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Abstract. Objective. Learningito classify cardiac abnormalities requires large and
high-quality labeled datasets, which is a challenge in medical applications. Small
datasets from variousrsources are often aggregated to meet this requirement, resulting
in a final dataset/ prone to label noise due to inter- and intra-observer variability
and different exper‘@e. It is well known that label noise can affect the performance
and generalizability of the trained models. In this work, we explore the impact
of label noise and self-learning label correction on the classification of cardiac
abnormalities ‘on large heterogeneous datasets of electrocardiogram (ECG) signals.
Approach. »A state-of-the-art self-learning multi-class label correction method for
imagerclassification is adapted to learn a multi-label classifier for electrocardiogram
signals. We evaluated our performance using 5-fold cross-validation on the publicly
available PhysioNet/Computing in Cardiology (CinC) 2021 Challenge data, with full
and reduced sets of leads. Due to the unknown label noise in the testing set, we
tested our approach on the MNIST dataset. We investigated the performance under
different levels of structured label noise for both datasets. Main results. Under high
levels of noise, the cross-validation results of self-learning label correction show an
improvement of approximately 3% in the challenge score for the PhysioNet/CinC 2021
Challenge dataset and an improvement in accuracy of 5% and reduction of the expected
calibration error of 0.03 for the MNIST dataset. We demonstrate that self-learning
label correction can be used to effectively deal with the presence of unknown label
noise, also when using a reduced number of ECG leads.
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1. Introduction

Cardiovascular diseases are the leading cause of death worldwide. In recent years,
researchers from different fields have actively collaborated to develop news tools for
the monitoring and early detection of cardiac abnormalities from electrocardiogram
(ECG) signals (Jambukia, Dabhi, and Prajapati 2015). Thanks to the, proliferation of
new portable and wearable ECG recording devices, it is now possible to eollect data
as never before, making automated signal interpretation a fundamental requirement.
Machine learning (ML), and in particular Deep Learning (DL){has been widely applied
to achieve this task, showing high accuracy in ECG arrhythmia elassification (Ebrahimi
et al. 2020). Several DL models have been proven to be succ¢essful in detecting
cardiac abnormalities from ECG recordings, such as réstricted Boltzmann machines,
stacked autoencoders, convolutional neural networks (CNNs); and deep belief networks
(Mathews, Kambhamettu, and Barner 2018). DL overcomes the task of carefully
selecting features by learning informative pattermssfrom. raw inputs using convolution
operations. CNNs are currently the most widely employed models in the field of ECG
classification (Ebrahimi et al. 2020). These studies primarily focused on identifying
cardiac abnormalities using either 12-lead ECGs or a reduced number of leads, typically
single-lead ECGs.

The PhysioNet/CinC 2021 Challenge aimed to explore the ability to achieve similar
multi-class classification performance with 12-lead ECG and a reduced set of leads,
motivated by the limited accessibility of 12-lead ECG devices.

The dataset provided for theichallenge is a collection of annotated 12-lead ECG
recordings from six sources collected imyfour different countries across three continents.
Consequently, the dataset is prone to various types of label noise. Even when relying on
experts, labeling cardiac abnormalities is not straightforward, and intra- and inter-rater
variability is a common soutce of label noise. Additional bias noise can be introduced
when different data, sources are combined. For instance, slightly different rules are
adopted to systematically assign a recording to two different classes in different datasets.
When using DL_models, label noise should be carefully considered since, despite being
able to maintainshigh training performance under high levels of random label noise, they
might lead t0 low generalization (Zhang et al. 2021).

Our teamy SMS41, participated in the PhysioNet/CinC 2021 Challenge, reaching
the seventh position on the leader-board. Our approach aimed to deal with and gain a
better understanding of two of the biggest challenges related to applying DL to ECG: the
data imbalance and noisy nature of the labels arising from incorrectly labeled recordings
(Hong et al. 2020).

