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Abstract. Objective. Learning to classify cardiac abnormalities requires large and

high-quality labeled datasets, which is a challenge in medical applications. Small

datasets from various sources are often aggregated to meet this requirement, resulting

in a final dataset prone to label noise due to inter- and intra-observer variability

and different expertise. It is well known that label noise can affect the performance

and generalizability of the trained models. In this work, we explore the impact

of label noise and self-learning label correction on the classification of cardiac

abnormalities on large heterogeneous datasets of electrocardiogram (ECG) signals.

Approach. A state-of-the-art self-learning multi-class label correction method for

image classification is adapted to learn a multi-label classifier for electrocardiogram

signals. We evaluated our performance using 5-fold cross-validation on the publicly

available PhysioNet/Computing in Cardiology (CinC) 2021 Challenge data, with full

and reduced sets of leads. Due to the unknown label noise in the testing set, we

tested our approach on the MNIST dataset. We investigated the performance under

different levels of structured label noise for both datasets. Main results. Under high

levels of noise, the cross-validation results of self-learning label correction show an

improvement of approximately 3% in the challenge score for the PhysioNet/CinC 2021

Challenge dataset and an improvement in accuracy of 5% and reduction of the expected

calibration error of 0.03 for the MNIST dataset. We demonstrate that self-learning

label correction can be used to effectively deal with the presence of unknown label

noise, also when using a reduced number of ECG leads.
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2

1. Introduction

Cardiovascular diseases are the leading cause of death worldwide. In recent years,

researchers from different fields have actively collaborated to develop new tools for

the monitoring and early detection of cardiac abnormalities from electrocardiogram

(ECG) signals (Jambukia, Dabhi, and Prajapati 2015). Thanks to the proliferation of

new portable and wearable ECG recording devices, it is now possible to collect data

as never before, making automated signal interpretation a fundamental requirement.

Machine learning (ML), and in particular Deep Learning (DL), has been widely applied

to achieve this task, showing high accuracy in ECG arrhythmia classification (Ebrahimi

et al. 2020). Several DL models have been proven to be successful in detecting

cardiac abnormalities from ECG recordings, such as restricted Boltzmann machines,

stacked autoencoders, convolutional neural networks (CNNs), and deep belief networks

(Mathews, Kambhamettu, and Barner 2018). DL overcomes the task of carefully

selecting features by learning informative patterns from raw inputs using convolution

operations. CNNs are currently the most widely employed models in the field of ECG

classification (Ebrahimi et al. 2020). These studies primarily focused on identifying

cardiac abnormalities using either 12-lead ECGs or a reduced number of leads, typically

single-lead ECGs.

The PhysioNet/CinC 2021 Challenge aimed to explore the ability to achieve similar

multi-class classification performance with 12-lead ECG and a reduced set of leads,

motivated by the limited accessibility of 12-lead ECG devices.

The dataset provided for the challenge is a collection of annotated 12-lead ECG

recordings from six sources collected in four different countries across three continents.

Consequently, the dataset is prone to various types of label noise. Even when relying on

experts, labeling cardiac abnormalities is not straightforward, and intra- and inter-rater

variability is a common source of label noise. Additional bias noise can be introduced

when different data sources are combined. For instance, slightly different rules are

adopted to systematically assign a recording to two different classes in different datasets.

When using DL models, label noise should be carefully considered since, despite being

able to maintain high training performance under high levels of random label noise, they

might lead to low generalization (Zhang et al. 2021).

Our team, SMS+1, participated in the PhysioNet/CinC 2021 Challenge, reaching

the seventh position on the leader-board. Our approach aimed to deal with and gain a

better understanding of two of the biggest challenges related to applying DL to ECG: the

data imbalance and noisy nature of the labels arising from incorrectly labeled recordings

(Hong et al. 2020).

