
ABSTRACT

The dairy industry is moving toward selecting 
animals with better fertility to decrease the economic 
losses linked to reproductive issues. The reproductive 
tract size and position score (SPS) was recently devel-
oped in physiological studies as an indicator of preg-
nancy rate and the number of services to conception. 
Cows are scored as SPS 1, 2, or 3 based on the size of 
their reproductive tract and its position in the pelvis, 
as determined by transrectal palpation. The objective 
of this study was to estimate genetic parameters for 
SPS to assess its potential as a novel fertility trait. 
Phenotypes were collected at the University of British 
Columbia’s research herd from 2017 to 2020, consist-
ing of 3,247 within- and across-lactation SPS records 
from 490 Holstein cows. A univariate animal model 
was used to estimate the variance components for 
SPS. Both threshold and linear models were fit under 
a Bayesian approach and the results were compared 
using the Spearman rank correlation (r) between the 
estimated breeding values. The 2 models ranked the 
animals very similarly (r = 0.99), and the linear model 
was selected for further analysis. Genetic correlations 
with other currently evaluated traits were estimated 
using a bivariate animal model. The posterior means 
(± posterior standard deviation) for heritability and 
repeatability within- and across-lactation were 0.113 
(± 0.013), 0.242 (± 0.012), and 0.134 (± 0.014), respec-
tively. The SPS showed null correlations with produc-
tion traits and favorable correlations with traditional 
fertility traits, varying from −0.730 (nonreturn rate) to 
0.931 (number of services). Although preliminary, these 
results are encouraging because SPS seems to be more 
heritable than and strongly genetically correlated with 

number of services, nonreturn rate, and first service 
to conception, indicating potential for effective indirect 
selection response on these traits from SPS genetic se-
lection. Therefore, further studies with larger data sets 
to validate these findings are warranted.
Key words: Holstein cow, variance component 
estimation, genetic correlation, reproductive tract score

INTRODUCTION

Suboptimal reproductive performance is a major con-
tributor to economic losses in the dairy industry world-
wide. The main concern is decreased female fertility 
leading to longer lactation and an increased number of 
involuntary cullings (Giordano et al., 2011). In Canada, 
reproductive problems have been the main cause of re-
moval from the herd in dairy cattle, representing more 
than 30% of involuntary cullings (Van Doormaal, 2009; 
OMAFRA, 2021).

Selecting cows with superior genetic merit for fertil-
ity is a long-term solution to counteract reproductive 
decline. Despite the efforts made toward improving re-
production, the results are still below the level needed 
(Miglior et al., 2017; Fleming et al., 2019). The most 
cited problem is the low heritability of current fertility 
traits (Fleming et al., 2019), often used as justification 
for the low weight assigned to them in breeding goals 
(Berry et al., 2016; Miglior et al., 2017). However, the 
main underlying concern is the negative genetic cor-
relation between production and fertility leading to an 
economic impasse (Pryce et al., 2014; Miglior et al., 
2017). Since the 1960s, this antagonistic correlation has 
been controversial because of the lack of corresponding 
evidence of a biological link between milk production 
and fertility (Miglior et al., 2017). The notion was that 
coupling intense selection for increased milk production 
with improvements in herd management would suffice 
to counterbalance the genetic deterioration of functional 
traits, whereas others have argued that overly intensive 
selection on yield was an important factor in reproduc-
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tive decline (Pryce et al., 2014; Butler and Moore, 2018). 
Since the negative effect of intensive selection for pro-
duction traits on reproductive physiology became more 
commonly accepted, fertility traits have been included 
in national selection indices (Miglior et al., 2017). How-
ever, the underlying physiological factors affecting the 
reproductive system and their genetic background are 
still largely unknown, leading to difficulty in collecting 
accurate and high-quality phenotypes and preventing 
rapid progress with genetic selection (Fleming et al., 
2019). Despite this, high-producing cows do not always 
exhibit poor fertility, and high milk production is not 
necessarily a feature of low fertility (Britt, 1992; Bello 
et al., 2013; LeBlanc, 2013).