Inthis work, we present an approach for the automatic classification of heart
arrhythmias from an arbitrary number of leads without significant performance loss
and is meant to provide better-calibrated predictions in the presence of label noise in
the training data. In our previous work (Gallego Vazquez et al. 2021), we included a
self-learning label correction module to our model, following the work from (Han, Luo,
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and X. Wang 2019) for multi-class image classification. The framework application to
the PhysioNet/CinC 2021 Challenge dataset resulted in some challenges and igsues that
were not present in the original work. In particular, we investigate the impact of label
noise on classification performance and the use of self-learning label correction in the
context of ECG multi-class multi-label classification. Specifically, the main contribution
of this paper is the adaptation of the self-learning label correction method to.the mutli-
label case, as well as the evaluation of its impact on both the overall perfermance and
single classes under various label noise levels.

Given that the PhysioNet/CinC 2021 Challenge data used for tes’gng during cross-
validation is also affected by label noise, we test the proposed multi-label self-learning
label correction on the MNIST data (Deng 2012), which provides alelean testing scenario.
Furthermore, we include an adversarial condition in the PhysioNet /CinC 2021 Challenge
dataset, reflecting real-world settings of label noise by adding structured noise only to
the training labels. Finally, we performed a qualitative assessment of the correction
method. We invited three trained cardiologists tonreview a subset of the corrected
ECG recordings to understand whether the cortected labels were indeed mislabeled and
correctly chosen by the newly selected class.

2. Related Work

2.1. Multi-lead vs reduced-lead classification

With the rise of technology andidigital tools, telemedicine is becoming the future of
health care. Anyone with a smartphene or wearable device can record different types
of data and biosignals. Real-time monitoring of ECG would be a powerful diagnostic
tool. Therefore, smaller and clkaper ECG devices than the standard 12-lead ECG are
required. Recently, Sohn et al. 2020 reconstructed a 12-lead ECG from a 3-lead patch
using a neural network. Other.studies have investigated the possibility of arrhythmia
classification using singleslead, and 2-lead ECG (Liu, Cheng, and Lin 2013; Mathews,
Kambhamettu, and Barner 2018; Yang et al. 2019). Kristensen et al. 2016 concluded
that both 12- and 3-lead ECGs can be used to detect atrial fibrillation, reporting that the
specificity and sensitivity are comparable. Lai, Zhou, and Trayanova 2021 have proposed
a DL model that uses the optimal 4-lead subset, improving the generalizability and
accuracy’in ECG-abnormality detection with respect to the whole 12-lead set. There
is still limited evidence that reduced-lead ECGs are comparable to 12-lead ECGs as
diagnostic tools (M. A. Reyna et al. 2021).

2.2 Noisy labels

Labeling medical data requires a certain level of expertise and is costly and time-
consuming. Consequently, the risk of incorporating label noise increases with the size
of the dataset. Merging datasets from different sources, where the different qualities
of the labels differ between them, represents an additional source of label noise. Label



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - PMEA-104558.R5

4

noise has been the most frequently reported reason for the decrease in classification
performance (Frenay and Verleysen 2013). Although it is known that manyhstate-ofs
the-art ML classifiers can deal with random noise, this is not true for ‘other sources-of
label noise.

Robust loss functions such as Ghosh, Kumar, and Sastry 2017 have been proposed
to train models that are unaffected by label noise. However, these methods, make the
same assumptions regarding noise distribution, for example, simple uniform label noise.

There has been a large body of work on identifying andfeorrecting mislabeled
instances in image classification (Karimi et al. 2020). Time series datﬁ)oses additional
challenges, and nonrandom label noise present in real-world,datasets has often been
overlooked (Atkinson and Metsis 2021). A few approaches have been proposed to
mitigate label noise in ECG signal classification. Most of these approaches rely on the
identification of incorrectly labeled samples for their removal during training (Pasolli
and Melgani 2015; Li and Cui 2019; Wu and Tian 2020; Stepien and Grzegorczyk
2017). Genetic optimization methods (Pasolli and 'Melgani 2015), cross-validation as
an ensemble of machine learning classifiers to(filtef mislabeled instances (Li and Cui
2019; Wu and Tian 2020), and only keeping samples with high confidence of being
correctly labeled (Stepien and Grzegorczyk 2017), are the approaches implemented for
ECG data. Cleansing techniques have the drawback of increasing classifier bias and
degrading accuracy, generalizing worse torlabelinoise present in the test data (Atkinson
and Metsis 2021). Wu and Tian 2020 have.also implemented a semi-supervised clustering

method to correct mislabeled“training samples based on cross-validation and k-nearest
neighbor (KNN) classification.