In this work, we present an approach for the automatic classification of heart

arrhythmias from an arbitrary number of leads without significant performance loss

and is meant to provide better-calibrated predictions in the presence of label noise in

the training data. In our previous work (Gallego Vázquez et al. 2021), we included a

self-learning label correction module to our model, following the work from (Han, Luo,
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and X. Wang 2019) for multi-class image classification. The framework application to

the PhysioNet/CinC 2021 Challenge dataset resulted in some challenges and issues that

were not present in the original work. In particular, we investigate the impact of label

noise on classification performance and the use of self-learning label correction in the

context of ECG multi-class multi-label classification. Specifically, the main contribution

of this paper is the adaptation of the self-learning label correction method to the mutli-

label case, as well as the evaluation of its impact on both the overall performance and

single classes under various label noise levels.

Given that the PhysioNet/CinC 2021 Challenge data used for testing during cross-

validation is also affected by label noise, we test the proposed multi-label self-learning

label correction on the MNIST data (Deng 2012), which provides a clean testing scenario.

Furthermore, we include an adversarial condition in the PhysioNet/CinC 2021 Challenge

dataset, reflecting real-world settings of label noise by adding structured noise only to

the training labels. Finally, we performed a qualitative assessment of the correction

method. We invited three trained cardiologists to review a subset of the corrected

ECG recordings to understand whether the corrected labels were indeed mislabeled and

correctly chosen by the newly selected class.

2. Related Work

2.1. Multi-lead vs reduced-lead classification

With the rise of technology and digital tools, telemedicine is becoming the future of

health care. Anyone with a smartphone or wearable device can record different types

of data and biosignals. Real-time monitoring of ECG would be a powerful diagnostic

tool. Therefore, smaller and cheaper ECG devices than the standard 12-lead ECG are

required. Recently, Sohn et al. 2020 reconstructed a 12-lead ECG from a 3-lead patch

using a neural network. Other studies have investigated the possibility of arrhythmia

classification using single-lead and 2-lead ECG (Liu, Cheng, and Lin 2013; Mathews,

Kambhamettu, and Barner 2018; Yang et al. 2019). Kristensen et al. 2016 concluded

that both 12- and 3-lead ECGs can be used to detect atrial fibrillation, reporting that the

specificity and sensitivity are comparable. Lai, Zhou, and Trayanova 2021 have proposed

a DL model that uses the optimal 4-lead subset, improving the generalizability and

accuracy in ECG abnormality detection with respect to the whole 12-lead set. There

is still limited evidence that reduced-lead ECGs are comparable to 12-lead ECGs as

diagnostic tools (M. A. Reyna et al. 2021).

2.2. Noisy labels

Labeling medical data requires a certain level of expertise and is costly and time-

consuming. Consequently, the risk of incorporating label noise increases with the size

of the dataset. Merging datasets from different sources, where the different qualities

of the labels differ between them, represents an additional source of label noise. Label
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noise has been the most frequently reported reason for the decrease in classification

performance (Frenay and Verleysen 2013). Although it is known that many state-of-

the-art ML classifiers can deal with random noise, this is not true for other sources of

label noise.

Robust loss functions such as Ghosh, Kumar, and Sastry 2017 have been proposed

to train models that are unaffected by label noise. However, these methods make the

same assumptions regarding noise distribution, for example, simple uniform label noise.

There has been a large body of work on identifying and correcting mislabeled

instances in image classification (Karimi et al. 2020). Time series data poses additional

challenges, and nonrandom label noise present in real-world datasets has often been

overlooked (Atkinson and Metsis 2021). A few approaches have been proposed to

mitigate label noise in ECG signal classification. Most of these approaches rely on the

identification of incorrectly labeled samples for their removal during training (Pasolli

and Melgani 2015; Li and Cui 2019; Wu and Tian 2020; Stepien and Grzegorczyk

2017). Genetic optimization methods (Pasolli and Melgani 2015), cross-validation as

an ensemble of machine learning classifiers to filter mislabeled instances (Li and Cui

2019; Wu and Tian 2020), and only keeping samples with high confidence of being

correctly labeled (Stepien and Grzegorczyk 2017), are the approaches implemented for

ECG data. Cleansing techniques have the drawback of increasing classifier bias and

degrading accuracy, generalizing worse to label noise present in the test data (Atkinson

and Metsis 2021). Wu and Tian 2020 have also implemented a semi-supervised clustering

method to correct mislabeled training samples based on cross-validation and k-nearest

neighbor (KNN) classification.