Historically, fertility traits were chosen based on their 
simplicity and ease of measurement on a large scale 
(Berry et al., 2016; Fleming et al., 2019). Fertility is a 
complex phenotype and currently recorded traits are 
strongly affected by the environment and management 
practices. This explains why most evaluated fertility 
traits have low heritability but large genetic variation, 
which indicates good potential for selection (Miglior et 
al., 2017).

Recently, a novel fertility trait has been described, 
based on the morphology of the reproductive tract 
that directly relates to the fertility status of the animal 
(Young et al., 2017; Madureira et al., 2020). This trait 
consists of categorizing the female reproductive tract 
by transrectal palpation. As shown in Figure 1, animals 
are classified into 3 groups depending on the size and 
position score (SPS) of their reproductive tract, where 
SPS 1 describes cows with a small and compact uterus 
and uterine horns resting entirely on the pelvis; SPS 2 
cows have a uterus of medium size with longer uterine 
horns resting partially outside of the pelvic cavity; and 
SPS 3 cows have a large reproductive tract mostly out-
side of the pelvic cavity.

These scores have been associated with common 
indicators of fertility, such as pregnancy rate and the 
number of services to pregnancy, in physiological stud-
ies in dairy cattle (Young et al., 2017; Madureira et 
al., 2020). Lower SPS scores are favorably associated 
with higher pregnancy rate, lower number of services 
per pregnancy, and lower pregnancy loss. Cows show 
substantial variation in the SPS score at breeding time, 
which is also observed across different parities (Young 
et al., 2017). Thus, SPS may provide a new fertility 
trait that has the advantage of being morphological, 
which is commonly accepted as being affected by fewer 
environmental factors and, therefore, having poten-
tially higher heritability than current fertility traits. 
Our objectives were to estimate the genetic parameters 
of SPS using both threshold and linear models, and 
to estimate the genetic correlations between SPS and 
other economically important traits.

MATERIALS AND METHODS

Data

Phenotypes for SPS were collected at the University 
of British Columbia research herd (Agassiz, Canada), 
as part of a physiological study (Madureira et al., 2020). 
A total of 3,247 records within and across lactations on 
490 lactating Holstein cows scored from 2017 to 2020 
were included in this study. Cows were scored by tran-
srectal palpation from calving to conception. Details on 
cow management and SPS measurement are provided 
in Madureira et al. (2020). The corresponding pedigree 
file was provided by Lactanet (Guelph, ON, Canada) 
and consisted of 23,275 animals with an average depth 
of 4.6 generations. The Lifetime Profit Index (LPI) 
and Pro$ index values for the cows with SPS records 
were also provided by Lactanet. All phenotypic and 
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Figure 1. Assessment of the reproductive tract size and position score (SPS). Reproductive tracts positioned entirely within the pelvic cavity 
were designated SPS 1. Reproductive tracts in which the cervix was within the pelvic cavity, but uterine horns were outside the pelvic cavity, 
were designated SPS 2. Reproductive tracts in which the cervix and uterine horns lay outside the pelvic cavity were designated SPS 3 (from 
Young et al., 2017). C = cervix; P = pelvis; RT = reproductive tract; PB = pelvic brim; SPS = size and position score.
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pedigree data used in this study were obtained from 
pre-existing databases. Therefore, no animal care com-
mittee approval was necessary for the purposes of this 
study.

Data editing and formatting were done with R soft-
ware (R Core Team, 2018) using the “nadiv” package 
for pedigree handling (Wolak, 2012) and the “dplyr” 
package for data formatting (Wickham et al., 2021). 
The 120-d periods for the stages of lactation were 
adapted for our data set by adding a uterine involution 
period, when the size of the reproductive tract is natu-
rally unstable. Based on the available measurements, 
the uterine involution, early lactation, mid-lactation, 
and late lactation periods were defined as 1 to 21, 22 
to 120, 121 to 240, and >240 DIM, respectively. The 
seasons were based on the recording date by defining 
October to March as the cold season and April to Sep-
tember as the warm season.

