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Abstract 

Survival in biological environments requires learning associations between predictive sensory cues and 

threatening outcomes. Such aversive learning may be implemented through reinforcement learning 

algorithms that are driven by the signed difference between expected and encountered outcomes, termed 

prediction errors (PEs). While PE-based learning is well established for reward learning, the role of putative 

PE signals in aversive learning is less clear. Here, we used functional magnetic resonance imaging in humans 

(21 healthy men and women) to investigate the neural representation of PEs during maintenance of learned 

aversive associations. Four visual cues, each with a different probability (0, 33, 66, 100%) of being followed 

by an aversive outcome (electric shock), were repeatedly presented to participants. We found that neural 

activity at omission (US-) but not occurrence of the aversive outcome (US+) encoded PEs in the medial 

prefrontal cortex. More expected omission of aversive outcome was associated with lower neural activity. 

No neural signals fulfilled axiomatic criteria, which specify necessary and sufficient components of PE signals, 

for signed PE representation in a whole-brain search or in a-priori regions of interest. Our results might 
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suggest that, different from reward learning, aversive learning does not involve signed PE signals that are 

represented within the same brain region for all conditions. 

 

Key words: aversive prediction errors, threat learning, axiomatic conditions, reinforcement learning, fMRI 
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Introduction 

Learning from aversive experiences benefits long-term survival by improving an organism’s capacity to avoid 

threatening situations (Seymour, 2019). Reinforcement learning theory prescribes how violations of prior 

expectations, termed prediction errors (PE), might drive associative cue-outcome learning (Rescorla and 

Wagner, 1972). While PE signals in dopaminergic midbrain circuits are required for appetitive learning 

(Chang et al., 2017; Schultz and Dickinson, 2000; Steinberg et al., 2013), the same is not established for 

aversive learning. During Pavlovian threat conditioning, also termed fear conditioning, neurons in 

periaqueductal gray (PAG) and lateral amygdala (LA) reduce firing to a repeated unconditioned stimulus (US), 

possibly due to progressive inhibition from central amygdala (Groessl et al., 2018; Johansen et al., 2010; 

Ozawa et al., 2017). This neural firing could reflect positive PE signals for “more aversive than expected” 

outcomes, which correspond here to US occurence. However, it is less clear which neural populations signal 

positive aversive PEs once US probabilities are learned, as established for appetitive PE signals (Lak et al., 

2016), which pathways convey putative PE signals from PAG to LA, and where and how negative aversive PE 

signals (i.e., responses to US omission) are expressed (Herry and Johansen, 2014). These gaps limit our 

computational understanding of the neural circuits that underlie aversive conditioning.  

In a search for formal learning mechanisms, computational neuroimaging studies have often 

committed to specific learning models and assumed a linear mapping of positive and negative PEs to neural 

signals. They have then regressed model-derived PEs onto blood-oxygen-dependent level (BOLD) signal and 

found correlations in striatum, a target region of reward PE-expressing midbrain neurons (Boll et al., 2013; Li 

et al., 2011; Seymour et al., 2004; Zhang et al., 2016), but also in the insula, periaqueductal grey, substantia 

nigra/ventral tegmental area, ventromedial prefrontal cortex, dorsolateral prefrontal cortex, orbitofrontal 

cortex, anterior cingulate cortex, middle cingulate cortex, thalamus, and amygdala (Dunsmoor et al., 2008; 

Pauli et al., 2015; Roy et al., 2014; Seymour et al., 2005, 2004; Spoormaker et al., 2011; Zhang et al., 2016). 

Although a powerful tool if the learning model is correct and explains all data, this approach has two 

limitations: first, its sensitivity might be reduced if the a priori chosen learning model does not closely 

correspond to the true learning model. Second, significant correlation between PE and neural signal can be 

driven by a strong relation only in some experimental conditions and no relation in others, such that the 

neural signal may not comply with computational requirements of reinforcement learning theory.  

In contrast to the positive prediction error signals at US occurrence possibly serving to drive aversive 

learning, it has been suggested that negative prediction error signals at US omission might engage inhibitory 

extinction learning (Li and McNally, 2014). Extinction learning is driven by omission of a reinforcer, which is, 

at least categorically, encoded in the activity of dopaminergic midbrain neurons (Luo et al., 2018; Salinas-

Hernández et al., 2018), and in humans in dopamine-dependent activity patterns in ventromedial prefrontal 

cortex (Esser et al., 2021; Gerlicher et al., 2018). Since dopaminergic midbrain neurons are known to encode 

reward prediction errors, and the omission of punishment could be seen as a reward, there is a possibility 
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that these omission responses are parametrically expressed and formally correspond to negative prediction 

error signals.  