3. Methods N

The components of.the preposed approach are described in detail in this section, as
illustrated in Figure 1, In particular, after describing the data preprocessing and
classification archifecture, in‘Section 3.3, we explain the self-learning label correction
approach.

3.1. Dataset and preprocessing

The original traiming data consists of six publicly available datasets, with more than
88.253 12-lead ‘ECG signals provided by the PhysioNet/CinC 2021 Challenge (M. A.
Reymaret al, 2021). The official validation dataset consists of approximately 6.630 12-
lead ECG<{signals and the official test dataset of 6.266 recordings. More than 100
labeled abnormalities are present in the complete dataset. The 30 classes considered
by the challenge and their abbreviations are listed in Table ??7. The dataset is also
charaeterized by class imbalance, with, for instance, sinus rhythm representing 22%
of the labels and complete left bundle branch block appearing only in 0.16% of the
recordings.

Page 4 of 19



Page 5 of 19

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - PMEA-104558.R5

5

As a first step, instances not belonging to any of the 30 classes considered in the
challenge (around 20%) are removed. Because recordings from separate hospitals and
devices can have different sampling rates, we first resample each recording to 250.Hz.
The signal duration varies between the datasets. During training and testing, signals
are zero-padded to the maximum signal length in each batch before entéring the model.
A binary mask is added to the channels as an input to the model to identify the padded
part of the signal.

3.2. Classification architecture

3.2.1. 1D-CNN The classification component of our model is eonsistent with the one
proposed in (Gallego Vazquez et al. 2021) and is baséd on a series of convolution
operations and two fully connected feedforward networks. We.employ one-dimensional
convolution operations, which are applied to the original ECG waveform segments and
preprocessed as described in Section 3.1, to extract.a latent space representation of the
signals. A detailed summary of the network settings is.pwesented in Table 1. The last
two CNN layers before the FC networks reduce the number of features used to compute
the similarity metrics during the label correetion phase.

Traning data Classification arehitecture
FC FC
1 2
o\m
1
Sample x L E
MR s 0
= 1D CNN layers 1 [B —— AsL
» + Max-pooling __, O
J [ @+ Bateh 0
normalization O T
30 classes
Sample x Sample x features
S Corrected
ample subset/ i labels
class Prototype selection / class
0101001...0
Label correction 0001 301 1

Figure 1: Architecture of the model: Training samples are first resampled before they
arefpassed to'a 1D CNN. The feature set obtained from the 1D CNN is used as an input
to'alabel correction phase that iteratively estimates corrected labels during training by
identifying prototypes of every class likely labeled correctly. The output of the label
correction is then combined with the output after the convolution step. Adapted from
(Gallego Vézquez et al. 2021)
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Table 1: Deep Learning model settings.

Layer In  Kernel Stride/Padding Out

CNN1 leads 5 1/2 16
CNN2 16 5 1/2 32
CNN3 32 5 1/2 64
CNN4 64 5 1/2 128
CNN5 128 5 1/2 256
CNN 6 256 5 1/2 128
CNN7 128 5 1/2 64 ~
CNNg§ 64 5 1/2 32
FC 1 32 128
FC2 128 30

3.2.2. Asymmetric loss function To deal with the imbalanced nature of the dataset,
we employ an asymmetric loss (ASL) for multi-label ¢lassification (Ben-Baruch et al.
2020), defined as: .

ASL — {L+ = (1 —p)™* log(p)
L_ = (pm)"~ log(L=pm)
where p is the network’s output probability, and py,= max(p —m, 0) denotes the shifted
probability by a margin hyper parameter.in.

This loss function contains two complementary asymmetric mechanisms that work
differently on well-representedrand under-répresented samples and dynamically adjust
the asymmetry levels throughout the training. It uses two focusing hyperparameters
to modify the contribution of easy samples to the loss function (v4,7v_), and hard
thresholding via the probability, margin m. In our work, we set the two focusing
parameters to v, = 1 and v_ &= 3gand the probability margin to m = 0.2.