The distribution of the trait records by parity and 
stage of lactation is presented in Table 1. Of 490 cows, 
213 cows (43%) had multiple records within one lacta-
tion, 5 cows (1%) had multiple single records across 

lactations, 243 cows (50%) had multiple records both 
within and across lactations, and 29 cows (6%) had a 
single record. On average, cows had 4 records, with a 
maximum of 24 records.

Genetic correlations between SPS and 13 currently 
evaluated traits, chosen based on their economic im-
portance and biological relevance, were estimated. The 
chosen traits were categorized as follows: (1) production 
traits: milk, fat, and protein yields; (2) conformation 
traits: BCS, thurl placement, and rump angle; (3) fer-
tility traits: age at first service, nonreturn rate at 56 d, 
first service to conception, calving to first service, days 
open, number of services; and (4) calving traits: calving 
ease. All trait phenotypes were provided by Lactanet 
and did not contain any missing records.

For conformation traits and age at first service, only 
one record per cow was available. For the other traits, 
only records from the corresponding lactation when 
SPS was recorded were used.

Models

Single-Trait Linear Model. The following uni-
variate linear repeatability animal model was used to 
estimate variance components of SPS:

	 y Xb Z a Z pe Z pe ea pe w pe aw a
= + + + + ,	

where y is a vector of SPS phenotypes (3 scores); b is 
a vector of fixed effects including year-season (7 levels), 
stage of lactation (4 levels), and linear and quadratic 
regression on lactation number (1, 2, 3, 4, and 5+); a is 
a vector of random animal additive genetic effects; pew 
is a vector of random within-lactation permanent envi-
ronmental effects; pea is a vector of across-lactation 
permanent environmental effects; and e is a vector of 
random residual effects; X, Za, Zpew , and Zpea  are cor-
responding incidence matrices. The random effects 
were assumed normally distributed as follows:
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where A is the numerator relationship matrix, σa
2 is the 

additive genetic variance, I is an identity matrix, σpew
2  

is the within-lactation permanent environmental vari-
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Table 1. Number of records of the reproductive tract size and position 
score (SPS)1 by parity and stage of lactation from 490 Holstein cows 
over 3 yr in 1 herd

Parity  
Stage of 
lactation2

Number of records

SPS 1 SPS 2 SPS 3 Total

1 1 10 33 22 65
2 227 353 56 636
3 35 116 10 161
4 2 13 3 18

2 1 1 25 26 52
2 109 366 51 526
3 33 163 44 240
4 2 21 14 37

3 1 0 15 13 28
2 48 224 71 343
3 16 106 33 155
4 2 8 8 18

4 1 0 5 12 17
2 18 149 70 237
3 4 102 52 158
4 0 15 10 25

5+ 1 1 15 19 35
2 16 208 72 296
3 7 103 65 175
4 3 15 7 25

  Total 534 2,055 658 3,247
1SPS 1 was attributed to cows with small reproductive tract posi-
tioned entirely within the pelvic cavity; SPS 2 designated cows with 
a reproductive tract in which the cervix was within the pelvic cavity, 
but uterine horns were outside the pelvic cavity; SPS 3 was attributed 
to cows with large reproductive tract lying outside the pelvic cavity.
2Stage of lactation (1–4) was defined as 1 to 21, 22 to 120, 121 to 240, 
and >240 DIM, corresponding to uterine involution, early lactation, 
mid-lactation, and late lactation, respectively.
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ance, σpea
2  is the across-lactations permanent environ-

mental variance, and σe
2 is the residual variance.

The final model was defined by back-selection of all 
fixed effects, keeping only the significant ones (P < 
0.05). Calving score and the incidence of uterine dis-
ease were not included in the model due to the lack of 
this information for most cows with an SPS score, but 
they might contribute to the variation of SPS score and 
should be considered in future studies.