3. Methods

The components of the proposed approach are described in detail in this section, as

illustrated in Figure 1. In particular, after describing the data preprocessing and

classification architecture, in Section 3.3, we explain the self-learning label correction

approach.

3.1. Dataset and preprocessing

The original training data consists of six publicly available datasets, with more than

88.253 12-lead ECG signals provided by the PhysioNet/CinC 2021 Challenge (M. A.

Reyna et al. 2021). The official validation dataset consists of approximately 6.630 12-

lead ECG signals and the official test dataset of 6.266 recordings. More than 100

labeled abnormalities are present in the complete dataset. The 30 classes considered

by the challenge and their abbreviations are listed in Table ??. The dataset is also

characterized by class imbalance, with, for instance, sinus rhythm representing 22%

of the labels and complete left bundle branch block appearing only in 0.16% of the

recordings.
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5

As a first step, instances not belonging to any of the 30 classes considered in the

challenge (around 20%) are removed. Because recordings from separate hospitals and

devices can have different sampling rates, we first resample each recording to 250 Hz.

The signal duration varies between the datasets. During training and testing, signals

are zero-padded to the maximum signal length in each batch before entering the model.

A binary mask is added to the channels as an input to the model to identify the padded

part of the signal.

3.2. Classification architecture

3.2.1. 1D-CNN The classification component of our model is consistent with the one

proposed in (Gallego Vázquez et al. 2021) and is based on a series of convolution

operations and two fully connected feedforward networks. We employ one-dimensional

convolution operations, which are applied to the original ECG waveform segments and

preprocessed as described in Section 3.1, to extract a latent space representation of the

signals. A detailed summary of the network settings is presented in Table 1. The last

two CNN layers before the FC networks reduce the number of features used to compute

the similarity metrics during the label correction phase.

Label correction

Traning data

Sample x
Sample subset / 

class

Classification architecture

Sample x

FC
1

FC
2
0
1
0
0
1
0
... ...
0

30 classes

ASL

Sample x features

Prototype selection / class

Corrected  
labels

0 1 0 1 0 0 1 … 0 

0 0 0 1 0 0 1 … 1

1D CNN layers
+ Max-pooling
+ Batch
normalization

Figure 1: Architecture of the model: Training samples are first resampled before they

are passed to a 1D CNN. The feature set obtained from the 1D CNN is used as an input

to a label correction phase that iteratively estimates corrected labels during training by

identifying prototypes of every class likely labeled correctly. The output of the label

correction is then combined with the output after the convolution step. Adapted from

(Gallego Vázquez et al. 2021)
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Table 1: Deep Learning model settings.

Layer In Kernel Stride/Padding Out

CNN 1 leads 5 1/2 16

CNN 2 16 5 1/2 32

CNN 3 32 5 1/2 64

CNN 4 64 5 1/2 128

CNN 5 128 5 1/2 256

CNN 6 256 5 1/2 128

CNN 7 128 5 1/2 64

CNN 8 64 5 1/2 32

FC 1 32 128

FC 2 128 30

3.2.2. Asymmetric loss function To deal with the imbalanced nature of the dataset,

we employ an asymmetric loss (ASL) for multi-label classification (Ben-Baruch et al.

2020), defined as:

ASL =

{
L+ = (1− p)γ+ log(p)

L− = (pm)
γ− log(1− pm)

where p is the network’s output probability, and pm = max(p−m, 0) denotes the shifted

probability by a margin hyper parameter m.

This loss function contains two complementary asymmetric mechanisms that work

differently on well-represented and under-represented samples and dynamically adjust

the asymmetry levels throughout the training. It uses two focusing hyperparameters

to modify the contribution of easy samples to the loss function (γ+, γ−), and hard

thresholding via the probability margin m. In our work, we set the two focusing

parameters to γ+ = 1 and γ− = 3, and the probability margin to m = 0.2.