3.3. Self-learning label eorrection

Once the model network,has been trained for some epochs (n=2), label correction is
performed in every training epoch until early stopping is reached. In each epoch, 16
class prototypes are selécted from a random pool of samples from each class. Prototypes
that present large density values have more similar samples from the same class around
them and; therefore, have a high probability of being correctly labeled. However, if the
chosen prototypes are those with the top highest density value, they are probably very
closetto each other. Therefore, we might miss other prototypes that are representative
of the classs Both similarity and density values are considered for the selection of valid
prototypes. Our approach differs from the original implementation (Han, Luo, and
X. Wang 2019) in that each new prototype selected is compared only to the already
selected prototypes and not to the complete sample pool. Prototypes are selected based
on cosine similarity, which is defined as follows:

ps

cos(p,s) = ———,
(P:5) = ol
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where p is the prototype and s is the new sample. A high cosine value indicates
that a sample is closely related to the already selected prototype and is thas.a good
candidate for being a prototype for that class. To deal with multi-label classification,
we use a modified correction criteria: First, we calculate a similarity value using the
cosine similarity between the features of each training sample s and the features of the
prototypes p. Then, we assign one or more corrected labels fromsthe classes whose
similarity between prototypes and sample is higher than a threshold set.to 0.9. If
no similarities exceed this threshold, we do not assign a new label to,.the'sample and
instead use the original label. During self-learning label correction; we use a weighted
loss function with the original labels and the suggested corréeted labels (Han, Luo, and
X. Wang 2019):
loss = (1 — a) * ASL(y, t) + o * ASL(y, ¢),

where y, t, and ¢ are the predicted, original, and corrected labels, respectively, and ASL
is an asymmetric loss function. The value of a determines the amount of label correction
involved in the loss computation. In our case, we set @ 10,0.5.

3.4. Implementation details

The official evaluation metrics from the challenge (Alday et al. 2020; M. A. Reyna et al.
2021) consider that some misdiagnosestare less harmful than others. For this purpose,
misdiagnoses are weighted differently, giving a final challenge score. We monitor the
average challenge score during'model trainingrand use early stopping when the validation
challenge score stops improvingfor:four epochs.

Hyperparameters selection is not performed: the Adam optimizer is used with
default parameters (8; =.0:9,85.= 0.999 and ¢ = 107®), the learning rate is set to
0.001, and batch size is set t@ 104 The complete model consists of 1.115.244 trainable
parameters and it is trained on the PhysioNet/CinC 2021 Challenge datasets with no
other external data sources. All algorithms were implemented in PyTorch 1.7.1 with
Python 3.8.10.

4. Experiments

4.1. Multi-Labél Correction Performance on MNIST

To compare the accuracy of the multi-label correction under different levels and types of
noisesstarting from a clean dataset, we evaluated its performance on the MNIST (Deng
2012) digitg data. The dataset comprised a training set of 60.000 samples and a test set
of 10:000 samples. A multi-label version of the dataset was built by choosing several
pairs of digits and pairing them into a single image. The labels corresponding to 10
binarywariables were set to 1 if the corresponding digit was in the picture. As the next
step, we trained a CNN with binary cross-entropy loss (baseline accuracy on MNIST
0.99%). The self-learning label correction method was then included in the training
pipeline, and different types of noise were applied to the training and validation labels.
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The test labels were not affected by the noise to provide a clean ground truth, swvhichiis
not possible in the PhysioNet/CinC 2021 Challenge data. We consider randomimoise, for
which we outnumbered labels sampled uniformly at random, and bias noige, for which
labels were biased towards a random class. The level of label noise was varied from 10%
to 30%. For the performance metrics, we used the model’s accuracy andthe percentage
of correctly changed labels (CCL). When developing ML models foramedical,diagnosis,
the confidence level of the model is also an important aspect to consider{ Because of
the unknown label noise present in the PhysioNet/CinC 202L+Challenge/dataset, we
investigated the reliability of the model with and without self—learnin@abel correction
on the MNIST dataset instead, using the calibration confidence. to express the reliability
of the model (Murphy and Epstein 1967). We computed the Expeeted Calibration Error
(ECE) as proposed in (Naeini, Cooper, and Hauskrecht 2015) using Kuppersfrom et.
al (Kiippers et al. 2020) implementation. Since we have multiple binary classifiers, we
computed ECE independently for each class and thien calculated the average ECE.