Single-Trait Threshold Model. Due to the novelty 
of the trait, threshold and linear models were both fit-
ted for comparison. Theoretically, the threshold model 
is advantageous because it respects the categorical na-
ture of the trait by fitting an appropriate non-Gaussian 
distribution. However, the linear model is usually pre-
ferred because it is both less complex and less computa-
tionally demanding (Meijering and Gianola, 1985). The 
literature also indicates that the model fit and animal 
ranking do not significantly differ when a linear model 
is used to analyze categorical data (e.g., Jamrozik et 
al., 2005; Negussie et al., 2008; Neuenschwander et al., 
2012).

The observed phenotype is assigned to categories (1, 
2, or 3) based on a latent trait called liability (l), which 
is assumed to be normally distributed (de Villemereuil, 
2018). The following repeatability univariate threshold 
model was used:

	 l Xb Z a Z pe Z pe ea pe w pe aw a
= + + + + ,	

where l is a vector of underlying liabilities correspond-
ing to the categorical observations in y (1, 2, or 3), and 
the other terms are as previously defined.

Genetic Parameters

The (co)variance components were estimated using 
Gibbs sampling implemented in THRGIBBS1F90 soft-
ware (Misztal et al., 2002). The analysis consisted of a 
single chain of 3,050,000 cycles, with the first 50,000 
being discarded as a burn-in period. A long thinning 
interval of 3,000 cycles was used to guarantee minimi-
zation of the autocorrelation between consecutive sam-
ples. Convergence was assessed by visual inspection of 
the trace plots of each estimated variance component.

The Spearman’s rank correlation between the EBV 
from linear and threshold models was used to determine 
whether the models would rank the animals similarly. 
For the threshold model, estimates from the underlying 
scale were used for ranking purposes.

The heritability (h2) for SPS was calculated from the 
single-trait model as follows:
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The expected heritability estimates hn
2( ) for the average 

values when considering a different number of records 
per animal (from 2 to 10) were calculated as follows:

	 h
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2
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1 1
=

×
+ −( )×

,	

where n is the number of records per animal, and h2 and 
r are the heritability and repeatability (either across or 
within lactation) estimated from the single-trait model.

Genetic Correlations

Bivariate animal models were used to estimate the 
genetic correlations between traits. The same previ-
ously defined linear model was used for SPS. For the 
other 13 chosen traits, the models were based on work 
by Oliveira Junior et al. (2021). The only modifications 
made were the removal of the herd effect and the addi-
tion of random across-lactation permanent environmen-
tal effects to fit the across-lactation repeated records 
of the production and reproduction traits. The model 
used for each trait is presented in Table 2.

A general description of the linear models used in the 
2-trait analyses is as follows:

	 y Xb Z a Z pe Z pe ea pe w pe aw a
= + + + + ,	

where y is a vector of observations; b is a vector of 
fixed effects; a is a vector of random animal additive 
genetic effects; pew is a vector of random within-lacta-
tion permanent environmental effects; pea is a vector of 
across-lactation permanent environmental effects; e is a 
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vector of random residual effects; and X, Za, Zpew , and 
Zpea  are corresponding incidence matrices.

For traits without any repeated records (conforma-
tion traits and age at first service), permanent envi-
ronmental effects were not included in the model. For 
traits with only repeated records across lactation (pro-
duction and other fertility traits), the within-lactation 
permanent environmental effect was not included in the 
model.

The variance-covariance matrices were as follows:
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where G is the covariance matrix between traits for 
random additive genetic effects, Pw is the within-
lactation permanent environmental covariance matrix, 
Pa is the across-lactation permanent environmental 
covariance matrix, R is the residual covariance matrix 
between traits, A is the additive relationship matrix, I 
is an identity matrix, and MVN indicates multivariate 
normal distribution.

The additive genetic correlations (rg) were calculated 
as follows:

	 r
t t

g
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a
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=
( )
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cov ,
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1 2
σ σ

	

where cova is the additive genetic covariance between 
trait 1 and trait 2 (t1, t2), and σa1

2  and σa2
2  are the addi-

tive genetic variances for trait 1 and trait 2, respec-
tively.