In order to distinguish different forms of parametric US occurrence and US omission responses, 

previous work has identified three general criteria, or ‘axioms’, that must be fulfilled for a PE signal in any 

computational learning algorithm (Caplin and Dean, 2008): 1) Occurrence of an outcome results in higher 

signal than omission of an outcome (or: higher intensity outcomes result in higher signal than lower intensity 

outcomes), 2) Unexpected outcomes result in higher signal than expected outcomes, 3) Fully expected 

outcomes result in no/equal signal regardless of outcome type. Signals that adhere to these axioms have 

been observed in appetitive Pavlovian conditioning (Hart et al., 2014; Rutledge et al., 2010) as well as in 

aversive instrumental conditioning, and in learning to predict pain intensities (Roy et al., 2014). It remains 

unknown whether these criteria are also fulfilled within any brain region in Pavlovian threat conditioning. 

Here, we investigated neural PE signals to US outcomes that had previously been associated with 

predictive CS in an Pavlovian threat conditioning procedure. We used two distinct outcomes (US+: US 

occurrence; US−: US omission) and 4 conditioned stimuli (CS) with distinct rates of receiving the US+ (0%, 

33%, 66%, 100%). This design allowed us to analyse PE signals after US occurrence as well as omission, 

without commitment to any particular learning model.  

 

Materials and Methods 

Participants 

Twenty-one participants (6 women and 15 men; mean age ± SD: 25.5±4.2) were recruited from the general 

and student population for an fMRI experiment, and 19 participants (14 women, 5 men, mean age 24.7±3.7 

years) for a behavioral experiment with the same experimental design. One participant in the behavioral 

experiment was excluded due to pupil data quality (see details below). Participants reported that they had 

no history of neurological and psychiatric illnesses and gave written informed consent. The study protocol, 

including the form of written consent, was in accordance with the Declaration of Helsinki and approved by 

the governmental research ethics committee (Kantonale Ethikkommission Zürich, 2016-00097).  

 

Experimental design 

In both experiments, participants underwent delay threat conditioning with four visual CS, which were 

triangles of different color (Fig. 1A). Each CS was associated with a distinct US rate: 0%, 33%, 66%, or 100% 

(Fig. 1B). US was an aversive electric shock to the right forearm, ending concurrently with the CS. The 

assignment of CS color to US rate was randomly determined for each participant. US started 6 seconds after 

CS onset, lasted 0.5 seconds, and co-terminated with the CS. This CS-US interval was chosen such that the 

canonical BOLD response to CS, and to US, are approximately uncorrelated. The intertrial interval was 

randomly drawn from {5 s, 6 s, 6 s, 7 s}, i.e., 6 s was twice as likely as the other values. During CS 
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presentation, participants were instructed to indicate CS color with a button or key press (button box in the 

fMRI experiment, keyboard in the behavioral experiment), in order to maintain attention during the task. CS 

color and button or key association was randomized across participants. Before the experiment started, 

participants trained the CS color-key press mapping (for fMRI: inside the scanner) until 80% accuracy over at 

least two presentations of each CS was reached. Participants were explicitly informed that after training, all 

CS may be followed by US but received no information about CS-US contingencies. To exclude potential 

confounds for fMRI analysis, we ensured there was no evidence that reaction time or accuracy depended on 

CS condition (see Table 1). 

 

 

Figure 1. A, Experimental design. A classical delay threat conditioning paradigm was used with colored 

shapes as conditioned stimuli (CSs), presented for 6.5 s. The CSs predicted an aversive electric shock (US) 

with different rates (0%, 33%, 66%, 100%). If the US occurred (US+ trials), it started 6 s into CS presentation 

and lasted 0.5 s, co-terminating with the CS. The inter-trial interval was 5-7 s long. B, Experimental phases. In 

the acquisition phase, each CS (triangle) was presented 6 times in a row to facilitate learning. In the 

maintenance phase, each of these CSs was presented 44 times over four blocks in intermixed order. All 

reported analyses pertain to the maintenance phase, which could be analyzed without commitment to a 

particular learning model. C, The necessary and sufficient conditions for full signed PEs. Comparisons of 

conditions are theoretically possible in both directions (i.e., the positive and negative signs on the y-axis are 

arbitrary) but based on previous work we a priori expected higher neural activity for higher positive PE 

(positive values after US+, that is, US occurrence) and lower neural activity for lower negative PE (negative 

values after US−, that is, US omission). Grey dashed lines depict the tested contrasts, which were tested 

either all in direction of the arrows, or all into the opposite direction. Using the a priori expected direction of 

comparisons, axiom 1 states that shock outcomes are associated with higher activity than no shock 
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outcomes. Axiom 2 states that the more unexpected the outcome is, the higher the related BOLD activity 

regardless of outcome type (US+ or US−). Axiom 3 always states that activity is the same for fully expected 

outcomes regardless of outcome type.   

 

Table 1. Reaction time and accuracy statistics for the fMRI experiment.  