4.2. Noise and model performance on ECG Data y

To evaluate the performance of the label eorrectionton the ECG data, we trained our
model on 12-lead, 4-lead ("17, "II”, "III", 2V2%), and 2-lead ("I” and ”II") recordings
without label correction, to have asbaseline,"and with label correction. We followed a
5-fold cross-validation strategy, where she 4 folds of training data were further split into
training (80%) and validation,(20%).

Label correction has been shown to work well on datasets with approximately 20%
noise (Lee et al. 2018). As the amount of noise present in the original dataset is unknown,
we artificially added known label noise ranging from 10% up to 30%, only to the training
and validation data. To make the noise nonrandom, we biased the labels by relabeling
sample labels belonging to, ¢ardiag abnormalities to sinus rhythm (normal class). The
same number of sinus thythmisamples was relabeled to different cardiac abnormalities.
We quantified the label eorrection performance by comparing the number of artificial
noisy labels that were detected and corrected back to the original labels.

As an evaluation metric, we favor the use of the challenge score, proposed in (M. A.
Reyna et al.£2021). For.completeness and future comparisons, we also report standard
evaluation metrics such as Accuracy, Area Under Receiver Operating Characteristic
(AUROE), Area'Under Precision-Recall Curve (AUPRC), and the F-measure.

4.3 Vasualassessment of label correction by experts

To'qualitatively assess the performance of the self-learning label correction, we presented
50 correeted recordings (chosen randomly) to three different cardiologists and gave them
the option to choose between the original labels, the corrected labels, or "neither”. The
order of the first two options was randomized to prevent bias. We then calculate the
agreement, between the three experts and the percentage of labels they would have also
corrected among the presented recordings. Furthermore, we calculated the percentage of
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Table 2: . Accuracy (Acc), average Expected Calibration Error (ECE), and percentage
of correctly corrected labels (CLL) for MNIST dataset under different types.and levels
of label noise on the training data. Baseline: CNN model, LC: CNN"4 self-learning
Label Correction. Baseline model accuracy 0.99, ECE= 0.006.

Baseline LC
Noise Level Acc ECE | Acc ECE CCL(%)
10% 0.99 0.01 | 0.98 0.02 94
Random 20% 098 0.03 | 0.98 0.03 93~
25% 0.98 0.04 | 0.98 0.03 95
30% 0.96 0.07 | 0.98 0.04 95
10% 098 0.02 | 0.98 ., 0.02 95
Bias 20% 0.98 0.03 | 0.98 0:03 95
25% 0.97 0.04 | 097 0.03 95
30% 0.92 0.07 | 0.97 0.04 93
L

recordings for which the expert would seleet. the label, computed using the self-learning
label correction method.

5. Results

5.1. Multi-Label Correction Performance MNIST

Table 2 shows the accuracy obtained from the test data of the MNIST dataset for the two
different types of noise at four different levels (10%, 20%, 25 %, and 30%). We observed
that CNN architectures are robust to uniform label noise in multi-label settings, with
a constant accuracy of 0.99./However, a drop in performance was noticeable when the
structured bias noise was introduced. While < 20% added structured label noise does
not seem to affectthe aceuracy or the ECE, when the noise is set to 30%, the self-
learning label correction provides a more robust performance (LC: Acc = 0.97, ECE

=0.04, Baseline: Aec = 0.92, ECE =0.07).

5.2. Noise andimodel performance on ECG Data

The challenge scores for different lead configurations and under different levels of label
noise.are shown in Figure 2 for the baseline model and self-learning label correction
approach. I'he results of the 5-fold cross-validation for all metrics and all experiments
are reported in Table S2.

When no additional noise is added to the training labels, the results suggest that
the'use of 12-lead ECG recordings provides slightly better overall classification results
reported as (mean(std)): 0.73 (0.01), 0.72 (0.00), 0.71 (0.00) for the 12-, 4-, and 2-
lead model, respectively. The confusion matrix in Figure 3 represents the percentage
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difference of the classification within each class for the 12-lead or 2-lead model. The
results belong to one of the five test folds.