The phenotypic correlations (rp) were calculated as 
follows:
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where rg, rpea , and re are additive genetic, across-lacta-
tion permanent environmental, and residual correla-
tions between traits, respectively. For trait i, 
hi a pi i

2 2 2= σ σ , pea pe pi ai i

2 2 2= ,σ σ  and ei e pi i

2 2 2= σ σ , where 

σai
2  is the additive genetic variance, σpeai

2  is the across-

lactation permanent environmental variance, σei
2  is the 

residual variance, and σpi
2  is the phenotypic variance, 

estimated as σ σ σ σa pe pe ei wi a i i

2 2 2 2+ + + . Either or both 

σpewi
2  and σpea i

2  were excluded in the calculation of σpi
2  for 

traits without repeated records within or across lacta-
tion, respectively. As only SPS had repeated records 
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Table 2. Single-trait animal models1 for currently selected traits used in the bivariate analyses for the estimation of the correlations between 
these traits and the reproductive tract size and position score

Trait2   Fixed effect3   Random effect4

Conformation Round classifier Age calving-stage lactation-
round

  BCS X X
  Thurl placement X X
  Rump angle X X
Production Year-season calving Age calving Pea
  Milk yield X X X
  Protein yield X X X
  Fat yield X X X
Fertility Year born-month born Age prev calving-month 

first service
Age prev calving-month 

prev calving
Pea

  Age at first service X
  Nonreturn rate at 56 d X X X
  First service to conception X X X
  Calving to first service X X X
  Days open X X
  Number of services X X X
Calving Year born-month born Age curr calving-month 

curr calving-calf sex
Calf sire Pea

  Calving ease X X X X
1Models adapted from Oliveira Junior et al. (2021).
2All traits are cow-related, except age at first service, which is a heifer trait.
3Prev = previous; curr = current.
4Pea = across-lactation permanent environmental effect.
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within lactation, the within-lactation permanent envi-
ronmental correlation rpew( ) did not contribute to any 
rp.

For all parameters, the posterior mean, posterior 
standard deviation (PSD), and 95% highest poste-
rior density were calculated within the R software (R 
Core Team, 2018) based on the output of the THRG-
IBBS1F90 software (Misztal et al., 2002). All param-
eters were calculated within each of the 1,000 samples 
and then averaged to obtain the final estimates.

Pearson correlations between EBV for SPS and both 
LPI and Pro$ were used to evaluate the association of 
the novel trait with the current selection indices.

RESULTS AND DISCUSSION

Heritability and Repeatability Estimates

The difference between linear and threshold models 
is expected to increase for a combination of factors: 
(1) heritability is low, (2) there is a small number of 
phenotypic categories, and (3) there is a small number 
of records (Meijering and Gianola, 1985; Mrode, 2014). 
The Spearman rank correlation between the EBV from 
the 2 models was close to 1 (0.99). Based on this very 
similar ranking, the linear model was used for further 
analyses. The estimated variances, heritability, and 
repeatabilities from the linear model are presented in 
Table 3, and the same estimates from the threshold 
model are given in Supplemental Table S1 (https:​/​/​
zenodo​.org/​record/​6925896​#​.YuKfsXbMJhE; Martin 
et al., 2022). Only estimates from the linear model will 
be presented and discussed hereafter. The estimated 

heritability, within-lactation repeatability, and across-
lactation repeatability were 0.113, 0.242, and 0.134, 
respectively. The estimated heritability for SPS was, 
therefore, considerably higher than that of any fertility 
traits currently evaluated in dairy cattle in Canada (see 
Oliveira Junior et al., 2021).

These results are preliminary, as they are based on 
a small sample of cows from one research herd. The 
current data set was created to study the association of 
SPS with cow fertility over time and, to this end, there 
was no specific time window for SPS recording. The 
phenotypes were recorded from calving until the confir-
mation of conception, which could happen late in lacta-
tion for some cows. This large time window of collec-
tion, combined with the sparse repeated records, might 
explain the low estimated repeatability of SPS (Table 
3). A more precisely defined phenotyping protocol is 
needed to improve SPS repeatability. In further studies, 
phenotypes should be assessed after uterine involution, 
which generally ends around 30 d after calving, and be-
fore the establishment of the next pregnancy. By doing 
so, the natural—but here undesirable—variation due to 
uterine involution could be removed.