 CS(0%) CS(33%) CS(66%) CS(100%) 

Reaction time (Mean ± SD), ms 1046±212 1044±268 1086±269 1011±248 

Accuracy (Mean ± SD), % correct 99.2±2.7 99.2±2.1 98.9±2.4 99.2±2.8 

One-way repeated-measures ANOVA F df p  

Reaction time ~ CS type 0.081 3, 76 0.97  

Accuracy ~ CS type 0.142 3, 76 0.935  

Reaction time and accuracy data from trials with reaction times shorter than 200 ms (0.2% of all trials over 
all participants) were excluded. Trials with incorrect or missed responses were excluded from reaction time 
analyses. Repeated-measures ANOVA was conducted with the ‘aov’ function in R.  

 

Experimental phases. During the acquisition phase, participants were presented with 4 blocks of 6 

consecutive trials of the same CS, in order to facilitate learning of the CS-US contingencies (24 trials in total). 

CS were triangles with different colors (RGB: 255, 0, 255; 0, 255, 255; 255, 255, 0; 255 255 255). CS-US 

pairings were balanced over these 6 trials per CS such that there were exactly 0, 2, 4, or 6 reinforced trials, 

respectively, for the four CS. Order of the blocks, and of the trials within blocks, was randomly determined 

for each participant. In the following maintenance phase, participants were presented with 176 trials (44 

trials per CS) of the same CSs, now in pseudo-random intermixed order, reinforced randomly at constant 

rate per CS and divided into four blocks. The motivation for the blocked order in the acquisition phase was to 

facilitate learning, and the intermixed order for the maintenance phase was chosen for optimal elicitation of 

prediction errors after at least some learning had already taken place. The experiment was presented using 

Cogent 2000 (version 1.32, vislab.ucl.ac.uk) on Matlab. The visual presentation was projected onto a 42 cm x 

33 cm size screen (1024 x 768 pixel resolution) at approximately 73 cm distance from the participants’ eyes.  

 

Delivery of the unconditioned stimuli. US was delivered with a constant current stimulator (Digitimer DS7A, 

Digitimer, Welvyn Garden City, UK) through a pin-cathode/ring-anode configuration on the right forearm. US 

intensity was individually calibrated for each participant (fMRI: outside the scanner) before the experiment. 

First, a clearly unpleasant intensity was determined with an ascending staircase procedure. After that, 

participants gave subjective ratings (0 = felt nothing to 100 = very unpleasant) for 14 random intensities 

below the initial threshold. The intensity corresponding to a rating of 85, acquired with linear interpolation, 

was chosen as the US intensity for the experiment (3.3±0.8 mA, range 1.5─5.5). 
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Data acquisition and statistical analyses 

Subjective rating of US expectation. Participants rated their US expectation after each CS, reflecting their 

explicit knowledge of the CS-US contingencies after the maintenance phase, using a computerized visual 

analogue scale anchored with "0%" and "100%". The initial position of the slider was set to the middle of the 

scale. The US expectancy ratings were analyzed with a one-way repeated-measures ANOVA with the ‘aov’ 

function in R (version 3.6.1) (RCoreTeam, 2019) with RStudio (version 1.2.1335) (RStudioTeam, 2018), 

including CS type as a factor with four levels. Partial eta squared were computed with the ‘etasq’ function of 

R package heplots (version 1.3-5.) (Fox et al., 2018). Moreover, we computed pairwise one-sided paired t-

tests for CS(100%) > CS(66%), CS(66%) > CS(33%), and CS(33%) > CS(0%) with Holm-Bonferroni multiple 

comparisons correction over the three comparisons. We did not exclude participants that did not show 

monotonic learning of the subjective ratings from further analyses, in line with standard practice in the study 

of human threat conditioning, as explicit knowledge of CS-US contingencies does not necessarily reflect the 

same learning mechanism as autonomic learning (Ojala and Bach, 2020). 

 

Pupil size recording and analysis. Due to technical limitations of the particular scanner environment used to 

collect the fMRI data, no psychophysiological learning indices were available for the fMRI experiment. To 

ensure learning in this paradigm, we conducted a separate experiment beforehand (N = 19, 164 trials with 

24 trials of acquisition and 140 trials of maintenance) with the same design, on an independent sample 

outside the MRI scanner. Gaze direction and pupil area were recorded with an EyeLink 1000 system (SR 

Research, Ottawa, ON, Canada) from both eyes of each participant at 500 Hz. For each participant, we used 

the eye with fewer missing data for analysis. The size of the visual presentation was 32 cm x 23 cm (1280 x 

1024 pixel resolution). The center of the screen was at approximately 70 cm distance from the participants’ 

eyes and the eye-tracking camera was at approximately the same distance. Calibration of gaze direction was 

done on a 3-by-3-point grid in the EyeLink software. EyeLink data files were converted and imported into the 

Psychophysiological Modelling (PsPM) toolbox (version 4.0.1, bachlab.github.io/PsPM/) in MATLAB2018a for 

further preprocessing and analysis. Blink and saccade periods were detected by the EyeLink online parsing 

algorithm and excluded from pupil data during import into PsPM. Data points for which gaze direction 

deviated more than 5° visual angle from the center of the screen were excluded (Korn et al., 2017; Korn and 

Bach, 2016). Raw pupil size data was filtered with a unidirectional first order Butterworth low pass filter with 

25 Hz cut off frequency and downsampled to 50 Hz. Missing data were linearly interpolated for further 

analysis. One participant was excluded from further pupil size analysis based on a criterion of having more 

than 75% trials with more than 75% missing data points during 11 seconds following CS onset due to invalid 

fixations, saccades or blinks.  

