	7090	3.3	-8.9	-6.6	0.1	-0.1
Greenbelt	7105	1.4	2.2	-16.8	-7.5	0.2
Monument Peak	7110	-5.1	-10.1	-11.0	-5.5	-0.1
Changchun	7237	2.3	-15.6	67.4	16.0	1.2
Zimmerwald	7810	-0.1	-1.1	5.9	3.9	-0.0
Mt Stromlo	7825	5.8	-0.2	-1.0	-2.6	0.2
Simosato	7838	22.2	-17.9	-43.3	-10.7	-0.5
Graz	7839	0.2	1.0	-2.4	3.3	0.4
Herstmonceux	7840	0.2	-0.8	-1.2	-1.6	0.3
Matera	7941	-0.9	4.8	3.6	-5.5	0.0
Wettzell (WLRS)	8834	-10.2	-6.8	-6.2	-1.5	1.3

(dE,dN,dU): Crd. corr. dr: Range bias dt: Timing bias

Ex. for obs. numbers and formal errors:

	Matera	Yarragadee
nObs	740	10'297
δ dE	1.4 mm	0.3 mm
δ dN	1.3 mm	0.3 mm
δ dU	5.5 mm	1.1 mm
δ dr	3.0 mm	0.5 mm
δdt	0.24 μ s	$0.05~\mu \mathrm{s}$

Notice: Only a selection of stations shown

Sensitivity to orbit errors (2)

Station parameters for June 2021 estimated based on "shifted" orbits:

Station	ID	dE [mm]	dN [mm]	dU [mm]	dr [mm]	$dt\;[\mus]$
Svetloe	1888	3.8	1.4	-2.9	-2.1	0.3
Badary	1890	5.9	1.8	16.1	26.0	-0.9
Irkutsk	1891	14.1	12.8	5.9	-0.1	-1.4
Katzively	1893	4.4	-21.0	-68.3	-43.8	0.7
Yarragadee	7090	4.3	-8.6	-6.2	-1.1	-0.1
Greenbelt	7105	1.1	3.2	-16.5	-9.0	0.3
Monument Peak	7110	-3.3	-11.0	-8.9	-5.6	-0.2
Changchun	7237	0.9	-10.7	69.8	15.2	1.1
Zimmerwald	7810	1.5	-0.3	7.2	3.3	0.0
Mt Stromlo	7825	6.7	-0.1	1.5	-2.1	0.3
Simosato	7838	21.8	-21.0	-42.4	-13.9	0.3
Graz	7839	1.4	1.4	-0.9	2.7	0.3
Herstmonceux	7840	1.1	-1.1	-0.6	-2.5	0.3
Matera	7941	-0.0	4.4	3.1	-6.6	0.1
Wettzell (WLRS)	8834	-4.9	-4.3	-11.0	-6.4	1.5

(dE,dN,dU): Crd. corr. dr: Range bias dt: Timing bias

Ex. for obs. numbers and formal errors:

	Matera	Yarragadee
nObs	740	10'310
δdE	1.4 mm	0.3 mm
δ dN	1.3 mm	0.3 mm
δdU	5.5 mm	1.1 mm
δdr	3.0 mm	0.5 mm
δdt	0.24 μ s	$0.05~\mu \mathrm{s}$

Notice: Only a selection of stations shown

Ideally, we should estimate both station- and orbit-related parameters together. But...

Correlations

Ideally, we should estimate both station- and orbit-related parameters together. But...

Estimated parameters (9 LEOs, 11 stations):

- 0-8: Radial orbit offsets
- 9-17: Along-track orbit offsets
- 18-26: Cross-track orbit offsets
- 27-37: N station coord, corrections
- 38-48: E station coord, corrections
- 49-59: U station coord corrections
- 60-70: Range biases
- 71-81: Timing biases

High correlations:

- Radial orbit offsets & Up coord.
- Radial orbit offsets & Range biases
- Along-track orbit offsets & East coord.
- Along-track orbit offsets & Timing biases

Impact of constraints

Use constraints to decorrelate parameters. Impact on yearly station parameters for station 7immerwald for 2021:

	dE [mm]	dN [mm]	dU [mm]	dr [mm]	$dt\;[\mus]$
No orbit parameters estimated	-1.8	1.5	8.1	4.3	-0.1
Zero-mean of station U crd.	-0.4	1.3	6.3	4.9	-0.2
Zero-mean of R orb. offsets	-0.4	1.3	7.8	4.2	-0.2
NNT constr.	-0.4	1.3	9.9	3.3	0.0
NNT constr. (*)	-0.3	1.1	2.0	7.2	-0.1
NNT + NNR constr.	-0.5	1.3	7.5	4.5	0.0
NNT + NNR constr. (*)	-0.8	1.1	4.3	5.7	0.4
NNT + NNR + NNS constr.	-0.4	1.3	5.0	5.6	0.0
NNT+NNR+NNS constr. (*)	-0.8	1.1	2.4	6.6	0.4

^{(*):} Excluding stations with large residuals in Helmert transformations

Notice: In all cases with estimated orbit parameters, a zero-mean constraint for the timing biases was applied in addition (to decorrelate with along-track orbit offsets).

Greenbelt:						
	dE [mm]	dN [mm]	dU [mm]	dr [mm]	$dt\;[\mus]$	
2019	3.2	5.9	-12.3	-7.0	0.0	
2020	3.7	6.3	-11.0	-5.1	-0.1	
2021	2.9	6.3	-12.8	-2.8	0.0	

Arkhyz:

,	dE [mm]	dN [mm]	dU [mm]	dr [mm]	$dt\;[\mus]$
2019	20.9	-11.2	-168.9	-104.7	0.9
2020	18.2	-18.1	-192.5	-118.1	0.2
2021	16.8	-20.6	-177.4	-104.9	0.3

Residuals for 32 stations, 9 LEOs before ajustment:

RMS: 14.49 mm

RMS: 9.35 mm

Conclusions

- Microwave-based orbits for active LEOs are often of very good quality.
- The numerous SLR observations to these LEOs have then the potential to be used for the determination, monitoring and calibration of systematic station errors.
- Systematic orbit errors affect the results and should be taken into account.
- When co-estimating them, constraints are needed for decorrelation.
- Further investigations/discussions needed to find the most "appropriate" constaints.
- Think about using SLR observations to active LEOs in reference frame realizations...

Conclusions

- Microwave-based orbits for active LEOs are often of very good quality.
- The numerous SLR observations to these LEOs have then the potential to be used for the determination, monitoring and calibration of systematic station errors.
- Systematic orbit errors affect the results and should be taken into account.
- When co-estimating them, constraints are needed for decorrelation.
- Further investigations/discussions needed to find the most "appropriate" constaints.
- Think about using SLR observations to active LEOs in reference frame realizations...

Thank you for your attention!