Another point for improvement could be the defini-
tion of the trait itself. The size of the reproductive tract 
is a continuous trait that has been assigned to 3 ordinal 
categories (scores). The small number of categories 
may affect the repeatability of the score. A cow with a 
score close to the threshold between 2 categories could 
oscillate between 2 scores without a meaningful differ-
ence in the actual size and position of the reproductive 
tract. With only 3 categories, these small changes may 
represent a large variation between 2 records within 
the genetic analysis. Therefore, the repeatability of 
both across- and within-lactation records observed in 
this study may have been reduced by the long period 
of collection and the small number of categories for 
scoring SPS. Adding more categories to SPS could be 
beneficial to its genetic estimation. However, it would 
slightly increase the difficulty and possibly the preci-
sion of recording of this trait.

The repeatability of the trait indicates the upper 
limit of the heritability and the number of records per 
animal necessary to reach it (Falconer and Mackay, 
1996). The expected increase in the heritability of the 
average from different numbers of repeated records 
across and within lactation for SPS is shown in Figure 
2. Measuring an animal twice, either within or across 
lactations, would potentially double the heritability of 
the average SPS. With 5 records per animal, most of 
the potential increase would be captured but that may 
be unrealistic in practice.

A strategy for large-scale SPS phenotyping would be 
to measure SPS at the time of insemination. Insemina-
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Table 3. Posterior mean, posterior standard deviation (PSD), and 
highest posterior density (HPD) interval of the genetic parameters 
resulting from the linear animal model for the reproductive size and 
position score, estimated on records from 490 Holstein cows over 3 yr 
in 1 herd

Parameter1 Mean PSD Low HPD High HPD

σp
2 0.323 0.004 0.316 0.330

σa
2 0.037 0.004 0.029 0.043

σe
2 0.245 0.004 0.238 0.251

σpew
2 0.035 0.004 0.000 0.028

σpea
2 0.007 0.002 0.000 0.003

h2 0.113 0.013 0.093 0.135

rw 0.242 0.012 0.223 0.262

ra 0.134 0.014 0.109 0.156
1Where σp

2 = phenotypic variance; σa
2 = additive genetic variance; σe

2 = 
residual variance; σpew

2  = within-lactation permanent environmental 
variance; σpea

2  = across-lactation permanent environmental variance; h2 
= heritability; rw = within-lactation repeatability; ra = across-lacta-
tion repeatability.
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tion technicians could be trained to record SPS during 
their daily work. This would give access to reliable and 
large data sets without the need for large investments. 
However, this strategy may be biased if repeated re-
cords are used. The SPS phenotype would be repeated 
within lactation for animals requiring multiple breed-
ings to reach conception, leading to a biased sample. 
Multiple SPS records per cow would be advantageous, 
but the definition of the time window for collection 
needs to be investigated further.

Genetic and Phenotypic Correlations

Knowledge of the genetic correlation between SPS 
and other economically important traits is important 
to assess the potential effect of selecting for SPS. These 

correlations are presented in Table 4. All estimates had 
a relatively high PSD due to the small size of the data 
set, but the point estimates were promising, as they were 
favorable in magnitude and direction. For instance, the 
correlations of SPS with milk, fat, and protein yields 
were close to zero and statistically not different from 
zero, meaning SPS could be selected without affecting 
production traits. This is direct contrast with currently 
evaluated fertility traits, which largely present unfavor-
able correlations with production (Oliveira Junior et 
al., 2021).