Pupil size has been suggested to relate to US prediction (Tzovara et al., 2018), but it is unclear how 

this relation evolves during CS presentation. A previous psychophysiological model for analysis of threat-
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conditioned pupil size responses had been optimized for discriminative (one CS+ vs. one CS−) threat 

conditioning (Korn et al., 2017). This is why we here took a data-driven approach to analyze the relation 

between pupil size and US probability, using a cluster-level random permutation test (Maris and Oostenveld, 

2007). This analysis was performed in R (version 3.5.2) (RCoreTeam, 2019) and RStudio (version 1.0.136) 

(RStudioTeam, 2018). First, we tested for a linear relation between CS type and pupil size by conducting a 

linear regression for every time point (in 0.1 s bins) during CS presentation until US onset, 6 s after CS onset, 

averaged over trials in the maintenance phase. The resulting coefficient and p-values were compared against 

values derived from 1000 regressions with randomly shuffled trial labels in a permutation test, under the null 

hypothesis that trial labels are exchangeable. To account for multiple comparison across time, we applied 

cluster-level correction for family-wise error (Maris and Oostenveld, 2007; Sassenhagen and Draschkow, 

2019). This test controls the false positive rate for the statement that there is any effect somewhere within 

the correction window, and thus makes no a priori assumption about the location of an effect. Importantly, 

for this test, the temporal cluster extents are only descriptive and not controlled for the error rate. Next, we 

conducted post-hoc t-tests with permutation to investigate differences between the four CS conditions over 

the interval between CS and US onset.  

 

fMRI data acquisition and preprocessing. Data were acquired using a 3 T Prisma MRI scanner (Siemens, 

Erlangen, Germany) with a 64-channel head coil. T2
*-weighted multi-echo echo-planar images (EPI) were 

acquired using a custom-made 2D EPI sequence (Lutti et al., 2013). The in-plane resolution was 3 mm 

isotropic and the size of the acquisition matrix was 64 x 64 (FOV 192 mm). 40 axial slices were acquired in 

ascending order, with a nominal thickness of 2.5 mm and inter-slice gap of 0.5 mm (effective thickness 3 

mm). The volume TR was 3.2 s and the flip angle 90°. Parallel imaging was used with an acceleration factor of 

2 along the phase-encoding direction and images were reconstructed using GRAPPA (Griswold et al., 2002). 

In order to avoid signal dropouts in the EPI images and achieve maximal BOLD sensitivity in all brain areas, a 

multi-echo EPI acquisition was used (Poser et al., 2006) with the following echo times: TE = 17.4/35/53 ms . 

There were 6 fMRI runs in the experiment, with 24 trials in the first run, which are not analyzed here, and 44 

trials in each of runs 2─5, summing up to a total of 200 trials (176 in the analyzed runs). The last run was 

another 24 trials of another acquisition that are also not presented here. Phase and magnitude B0 field maps 

were acquired at the beginning of the experiment (TE 10 and 12.46 ms, TR 1020 ms, FOV 192 mm, 64 

transversal slices of 2 mm thickness). A high-resolution structural scan was obtained at the end of the scan 

session (MP-RAGE; TR 2000 ms, TE 2.39 ms, inversion time 920 ms, 1 x 1 x 1 mm voxel size, flip angle 9°, FOV 

256 mm, 176 sagittal slices). During fMRI, we collected respiratory and cardiac data to correct for 

physiological noise in the fMRI analysis, using the scanner's in-built breathing belt and a strapped 

photoplethysmograph on the left index finger. Data were recorded with a PPG100C MRI amplifier and a 

BIOPAC MP150 system.  
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We used SPM12b (Wellcome Trust Centre for Neuroimaging, London) and MATLAB2016a 

(Mathworks, Sherborn, MA, USA) to preprocess and analyze fMRI data. Preprocessing of the structural 

imaging data included field inhomogeneity correction and segmentation. Preprocessing of the functional 

images started with the combination, for each volume, of the EPI images acquired at different echo times 

using a simple summation. Because the first echo has very good sensitivity for high-dropout regions and the 

two others give better sensitivity for other regions, this process leads to maximal BOLD sensitivity to all brain 

areas (Poser et al., 2006). This was followed by correction of image distortions using the SPM FieldMap 

toolbox (Hutton et al., 2002) and the B0 field map data, slice-time correction, motion correction 