3.3. Self-learning label correction

Once the model network has been trained for some epochs (n=2), label correction is

performed in every training epoch until early stopping is reached. In each epoch, 16

class prototypes are selected from a random pool of samples from each class. Prototypes

that present large density values have more similar samples from the same class around

them and, therefore, have a high probability of being correctly labeled. However, if the

chosen prototypes are those with the top highest density value, they are probably very

close to each other. Therefore, we might miss other prototypes that are representative

of the class. Both similarity and density values are considered for the selection of valid

prototypes. Our approach differs from the original implementation (Han, Luo, and

X. Wang 2019) in that each new prototype selected is compared only to the already

selected prototypes and not to the complete sample pool. Prototypes are selected based

on cosine similarity, which is defined as follows:

cos(p, s) =
ps

∥p∥∥s∥
,
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where p is the prototype and s is the new sample. A high cosine value indicates

that a sample is closely related to the already selected prototype and is thus a good

candidate for being a prototype for that class. To deal with multi-label classification,

we use a modified correction criteria: First, we calculate a similarity value using the

cosine similarity between the features of each training sample s and the features of the

prototypes p. Then, we assign one or more corrected labels from the classes whose

similarity between prototypes and sample is higher than a threshold set to 0.9. If

no similarities exceed this threshold, we do not assign a new label to the sample and

instead use the original label. During self-learning label correction, we use a weighted

loss function with the original labels and the suggested corrected labels (Han, Luo, and

X. Wang 2019):

loss = (1− α) ∗ ASL(y, t) + α ∗ ASL(y, c),

where y, t, and c are the predicted, original, and corrected labels, respectively, and ASL

is an asymmetric loss function. The value of α determines the amount of label correction

involved in the loss computation. In our case, we set α to 0.5.

3.4. Implementation details

The official evaluation metrics from the challenge (Alday et al. 2020; M. A. Reyna et al.

2021) consider that some misdiagnoses are less harmful than others. For this purpose,

misdiagnoses are weighted differently, giving a final challenge score. We monitor the

average challenge score during model training and use early stopping when the validation

challenge score stops improving for four epochs.

Hyperparameters selection is not performed: the Adam optimizer is used with

default parameters (β1 = 0.9, β2 = 0.999 and ϵ = 10−8), the learning rate is set to

0.001, and batch size is set to 10. The complete model consists of 1.115.244 trainable

parameters and it is trained on the PhysioNet/CinC 2021 Challenge datasets with no

other external data sources. All algorithms were implemented in PyTorch 1.7.1 with

Python 3.8.10.

4. Experiments

4.1. Multi-Label Correction Performance on MNIST

To compare the accuracy of the multi-label correction under different levels and types of

noise starting from a clean dataset, we evaluated its performance on the MNIST (Deng

2012) digits data. The dataset comprised a training set of 60.000 samples and a test set

of 10.000 samples. A multi-label version of the dataset was built by choosing several

pairs of digits and pairing them into a single image. The labels corresponding to 10

binary variables were set to 1 if the corresponding digit was in the picture. As the next

step, we trained a CNN with binary cross-entropy loss (baseline accuracy on MNIST

0.99%). The self-learning label correction method was then included in the training

pipeline, and different types of noise were applied to the training and validation labels.
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The test labels were not affected by the noise to provide a clean ground truth, which is

not possible in the PhysioNet/CinC 2021 Challenge data. We consider random noise, for

which we outnumbered labels sampled uniformly at random, and bias noise, for which

labels were biased towards a random class. The level of label noise was varied from 10%

to 30%. For the performance metrics, we used the model’s accuracy and the percentage

of correctly changed labels (CCL). When developing ML models for medical diagnosis,

the confidence level of the model is also an important aspect to consider. Because of

the unknown label noise present in the PhysioNet/CinC 2021 Challenge dataset, we

investigated the reliability of the model with and without self-learning label correction

on the MNIST dataset instead, using the calibration confidence to express the reliability

of the model (Murphy and Epstein 1967). We computed the Expected Calibration Error

(ECE) as proposed in (Naeini, Cooper, and Hauskrecht 2015) using Kuppersfrom et.

al (Küppers et al. 2020) implementation. Since we have multiple binary classifiers, we

computed ECE independently for each class and then calculated the average ECE.