The high genetic correlation between SPS and BCS 
(0. 632) is noteworthy. Even though BCS is known as 
an indicator of fertility, the underlying mechanism is 
not clearly defined (Berry et al., 2016; Miglior et al., 
2017; Lucy, 2019). Interestingly, Madureira et al. (2020) 
reported no association between SPS and BCS at the 
phenotypic level. We reached the same conclusion, with 
a nonsignificant phenotypic correlation between the 2 
traits (see Table 5). Moreover, Baez et al. (2016) found 
that cows with a smaller uterine volume, a trait similar 
to SPS, had a greater pregnancy per insemination than 
those with a larger uterine volume, regardless of BCS. 
When Baez et al. (2016) compared the uterine volume 
within each category of the BCS scale, the relationship 
appeared to be stronger in thinner cows. This reflects 
the complex relationship between SPS and BCS, which 
may not be properly captured by a linear correlation, 
as BCS is an intermediate optimum trait; a quadratic 
correlation may be more relevant to study this relation-
ship. A possible explanation for the positive genetic 
correlation between SPS and BCS could be the num-
ber and size of the adipocytes around and within the 
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Figure 2. Change in expected heritability of reproductive tract 
size and position score with an increased number of repeated measure-
ments per cow across and within lactation.

Table 4. Posterior mean, posterior standard deviation (PSD), and highest posterior density (HPD) interval of 
the genetic correlations resulting from the bivariate animal model between reproductive tract size and position 
score (SPS) and currently selected traits, estimated on records from 490 Holstein cows over 3 yr in 1 herd

Trait

Genetic correlation

Posterior mean (± PSD) Low HPD High HPD

Conformation
  BCS 0.632 (± 0.084) 0.494 0.772
  Thurl placement −0.263 (± 0.118) −0.450 −0.072
  Rump angle −0.739 (± 0.072) −0.866 −0.636
Production      
  Milk yield 0.047 (± 0.074) −0.079 0.167
  Protein yield −0.026 (± 0.088) −0.171 0.115
  Fat yield 0.042 (± 0.091) −0.106 0.187
Fertility      
  Age at first service 0.444 (± 0.164) 0.158 0.693
  Nonreturn rate at 56 d −0.730 (± 0.093) −0.876 −0.582
  First service to conception 0.694 (± 0.115) 0.528 0.897
  Calving to first service −0.371 (± 0.206) −0.724 −0.066
  Days open 0.435 (± 0.246) 0.035 0.805
  Number of services 0.931 (± 0.029) 0.889 0.976
Calving      
  Calving ease 0.061 (± 0.233) −0.315 0.437
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reproductive tract (Crociati et al., 2018). The SPS 
phenotype is measured by transrectal palpation, which 
can be affected by fat accumulation around the tract. 
Accordingly, higher BCS cows could have a higher SPS 
measurement.

This association should be further investigated to 
assess the real relationship between BCS and SPS and 
evaluate the need to adjust for BCS when genetically 
evaluating cows for SPS. In our preliminary analyses, 
BCS was significant as an explanatory variable in the 
model, but it explained less than 1% of the variation 
in SPS. Moreover, the variance component estimates 
from models with and without BCS as a covariate were 
similar. As BCS is already a trait included in the LPI 
(albeit with a small contribution) and given the high 
genetic correlation between SPS and BCS (0.632), BCS 
was excluded from the univariate animal model for the 
final analyses.

For other conformation traits, the estimated genetic 
correlations were −0.263 (thurl placement) and −0.739 
(rump angle). Selection for SPS should aim for lower 
scores to improve fertility, whereas thurl placement and 
rump angle optimum values are intermediate, making 
this negative linear association difficult to interpret.

For traits related to reproduction, the significant ge-
netic correlations were desirable; that is, low SPS scores 
were related to better fertility, with the exception of 
calving to first service (−0.371). Age at first service, 
days open, first service to conception, nonreturn rate 
at 56 d, and number of services all showed moderate to 
strong estimated genetic correlations (−0.730 to 0.931), 
whereas calving ease had an estimated genetic correla-

tion with SPS close to 0 (0.061), which was not statisti-
cally significant. However, it is important to note that 
only number of services had a relatively small PSD. The 
highest genetic correlation was estimated between SPS 
and number of services (0.931), which was expected 
because SPS was initially proposed as an indicator trait 
for number of services.