(realignment), as well as co-registration with the T1-weighted structural images, spatial normalization to the 

Montreal Neurological Institute (MNI) template, and spatial smoothing with an 8 x 8 x 8 mm FWHM Gaussian 

filter. Serial autocorrelations were estimated using SPM 12's FAST model (Corbin et al., 2018). Cardiac and 

respiratory signals were used for physiological noise correction with the RETROICOR method (Glover et al., 

2000) as implemented in the PhysIO toolbox for SPM (Kasper et al., 2017). In total, 18 physiological noise 

regressors (cardiac: 3 orders, respiratory: 4 orders, interaction: 1 order) and 6 head motion regressors from 

the realignment were used as nuisance parameters in the analyses. The third run of one participant was 

excluded from the fMRI analyses due to head motion in the beginning of the run leading to a severe artefact 

affecting all volumes within the run.  

In all analyses, we performed standard random effects analyses at the group level. First-level 

contrast images from each participant were entered into one-sample t-tests against zero and statistical 

parametric maps were created with cluster-level family-wise error (FWE) correction at p < 0.05 with initial 

cluster-forming threshold p < 0.001 (Eklund et al., 2016). For illustration, functional results were overlaid on 

a normalized mean anatomical (grey and white matter only) image of our sample of participants. Anatomical 

location of clusters was defined based on the Neuromorphometrics labels in SPM12. Importantly, there is no 

anatomical specificity for activity within any of the clusters due to the cluster-level correction. The 

anatomical labels are included to give the reader an approximation of the location of the entire cluster.  

 

Mass univariate whole-brain analysis of PE signals. The first level GLMs for each participant modelled cue 

(CS) and outcome (US) time points as stick functions and included serially orthogonalized parametric 

modulators of these events as well as nuisance regressors. The CS-US interval of 6 seconds was chosen to 

reduce design matrix collinearity: the correlation of them modelled hemodynamic responses to CS and US 

event was Pearson’s r = −0.06. As parametric modulators, we included expectation of the US outcome for CS 

time point, and US outcome (delivered/omitted) as well as PE for US time point. US expectation was 

formalized in the primary analysis as the overall US rate (0%, 33%, 66%, or 100%) for the CS presented on 

that trial (primary analysis), and in a supporting analysis as the prior expectation of the US+ probability from 

a normative Bayesian learning model, which in a previous study provided the best description of trial-by-trial 
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conditioned skin conductance and pupil size responses across several samples (Tzovara et al., 2018). We did 

not base our PE on declarative knowledge of the CS-US contingencies as there is evidence that it represents 

a learning process distinct from that reflected in autonomic indices, or in non-human animal behavior 

(Lovibond and Shanks, 2002; Ojala and Bach, 2020). 

Notably, US expectation from these two approaches is almost identical during the maintenance 

phase. The US outcome was defined as either 1 (US+) or 0 (US−). For primary and exploratory follow-up 

analyses, we constructed four separate GLMs: Parametric GLM 1: full signed PE (outcome−expectation for 

both US+ and US− trials, primary analysis). Parametric GLM 2: difference between negative and positive PE 

for all trials (+(outcome−expectation) for US+ trials, −(outcome−expectation) for US- trials). Parametric GLM 

2 can also be interpreted as a test for unsigned prediction errors (|outcome−expectation| for all trials). 

Parametric GLM 3: positive PE (outcome−expectation for US+ trials only). Parametric GLM 4: negative PE 

(outcome−expectation for US− trials only). These four different PEs were calculated with both definitions of 

expectation. As we used a parametric modulator for PE across all trials, this was fixed to the mean of all 

other trials for the US− trials in parametric GLM 3 and for the US+ trials in parametric GLM 4. For clarity, all 

analyses included the zero-PE conditions (0% and 100% reinforcement) for comparison.   

For each contrast, we examined correlated BOLD activity with a one-tailed one-sample t-test against 

zero. Our a priori expectation was that larger positive PEs (positive values after US+) would relate to higher 

BOLD signal and larger negative PEs (negative values after US−) to lower BOLD signal, based on previous 

work (Roy et al., 2014).  

Next, we conducted follow-up analyses of the averaged signal from significant clusters and a-priori 

anatomical regions (see section on region-of-interest analysis), as well as a follow-up whole-brain analysis, to 

determine whether BOLD signal in any detected cluster, or in any voxel, would fulfill the necessary and 

sufficient conditions for representing PEs (Fig. 1C) (Caplin and Dean, 2008). To this end, we computed an 

additional "categorical" GLM agnostic to the parametric values of PE, where we modelled the 4 different CS, 

and the 6 different US types (one for each possible CS-US pairing), in separate conditions. For the voxel-wise 

whole-brain analysis, we conducted a conjunction null test (logical “AND”) on the significance of all relevant 

condition contrasts in both directions for the outcome and expectancy conditions (Fig. 1C, axiom 1 and 2). 