4.2. Noise and model performance on ECG Data

To evaluate the performance of the label correction on the ECG data, we trained our

model on 12-lead, 4-lead (”I”, ”II”, ”III”, ”V2”), and 2-lead (”I” and ”II”) recordings

without label correction, to have a baseline, and with label correction. We followed a

5-fold cross-validation strategy, where the 4 folds of training data were further split into

training (80%) and validation (20%).

Label correction has been shown to work well on datasets with approximately 20%

noise (Lee et al. 2018). As the amount of noise present in the original dataset is unknown,

we artificially added known label noise ranging from 10% up to 30%, only to the training

and validation data. To make the noise nonrandom, we biased the labels by relabeling

sample labels belonging to cardiac abnormalities to sinus rhythm (normal class). The

same number of sinus rhythm samples was relabeled to different cardiac abnormalities.

We quantified the label correction performance by comparing the number of artificial

noisy labels that were detected and corrected back to the original labels.

As an evaluation metric, we favor the use of the challenge score, proposed in (M. A.

Reyna et al. 2021). For completeness and future comparisons, we also report standard

evaluation metrics such as Accuracy, Area Under Receiver Operating Characteristic

(AUROC), Area Under Precision-Recall Curve (AUPRC), and the F-measure.

4.3. Visual assessment of label correction by experts

To qualitatively assess the performance of the self-learning label correction, we presented

50 corrected recordings (chosen randomly) to three different cardiologists and gave them

the option to choose between the original labels, the corrected labels, or ”neither”. The

order of the first two options was randomized to prevent bias. We then calculate the

agreement between the three experts and the percentage of labels they would have also

corrected among the presented recordings. Furthermore, we calculated the percentage of
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Table 2: . Accuracy (Acc), average Expected Calibration Error (ECE), and percentage

of correctly corrected labels (CLL) for MNIST dataset under different types and levels

of label noise on the training data. Baseline: CNN model, LC: CNN + self-learning

Label Correction. Baseline model accuracy 0.99, ECE= 0.006.

Baseline LC

Noise Level Acc ECE Acc ECE CCL(%)

Random

10% 0.99 0.01 0.98 0.02 94

20% 0.98 0.03 0.98 0.03 93

25% 0.98 0.04 0.98 0.03 95

30% 0.96 0.07 0.98 0.04 95

Bias

10% 0.98 0.02 0.98 0.02 95

20% 0.98 0.03 0.98 0.03 95

25% 0.97 0.04 0.97 0.03 95

30% 0.92 0.07 0.97 0.04 93

recordings for which the expert would select the label, computed using the self-learning

label correction method.

5. Results

5.1. Multi-Label Correction Performance MNIST

Table 2 shows the accuracy obtained from the test data of the MNIST dataset for the two

different types of noise at four different levels (10%, 20%, 25 %, and 30%). We observed

that CNN architectures are robust to uniform label noise in multi-label settings, with

a constant accuracy of 0.99. However, a drop in performance was noticeable when the

structured bias noise was introduced. While ≤ 20% added structured label noise does

not seem to affect the accuracy or the ECE, when the noise is set to 30%, the self-

learning label correction provides a more robust performance (LC: Acc = 0.97, ECE

=0.04, Baseline: Acc = 0.92, ECE =0.07).

5.2. Noise and model performance on ECG Data

The challenge scores for different lead configurations and under different levels of label

noise are shown in Figure 2 for the baseline model and self-learning label correction

approach. The results of the 5-fold cross-validation for all metrics and all experiments

are reported in Table S2.

When no additional noise is added to the training labels, the results suggest that

the use of 12-lead ECG recordings provides slightly better overall classification results

reported as (mean(std)): 0.73 (0.01), 0.72 (0.00), 0.71 (0.00) for the 12-, 4-, and 2-

lead model, respectively. The confusion matrix in Figure 3 represents the percentage
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difference of the classification within each class for the 12-lead or 2-lead model. The

results belong to one of the five test folds.