When using the original dataset with unknown label noise, the results of a 5=feld
cross-validation show that the performance is slightly lower than the baseline, with a
difference in challenge score of approximately 0.01. However, the test data used during
cross-validation were affected by label noise. Thus, in our opiniongthe results of the
two methods are not comparable.

Figure 4 shows the number of diagnoses that were corrected’during the training of
the 12-lead model when no additional noise was added to the training\labels. In total,
13% of the training samples were corrected. Figure S1 and Figure S2 show which classes
were corrected to which classes for single diagnosis to single diagnosis correction. The
most often changed class was from QAb to NSR. Figure'S3 shows the distribution of
recordings across different datasets and the percentage of correected labels separated by
dataset. The number of times a label is corrected corresponds to its presence in the
dataset with some exceptions, such as SB, STachg'and.SAy which are some of the classes
more represented with less corrected recordings. /T'he filmber of times each label is
corrected is also related to its label distribution within each dataset. Figure 7?7 shows
the number of labels from recordings in eagh dataset that were corrected and chosen as
correct. For a complete view of the number of recordings and labels per dataset, refer
to Figure 4 in M. Reyna et al. 2022,

Finally, class-specific changes owingito the use of label correction are shown as the
percentage difference in the confusion matrixiin Figure 5. Independent of the number of

Challenge score for different noise levels, Baseline vs. LC
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Figure 2: Cross-validation average challenge score at the different added bias noise
levels, for the 12-; 4-, and 2-lead models, using the baseline approach (plain line) and
with the self-learning label (LC ) correction approach (dashed line).
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Normalized Change of Confusion Matrix from 12- to 2- Leads Classification
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Figure 3: Change in the confusion matrix,when reducing the 12-lead ECGs to 2-lead
ECGs, normalized by the number of samples present in each of the 30 classes. Red
results represent more samplespredicted by the model with 12-lead ECGs. Blue results
represent more samples predicted by.the model with 2-lead ECGs. These results belong
to one of the 5 test folds from the cross=validation.

N

leads used, Figure 5 shows that in the case of artificial bias noise added to the training
labels, label correction outperfermed the baseline model when the added noise level was
equal to or higher_than 20%.4 These results are consistent with those obtained when
using the self-learming label correction on the MNIST data in the presence of structured
bias noise.

5.3. Official ehallenge results

This section reports the official results obtained for the post-challenge submission. In
contrast te the official challenge submission, we included the multiple-label self-learning
label correction method. The official results obtained by re-submitting our code are
listed in Table 3 and Table 4 for all test sets. The overall challenge score for the test
set for the 12-, 6-, 4-, 3- and 2- models are: 0.48, 0.45, 0.15, 0.36 and 0.50, respectively.

A, complete benchmark with challenge and post-challenge implementation can be
found in (M. Reyna et al. 2022). Again, a direct comparison of challenge and post-
challenge results does not reflect the performance change due to multi-label self-learning
label correction, as the self-learning label correction was not used for the final official
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Percentage of labels corrected to another class
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Figure 4: Percentage of samples per diagnosis that'is corrected by the self-learning label
correction algorithm to a different class. Recordings with single and multiple classes are
considered. These results belong to one of the 5 test folds from the cross-validation.

challenge run.

Table 3: Official results of ourmodelon the Challenge validation dataset for the 12-, 6-
(T, I, ’TID, "aVR', ’aVL’, "aViE"), 4- ('T’, ’IT’, 'TIT’, 'V2’), 3- (’T’, ’II’, 'V2’), and 2-lead
(T, "II') models. >

Leads-model 12 6 4 3 2

Aceuracy 0.21 0.27 0.02 0.21 0.25
AUROC 0.86 0.87 0.69 0.84 0.87
AUPRC 0.35 0.37 0.14 0.32 0.35
Challenge 0.50 0.52 0.18 0.46 0.51
F-measure 0.31 0.34 0.12 0.31 0.31

5.4. Visual assessment of label correction by experts

When pregented with a subset of corrected recordings, the experts independently
identified that 52%, 66%, and 52% of the corresponding labels should have been
corrected. In 60% of the cases, they agreed that a label had to be corrected. The
resultsrof the expert evaluations are presented in Table S4. They agreed on 38%, 34%,
and 46% of the instances corrected by our model, respectively, while together they
agreed on 34% of the presented recordings to be assigned to the wrong classes (with
eight correctly corrected cases). When measuring the raters’ agreement using Fleiss’
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Kappa, we obtain a score of 0.88. Figure S4 and Figure S5 show two visual examples of
recordings that were corrected by our approach, one correctly corrected and one wrongly:
corrected, respectively, according to the three experts.