We defined conjunctions separately for the full PE model (all 6 possible contrasts), PE difference/unsigned 

PE model (both US+ and US− trials but flipped for US−: CS(0%) < CS(33%) < CS(66%)), positive PE (US+ trials 

only), and negative PE (US− trials only). We did not explicitly test for the condition that fully expected 

outcomes should elicit similar BOLD activity (Fig. 1C, axiom 3). This would have required a test of 

equivalence, which was not necessary since the other axioms were already found to be not supported by the 

data.  
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Mass univariate region-of-interest analysis for PEs. We next analyzed whether BOLD signal in the significant 

cluster from our primary analysis, and in different anatomical regions-of-interest (ROI), fulfilled necessary 

and sufficient criteria to represent PEs. Anatomical masks for thalamus, anterior and posterior insula, and 

anterior cingulate cortex were created from the WFU PickAtlas AAL library (Maldjian et al., 2003; Tzourio-

Mazoyer et al., 2002). Frontal cortex ROI masks were created separately for Brodmann Areas 8─11 and 

44─47 (dilation level 1 in 2D). For amygdala, we binarized probabilistic masks from Abivardi and Bach (2017) 

(combined basolateral and centrocortical divisions) which are based on manual segmentation of N = 50 

datasets from the Human Connectome Project (Van Essen et al., 2012). The binarization threshold was set at 

0.5 to obtain mask volumes (mm3, in final normalized functional space) within 1 SD of the mean native space 

volumes reported in Abivardi and Bach (2017). For periaqueductal grey (PAG), we used the high-resolution 

probabilistic anatomical mask for young people (linear option) from the ATAG atlas (Keuken et al., 2017). The 

probabilistic PAG mask was binarized at a threshold of 0.13, which best retained the anatomical shape of the 

PAG when inspected qualitatively with respect to a normalized mean image of the participants’ anatomical 

scans. We used high-resolution anatomical masks from the recent Reinforcement Learning Atlas (Pauli et al., 

2018) for ventral striatum (nucleus accumbens), dorsal striatum (caudate nucleus and putamen), and 

dopaminergic midbrain (substantia nigra pars reticulata/compacta and ventral tegmental area). The 

anatomical ROIs were defined in the MNI space, co-registered to the functional space, and used in the 

analyses at the group level. Moreover, to explore the results from the parametric GLMs, we extracted 

parameter estimates from clusters with significant activity associated with each different type of PE (cluster-

level corrected FWE p < 0.05 with p < 0.001 initial threshold, see Table 3 for the clusters and their statistics).  

For each anatomical ROI and significant functional cluster, we extracted the average BOLD amplitude 

estimates from the categorical GLM for the six US outcome conditions in the maintenance trials. For the a 

priori anatomical ROIs, we investigated whether the average BOLD signals fulfilled the axioms by conducting 

paired Bayesian t-tests in JASP (version 0.16.3, JASP Team, 2022) for four reduced comparisons: Axiom 1) 

US+ > US− over US expectation conditions CS(33%) and CS(66%), Axiom 2) different levels of US+ 

expectation: CS(0%) > CS(66%) for US−, and CS(33%) > CS(100%) for US+ trials, and Axiom 3) for CS(100%) = 

CS(0%). For those ROIs that were included in at least two out of three previous axiomatic studies (Fazeli and 

Büchel, 2018; Geuter et al., 2017; Roy et al., 2014; ACC, amygdala, thalamus and PAG), we used an informed 

prior defined as a normal distribution with mean and standard deviation set as the mean and standard 

deviation over reported values in the previous studies for each ROI and comparison (see Supplementary 

Table 2 for the values of individual studies). For the other ROIs, we set the prior as the default of JASP, which 

is a Cauchy distribution with scale 0.707.  We also computed frequentist paired Cohen’s d effect sizes 

(‘cohensD’ function of lsr package in R) (Navarro, 2015) for the full axiomatic comparisons: Axiom 1): US+ > 

US− for US expectation conditions CS(33%) and CS(66%), (2) Axiom 2): different levels of US+ expectation: 

CS(0%) > CS(33%) and CS(33%) > CS(66%) for US−, and CS(33%) > CS(66%) and CS(66%) > CS(100%) for US+ 
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trials, and Axiom 3) CS(100%) > CS(0%) (see Fig. 1C; 7 effect size computations in total). Moreover, we 

created linear mixed effects models (‘lme’ function in the nlme package in R) (Pinheiro et al., 2020) on the 