Supplemental Table S2 (https:​/​/​zenodo​.org/​record/​
6925896​#​.YuKfsXbMJhE; Martin et al., 2022) pres-
ents the heritability estimates from the bivariate analy-
ses for all other reproductive traits, which used only 
animals with SPS records available. The heritability 
estimates for the reproductive traits that are strongly 
genetically correlated with SPS were higher than those 
from Oliveira Junior et al. (2021). This indicates that 
these traits benefited from the additional information 
provided by SPS through their strong genetic correla-
tion with SPS, and ended up with a significantly higher 
heritability estimates compared with those from Olivei-
ra Junior et al. (2021), who used large data sets for 
their analyses. For comparison, heritability estimates 
(± PSD) from the univariate analyses for first service 
to conception, nonreturn rate at 56 d, and number of 
services were 0.090 (±0.080), 0.041 (±0.035), and 0.081 
(±0.061), respectively, using only cows with an SPS 
record, which were within the range of the estimates 
from Oliveira Junior et al. (2021).

The efficiency of indirectly selecting for other re-
production traits based on selecting for SPS could be 
assessed using the estimated genetic correlations and 
heritability of the traits. Assuming the same selection 
intensity and using heritability estimates from the uni-
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Table 5. Posterior mean, posterior standard deviation (PSD), and highest posterior density (HPD) interval 
of the phenotypic correlations resulting from the bivariate animal model between reproductive tract size and 
position score (SPS) and currently selected traits, estimated on records from 490 Holstein cows over 3 yr in 1 
herd

Trait

Phenotypic correlation

Posterior mean (± PSD) Low HPD High HPD

Conformation
  BCS 0.180 (± 0.023) 0.001 0.145
  Thurl placement −0.101 (± 0.025) −0.088 −0.220
  Rump angle −0.119 (± 0.024) −0.155 −0.079
Production      
  Milk yield −0.006 (± 0.018) −0.034 0.024
  Protein yield −0.018 (± 0.018) −0.046 −0.013
  Fat yield −0.000 (± 0.018) −0.030 0.028
Fertility      
  Age at first service 0.045 (± 0.024) 0.006 0.085
  Nonreturn rate at 56 d −0.049 (± 0.019) −0.078 −0.017
  First service to conception 0.058 (± 0.030) 0.012 0.107
  Calving to first service 0.009 (± 0.021) −0.027 0.041
  Days open 0.005 (± 0.019) −0.030 0.033
  Number of services 0.120 (± 0.019) 0.090 0.153
Calving      
  Calving ease 0.014 (± 0.021) −0.019 0.046

https://zenodo.org/record/6925896#.YuKfsXbMJhE
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variate analyses for nonreturn rate at 56 d and number 
of services, selection based on a single measurement 
of SPS would lead to an indirect selection response on 
nonreturn rate at 56 d and number of services that 
would be 1.21 and 1.10 times greater, respectively, than 
the direct selection response on these traits. More in-
terestingly, there would not be an antagonistic indirect 
selection response on production traits. In addition, 
the Pearson correlations between SPS EBV and the 
Canadian index values LPI and Pro$ were −0.232 and 
−0.226, respectively, which are favorable in both cases. 
Therefore, SPS showed encouraging results for selection 
for fertility, with favorable indirect selection response 
on fertility traits and no indirect selection response on 
production traits.

CONCLUSIONS

The SPS is a new fertility trait, based on transrectal 
palpation of the reproductive tract, that has been de-
veloped as an indicator of pregnancy rate, number of 
services per pregnancy, and pregnancy loss. This novel 
trait had no genetic correlation with production traits 
and had favorable genetic correlations with fertility 
traits, varying from −0.730 (nonreturn rate at 56 d) to 
0.931 (number of services). Although preliminary, these 
results are encouraging, because SPS seems to be more 
heritable and highly genetically correlated with number 
of services to conception and strongly correlated with 
nonreturn rate at 56 d and first service to conception, 
indicating potential for effective indirect selection re-
sponse on these traits. Further studies with larger data 
sets are warranted to validate these findings.
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