6. Discussion

A 12-lead electrocardiogram is more expensive, bulky, and burdensome than a 2-lead

electrocardiogram, so it is of particular interest to predict different cardiovascular

diseases from 2-lead electrocardiogram signals. -

It should be noted that the results from the undisclosed.dataset were comparable
among the different test sets. Compared to other team results, our.model experienced a
much smaller drop in scores from the validation to the testiset (M. Reyna et al. 2022).
This suggests that our approach can provide more robust results on the test data, with
different characteristics and unseen during training. /n the other hand, the 4-lead model
shows a drop in performance metrics that we cannot,explain or reproduce. Indeed, the
results of the cross-validation for the 4-lead model dé notishow any significant reduction

MNormalized Change of Confusion Matrix aftertraining with Label Correction
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Figure 5: Change in the confusion matrix when including our label correction approach
during the training, normalized by the number of samples present in each of the 30
classesy Results are shown for the case of the 12-lead model. Red results represent more
samples predicted by the model without label correction. Blue results represent more
samples predicted by the model with label correction.
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Table 4: Official results of our model on the Challenge test datasets for the 124 6- (L,
1, 11D, "aVR?, aVL’, ’aVE’), 4- (T, ’ID, ’TID, 'V27), 3- (°T’, ’II’, 'V2’), and 2-lead (T’
'II") models. Best Challenge score per test-set in bold.

CPSC2 G12EC
Leads-model 12 6 4 3 2 12 6 4 3 2
Accuracy 0.35 0.41 0.04 0.28 037 |0.16 0.22 0.01 0.18, 0.21
AUROC 0.93 093 0.63 091 092 | 0.86 0.87 0.66, 0.83/ 0.85
AUPRC 0.74 0.74 0.24 0.66 0.70 | 0.34 0.3740.14 032 0.34
Challenge 0.60 0.66 0.01 0.56 0.61 |0.48 0.49 020 0.44 0.49
F-measure 0.19 0.18 0.04 0.16 0.18 | 0.30 0.34» 0.12 <40.30 0.30
Undisclosed UMich
Leads-model 12 6 4 3 2 12 6 4 3 2
Accuracy 0.23 0.31 0.01 0.12 0.28 | 021 0.26 =0.02 0.19 0.26
AUROC 0.87 0.87 0.60 0.80 0.87 [.0.85 0.86,, 0.68 0.82 0.86
AUPRC 0.46 0.50 0.18 0.40 0.48_}.0.37. 0.38 0.15 0.34 0.36
Challenge 047 039 0.07 0.22 0.51 | 047 046 0.17 0.39 0.49
F-measure 0.33 0.32 0.01 0.26 037 (0.32 0.35 0.13 0.32 0.32

in performance.

The cross-validation results ©Onvavailable training data showed no substantial
changes in accuracy (1%) when reduging the recording information to the 2-leads.
The challenge score was 3%¢higher for the, 12-lead model and the original dataset.
Conversely, additional label noise reduces these differences. From Figure 3, we observe
both improving and worsening in the elassification of different classes between the 12-
and 2-lead models. Noticeable ¢hanges are observed for AF and RBBB, where using 2-
leads results in better clagsification. In addition, the classification of AFL also improves
from the 12- to 2-lead model§ with/fewer AF samples misclassified as AFL for the 12-lead
model.