BOLD amplitude estimates for (1) full signed PEs, (2) positive PEs, (3) negative PEs, (4) PE 

difference/unsigned PEs, (5) US+/US− outcome, and (6) null model. Each model included PE or outcome 

values as the fixed effect. To account for potential asymmetry between positive and negative PEs, we also 

included a full PE model with separate fixed effects for positive and negative PEs, allowing different 

intercepts and slopes. The null model only contained a constant value 1 as the intercept. Each model 

included a participant intercept as a random factor, allowing for a different intercept but not slope for each 

participant (1|Participants). All models were estimated using the maximum likelihood (ML) method to allow 

extraction of model evidence metrics. To formally compare the different models, we computed Bayes factors 

with Bayesian Information Criterion approximation for frequentist linear regression models with R package 

bayestestR (Makowski et al., 2019; Wagenmakers, 2007). For the functional clusters, we conducted Bayesian 

t-tests and post-hoc effect size computations for the axioms with Cohen’s d for paired observations similarly 

to the tests for the anatomical ROIs (Fig. 1C).  

 

Code and data availability. The code for the experiment, data analysis and figures are available in a public 

repository gitlab.com/kojala/threatlearning_fmri. Group-level unthresholded Statistical Parametric Maps, 

ROI masks and mean beta values relevant to the analyses are available in a public repository with DOI  

10.5281/zenodo.6983543. Data from the behavioral experiment outside the scanner are available in a public 

repository with DOI 10.5281/zenodo.3872055. Due to data protection regulations and given a risk of 

statistical identification of brain anatomy, individual-level MRI data are available from the authors for 

scientific purposes under a data protection agreement. 

 

Results 

Declarative knowledge of CS-US contingencies 

Participants reported explicit declarative knowledge of the CS-US contingencies by rating their US 

expectation for each CS after the maintenance phase of the fMRI experiment (200 trials, Fig. 1B, 2A). There 

was a significant linear effect of CS type on US expectation ratings, and pairwise differences for CS(100%) > 

CS(66%), CS(66%) > CS(33%), and for CS(33%) > CS(0%) (Table 2). Results were similar in the behavioral 

experiment outside the scanner (164 trials, Table 2).   
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Table 2. Statistics for ratings of US expectation.  

Ratings for fMRI experiment (N = 21, after 200 trials) 

 CS(0%) CS(33%) CS(66%) CS(100%) 

Mean ± SD 14.8 ± 24.1 44.3 ± 17.7 55.4 ± 19.3 78.6 ± 31.7 

Repeated-measures ANOVA F df p η²p 

Subjective rating ~ CS type 25.99 3, 80 7.78e-12 0.49 

Linear contrast 75.88 1, 80 3.25e-13  

Paired t-test, one-sided T df p |d| 

CS(100%) > CS(66%) 4.06 20 0.0003* 0.44 

CS(66%) > CS(33%) 2.02 20 0.028* 0.22 

CS(33%) > CS(0%) 6.09 20 0.00003* 0.66 

Ratings for behavioral outside-scanner experiment (N = 18, after 164 trials) 

 CS(0%) CS(33%) CS(66%) CS(100%) 

Mean ± SD 7.6 ± 13.1 40.7 ± 25.4 67.5 ± 22.5 85.6 ± 26.5 

Repeated-measures ANOVA F df p η²p 

Subjective rating ~ CS type 44.03 3, 72 2.84e-16 0.65 

Linear contrast 129.07 1, 72 2.00e-16  

Paired t-test, one-sided T df p |d| 

CS(100%) > CS(66%) 2.30 17 0.0167* 0.26 

CS(66%) > CS(33%) 4.16 17 0.0003* 0.48 

CS(33%) > CS(0%) 4.67 17 0.00009* 0.54 

For paired t-tests, Holm-Bonferroni correction was applied over the three comparisons within each 
experiment. * p < 0.05 with corrected α-level.  
 

Pupil size responses 

To ensure implicit learning in this paradigm, we analyzed pupil data from a behavioral experiment outside 

the scanner. We were interested in how US expectation, while seeing one of four CSs with different US rates, 

was reflected in pupil size. Across the entire experiment, we found a significant linear effect (p < .05) of US 

expectation (Fig. 2B) with greater pupil dilation for higher US expectation between about 1-6 s after CS 

onset. Post-hoc pairwise comparisons further showed that the response to CS(100%) was larger than for 

CS(66%) from around 4-6 s after CS onset, CS(66%) was most of the time more pronounced than for CS(33%) 

between about 0.5-6 s after CS onset, and greater for CS(33%) than for CS(0%) around 4-5 s after CS onset 

(Fig. 2B).   
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Figure 2. Ratings of US expectation, and threat-conditioned pupil size responses, for each CS. A, Subjective 

US expectancy ratings after the maintenance phase of the experiment in the fMRI sample only. The plot 

shows mean and standard errors of the mean as well as individual ratings (connected lines refer to individual 

participants). B, Average pupil size change from baseline in the outside-scanner sample, over trial time 

during maintenance phase. Shaded areas depict the standard error of the mean. Grey horizontal markers 

below the time courses show the significant effect of CS type on pupil size, based on a cluster-based 

correction for multiple comparison across the entire CS-US interval. Markers on CS time courses show the 

significant clusters for the comparison of each CS type in relation to the previous one (CS(100%) > CS(66%), 

CS(66%) > CS(33%), CS(33%) > CS(0%)). There was one significant cluster in the last third of the CS period 

right before the us for CS(100%) > CS(66%), a significant cluster covering most of the CS-US interval and two 

smaller later clusters for CS(66%) > CS(33%), and two significant clusters at around 4-5 seconds after CS 

onset for CS(33%) > CS(0%). Location of the clusters is shown for illustration only and is not part of the 

statistical test.  