When using the original dataset with unknown label noise, the results of a 5-fold

cross-validation show that the performance is slightly lower than the baseline, with a

difference in challenge score of approximately 0.01. However, the test data used during

cross-validation were affected by label noise. Thus, in our opinion, the results of the

two methods are not comparable.

Figure 4 shows the number of diagnoses that were corrected during the training of

the 12-lead model when no additional noise was added to the training labels. In total,

13% of the training samples were corrected. Figure S1 and Figure S2 show which classes

were corrected to which classes for single diagnosis to single diagnosis correction. The

most often changed class was from QAb to NSR. Figure S3 shows the distribution of

recordings across different datasets and the percentage of corrected labels separated by

dataset. The number of times a label is corrected corresponds to its presence in the

dataset with some exceptions, such as SB, STach, and SA, which are some of the classes

more represented with less corrected recordings. The number of times each label is

corrected is also related to its label distribution within each dataset. Figure ?? shows

the number of labels from recordings in each dataset that were corrected and chosen as

correct. For a complete view of the number of recordings and labels per dataset, refer

to Figure 4 in M. Reyna et al. 2022.

Finally, class-specific changes owing to the use of label correction are shown as the

percentage difference in the confusion matrix in Figure 5. Independent of the number of

Figure 2: Cross-validation average challenge score at the different added bias noise

levels, for the 12-, 4-, and 2-lead models, using the baseline approach (plain line) and

with the self-learning label (LC ) correction approach (dashed line).
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Figure 3: Change in the confusion matrix when reducing the 12-lead ECGs to 2-lead

ECGs, normalized by the number of samples present in each of the 30 classes. Red

results represent more samples predicted by the model with 12-lead ECGs. Blue results

represent more samples predicted by the model with 2-lead ECGs. These results belong

to one of the 5 test folds from the cross-validation.

leads used, Figure 5 shows that in the case of artificial bias noise added to the training

labels, label correction outperformed the baseline model when the added noise level was

equal to or higher than 20%. These results are consistent with those obtained when

using the self-learning label correction on the MNIST data in the presence of structured

bias noise.

5.3. Official challenge results

This section reports the official results obtained for the post-challenge submission. In

contrast to the official challenge submission, we included the multiple-label self-learning

label correction method. The official results obtained by re-submitting our code are

listed in Table 3 and Table 4 for all test sets. The overall challenge score for the test

set for the 12-, 6-, 4-, 3- and 2- models are: 0.48, 0.45, 0.15, 0.36 and 0.50, respectively.

A complete benchmark with challenge and post-challenge implementation can be

found in (M. Reyna et al. 2022). Again, a direct comparison of challenge and post-

challenge results does not reflect the performance change due to multi-label self-learning

label correction, as the self-learning label correction was not used for the final official
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Figure 4: Percentage of samples per diagnosis that is corrected by the self-learning label

correction algorithm to a different class. Recordings with single and multiple classes are

considered. These results belong to one of the 5 test folds from the cross-validation.

challenge run.

Table 3: Official results of our model on the Challenge validation dataset for the 12-, 6-

(’I’, ’II’, ’III’, ’aVR’, ’aVL’, ’aVF’), 4- (’I’, ’II’, ’III’, ’V2’), 3- (’I’, ’II’, ’V2’), and 2-lead

(’I’, ’II’) models.

Leads-model 12 6 4 3 2

Accuracy 0.21 0.27 0.02 0.21 0.25

AUROC 0.86 0.87 0.69 0.84 0.87

AUPRC 0.35 0.37 0.14 0.32 0.35

Challenge 0.50 0.52 0.18 0.46 0.51

F-measure 0.31 0.34 0.12 0.31 0.31

5.4. Visual assessment of label correction by experts

When presented with a subset of corrected recordings, the experts independently

identified that 52%, 66%, and 52% of the corresponding labels should have been

corrected. In 60% of the cases, they agreed that a label had to be corrected. The

results of the expert evaluations are presented in Table S4. They agreed on 38%, 34%,

and 46% of the instances corrected by our model, respectively, while together they

agreed on 34% of the presented recordings to be assigned to the wrong classes (with

eight correctly corrected cases). When measuring the raters’ agreement using Fleiss’
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Kappa, we obtain a score of 0.88. Figure S4 and Figure S5 show two visual examples of

recordings that were corrected by our approach, one correctly corrected and one wrongly

corrected, respectively, according to the three experts.