When analyzing the performance in each class, we can see that AF, AFL, IAVB,
NSR, PR, SA, and STach\(accounting for 48% of samples in the dataset) classification
improves withalabel correction. In contrast, the classification of LAnFB, LPR, SB,
and TAb (accounting for 25% of samples in the dataset) worsened when performing
label correction. It is not surprising that AF and AFL are very frequently incorrectly
corrected, as shown in Figure S1. AF and AFL are very often misdiagnosed by physicians
and belong to some of the most common and threatening cardiac conditions (Shiyovich
et al. 2010)."There have been some efforts in DL in recent years to train models that
can distinguish between both (J. Wang 2021) because both signals look very similar to
the human eye. Therefore, it is not surprising that a model that learns to differentiate
betiween 30 classes will often mistake them. We included this information in our model,
however, the results do not vary, likely because of the noisy test data. Nevertheless,
most of the new AF labels correspond to recordings originally from Ningbo (the only
dataset that does not include any AF label), and, as shown in Figure 5, fewer AF
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samples were misclassified as AFL when using label correction. This result indicates
that our label correction technique can deal with heterogeneous databases withndifferent
labeling protocols.

Labels were only rarely corrected to the most represented classes (exgluding AF and
AFL), showing the robustness of our label correction towards class digtribution.This
implies that underrepresented labels that usually belong to less-frequent abnormalities
are not corrected to the most prominent and better-known abnormalities{ In order of
presence, these classes are: NSR, SB, Tab, STach, and LAD. SA is:the. amost chosen
corrected label (33.3% of the time). It is a commonly encountered variation of NSR.
Recordings from all datasets are corrected to SA in relation‘te the size of the datasets.
From Figure S1, we can see that the majority of QAb (37%) werecorrected to NSR. In
Figure 5, we see that NSR classification is improved (6.9%)mwith label correction, while
QAD classification almost does not experience any change (decrease of 0.2%). Moreover,
results of the manual evaluation of recordings by the experts; reported in S4, highlight
that the five QAb recordings identified as mislabeled. bysour method were mislabeled,
according to the experts. We see also that the agreement’ on the newly assigned label
does not always converge. These results indicate that the experts might mislabel QAb,
and the self-learning label correction is identifying them and, in most cases, correctly
correcting them.

Introducing additional noise only on'training data shows that the use of self-learning
label correction improves the performanee of the underline CNN model, both for 12-
and 2-lead. These results are @¢oensistent with the experiments on the MNIST dataset,
where only a high level of structured.noise made self-learning label correction necessary
to increase the accuracy. This is consistent with the literature, as uniform random noise
does not impact the underlyingumodel to degrade the performance.

The challenge scores'obtained during the official phase, in which self-learning label
correction was disabledy are 0.52,.0.45, 0.50, 0.50, and 0.49 for twelve-, six-, four-, three-,
and two-lead, respectively. As expected, on the official test set that contains unknown
label noise, the implemented self-learning label correction seems to perform worst with
respect to the same model without self-learning label correction. This is consistent
with the experiments.of the cross-validation reported in Figure 2. Nonetheless, the
comparison [is unfair: the performance assessment always favours models that agree
with the uncorrected labels. Further analysis is needed, but for that a curated test set
must bé first assembled.

It _isyhard to estimate the actual level of label noise on the original data.
Nevertheless, we have evidence that the self-learning label corrector detected wrong
labels on the original data. The three experts agreed that only 24% of the presented
recordings should not have been corrected, while the remaining 76% of the recordings
are considered to present the wrong original label by at least one expert.

As previously mentioned, not having access to a clean dataset makes the estimation
of the level of label noise a challenging task. According to our interpretation, the results
show that self-learning label correction can change classification performance within
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a single class. As a next step, we would like to improve our model by considering
these within-class improvements that might not be detected when computing the overall
metrics.

7. Conclusion

Our approach demonstrates a consistent ability to detect various cardiac abnormalities
on standard 12-lead ECGs and 2-lead ECGs. The framework’s effectiveness was
demonstrated using both a benchmark image classification ddtaset’and six real-world
ECG datasets. In the presence of a high level of label noise, label gorrection during
training provides more robustness in favor of better classification aecuracy. Self-learning
label correction provides a valuable tool for leveragingnlarge ‘aggregated datasets,
requiring limited supervision and allowing for different levels of labeling expertise. The
proposed approach can effectively classify cardiac abnormalities using different sets of
leads and simultaneously address the class imbalan¢e.and, the presence of unknown and

adversarial structured noise. v
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