6. Discussion

A 12-lead electrocardiogram is more expensive, bulky, and burdensome than a 2-lead

electrocardiogram, so it is of particular interest to predict different cardiovascular

diseases from 2-lead electrocardiogram signals.

It should be noted that the results from the undisclosed dataset were comparable

among the different test sets. Compared to other team results, our model experienced a

much smaller drop in scores from the validation to the test set (M. Reyna et al. 2022).

This suggests that our approach can provide more robust results on the test data, with

different characteristics and unseen during training. On the other hand, the 4-lead model

shows a drop in performance metrics that we cannot explain or reproduce. Indeed, the

results of the cross-validation for the 4-lead model do not show any significant reduction

Figure 5: Change in the confusion matrix when including our label correction approach

during the training, normalized by the number of samples present in each of the 30

classes. Results are shown for the case of the 12-lead model. Red results represent more

samples predicted by the model without label correction. Blue results represent more

samples predicted by the model with label correction.
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Table 4: Official results of our model on the Challenge test datasets for the 12-, 6- (’I’,

’II’, ’III’, ’aVR’, ’aVL’, ’aVF’), 4- (’I’, ’II’, ’III’, ’V2’), 3- (’I’, ’II’, ’V2’), and 2-lead (’I’,

’II’) models. Best Challenge score per test-set in bold.

CPSC2 G12EC

Leads-model 12 6 4 3 2 12 6 4 3 2

Accuracy 0.35 0.41 0.04 0.28 0.37 0.16 0.22 0.01 0.18 0.21

AUROC 0.93 0.93 0.63 0.91 0.92 0.86 0.87 0.66 0.83 0.85

AUPRC 0.74 0.74 0.24 0.66 0.70 0.34 0.37 0.14 0.32 0.34

Challenge 0.60 0.66 0.01 0.56 0.61 0.48 0.49 0.20 0.44 0.49

F-measure 0.19 0.18 0.04 0.16 0.18 0.30 0.34 0.12 0.30 0.30

Undisclosed UMich

Leads-model 12 6 4 3 2 12 6 4 3 2

Accuracy 0.23 0.31 0.01 0.12 0.28 0.21 0.26 0.02 0.19 0.26

AUROC 0.87 0.87 0.60 0.80 0.87 0.85 0.86 0.68 0.82 0.86

AUPRC 0.46 0.50 0.18 0.40 0.48 0.37 0.38 0.15 0.34 0.36

Challenge 0.47 0.39 0.07 0.22 0.51 0.47 0.46 0.17 0.39 0.49

F-measure 0.33 0.32 0.01 0.26 0.37 0.32 0.35 0.13 0.32 0.32

in performance.

The cross-validation results on available training data showed no substantial

changes in accuracy (1%) when reducing the recording information to the 2-leads.

The challenge score was 3% higher for the 12-lead model and the original dataset.

Conversely, additional label noise reduces these differences. From Figure 3, we observe

both improving and worsening in the classification of different classes between the 12-

and 2-lead models. Noticeable changes are observed for AF and RBBB, where using 2-

leads results in better classification. In addition, the classification of AFL also improves

from the 12- to 2-lead model, with fewer AF samples misclassified as AFL for the 12-lead

model.

When analyzing the performance in each class, we can see that AF, AFL, IAVB,

NSR, PR, SA, and STach (accounting for 48% of samples in the dataset) classification

improves with label correction. In contrast, the classification of LAnFB, LPR, SB,

and TAb (accounting for 25% of samples in the dataset) worsened when performing

label correction. It is not surprising that AF and AFL are very frequently incorrectly

corrected, as shown in Figure S1. AF and AFL are very often misdiagnosed by physicians

and belong to some of the most common and threatening cardiac conditions (Shiyovich

et al. 2010). There have been some efforts in DL in recent years to train models that

can distinguish between both (J. Wang 2021) because both signals look very similar to

the human eye. Therefore, it is not surprising that a model that learns to differentiate

between 30 classes will often mistake them. We included this information in our model;

however, the results do not vary, likely because of the noisy test data. Nevertheless,

most of the new AF labels correspond to recordings originally from Ningbo (the only

dataset that does not include any AF label), and, as shown in Figure 5, fewer AF
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samples were misclassified as AFL when using label correction. This result indicates

that our label correction technique can deal with heterogeneous databases with different

labeling protocols.

Labels were only rarely corrected to the most represented classes (excluding AF and

AFL), showing the robustness of our label correction towards class distribution. This

implies that underrepresented labels that usually belong to less-frequent abnormalities

are not corrected to the most prominent and better-known abnormalities. In order of

presence, these classes are: NSR, SB, Tab, STach, and LAD. SA is the most chosen

corrected label (33.3% of the time). It is a commonly encountered variation of NSR.

Recordings from all datasets are corrected to SA in relation to the size of the datasets.

From Figure S1, we can see that the majority of QAb (37%) were corrected to NSR. In

Figure 5, we see that NSR classification is improved (6.9%) with label correction, while

QAb classification almost does not experience any change (decrease of 0.2%). Moreover,

results of the manual evaluation of recordings by the experts, reported in S4, highlight

that the five QAb recordings identified as mislabeled by our method were mislabeled,

according to the experts. We see also that the agreement on the newly assigned label

does not always converge. These results indicate that the experts might mislabel QAb,

and the self-learning label correction is identifying them and, in most cases, correctly

correcting them.

Introducing additional noise only on training data shows that the use of self-learning

label correction improves the performance of the underline CNN model, both for 12-

and 2-lead. These results are consistent with the experiments on the MNIST dataset,

where only a high level of structured noise made self-learning label correction necessary

to increase the accuracy. This is consistent with the literature, as uniform random noise

does not impact the underlying model to degrade the performance.

The challenge scores obtained during the official phase, in which self-learning label

correction was disabled, are 0.52, 0.45, 0.50, 0.50, and 0.49 for twelve-, six-, four-, three-,

and two-lead, respectively. As expected, on the official test set that contains unknown

label noise, the implemented self-learning label correction seems to perform worst with

respect to the same model without self-learning label correction. This is consistent

with the experiments of the cross-validation reported in Figure 2. Nonetheless, the

comparison is unfair: the performance assessment always favours models that agree

with the uncorrected labels. Further analysis is needed, but for that a curated test set

must be first assembled.

It is hard to estimate the actual level of label noise on the original data.

Nevertheless, we have evidence that the self-learning label corrector detected wrong

labels on the original data. The three experts agreed that only 24% of the presented

recordings should not have been corrected, while the remaining 76% of the recordings

are considered to present the wrong original label by at least one expert.

As previously mentioned, not having access to a clean dataset makes the estimation

of the level of label noise a challenging task. According to our interpretation, the results

show that self-learning label correction can change classification performance within
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a single class. As a next step, we would like to improve our model by considering

these within-class improvements that might not be detected when computing the overall

metrics.

7. Conclusion

Our approach demonstrates a consistent ability to detect various cardiac abnormalities

on standard 12-lead ECGs and 2-lead ECGs. The framework’s effectiveness was

demonstrated using both a benchmark image classification dataset and six real-world

ECG datasets. In the presence of a high level of label noise, label correction during

training provides more robustness in favor of better classification accuracy. Self-learning

label correction provides a valuable tool for leveraging large aggregated datasets,

requiring limited supervision and allowing for different levels of labeling expertise. The

proposed approach can effectively classify cardiac abnormalities using different sets of

leads and simultaneously address the class imbalance and the presence of unknown and

adversarial structured noise.
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