 

Neural representation of PEs: whole-brain analysis 

As a positive control, we observed an effect of US type (US+ > US−) on BOLD fMRI activity in the bilateral 

anterior and posterior insula, bilateral temporal, parietal and central operculum, right supramarginal gyrus, 

right superior temporal gyrus and left transverse temporal gyrus (voxel-wise FWE p < .05).  

In our primary analysis (parametric GLM 1), we investigated the relation between BOLD signal at the 

US time point, and PE across all trials during the maintenance phase of the experiment, using a GLM that 

included separate parametric modulators for US presence/absence and for PE. We found that BOLD 

responses  were correlated with full signed PEs in two clusters approximately in the bilateral superior medial 

prefrontal cortex, and right middle-superior occipital gyrus and superior parietal lobule (p < .05 cluster-level 

FWE; Fig. 3A, Table 3). That is, more unexpected US+ outcomes were associated with higher BOLD activity, 

and more unexpected US− outcomes, i.e., omission of US, were associated with lower BOLD activity in these 

clusters (in accordance with Fig. 1C).  
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However, examination of BOLD amplitude estimates in individual conditions in these clusters 

suggested that this effect was driven by the influence of negative PEs, whereas for positive PEs, condition 

averages did not show a linear relation between US+ expectation and BOLD signals (Fig. 3A). To allow for a 

possibility that the brain represents positive and negative PEs in partly different regions, we tested for a 

difference between negative and positive PEs, and then analyzed them individually. We found a cluster in 

which slope of a BOLD activity relation with negative PEs was steeper (more negative) than for positive PE, 

located approximately around left superior frontal and bilateral medial frontal regions (Fig. 3C), and partly 

overlapping with the ventromedial part of the negative PE frontal cluster but not with the dorsomedial full 

signed PE cluster (Fig. 3C,D, Table 3). An alternative interpretation for this cluster is a negative correlation 

between unsigned PEs and BOLD activity in this region. However, investigation of the extracted parameter 

estimates from the categorical GLM was in favor of the former interpretation: the slope of BOLD activity 

relation with positive PEs was flat and not positive, as would be expected for an unsigned PE representation. 

In keeping with this, more unexpected US− outcomes were associated with lower BOLD activity in 

clusters approximately located around bilateral superior frontal gyrus, left angular gyrus and left posterior 

cingulate gyrus, partly overlapping with the smaller frontal cluster of the full PE model (Fig. 3B,D). Extracted 

condition averages from our categorical GLM showed a linear gradient of negative PEs, as expected. On the 

other hand, we found no evidence of BOLD activity association with positive PEs.  

In these PE models, we used the overall US rate to compute PEs, but participants would not have 

perfectly learned these at the start of the maintenance phase. To ensure this did not obscure representation 

of PEs, we computed PEs with a normative (statistically optimal) learning model. We found very similar 

results to the full signed PE model, that is, larger PEs were associated with increased BOLD activity in a 

cluster approximately located around left medial superior frontal gyrus (cluster-level FWE-corrected p = 

0.014, cluster size 366 voxels).  
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Table 3. PE related BOLD activity during maintenance of threat associations.  

    

Regressor Approximate cluster anatomical region Cluster size Cluster p 

Full signed PE 

(parametric GLM 1) 

1. Superior frontal gyrus medial L,  

Superior frontal gyrus R 

356 0.014 

 2. Middle & superior occipital gyrus R,  

Superior parietal lobule R 

266 0.044 

Difference 

positive vs. negative PE 

(parametric GLM 2) * 

1. Superior frontal gyrus L 404 0.007 

 2. Subcallosal area L,  

Superior frontal gyrus medial L,  

Medial frontal cortex R 

1,636 1.19e-07 

Positive PE 

(parametric GLM 3) 

No significant clusters – – 

Negative PE 

(parametric GLM 4) 

1. Superior frontal gyrus L, R 3,001 4.23-11 

 2. Angular gyrus L 418 0.008 

 3. Posterior cingulate gyrus L 350 0.016 

MNI, Montreal Neurological Institute. Statistical parametric maps were cluster-corrected at FWE p < 0.05, 

with initial threshold of p < 0.001 uncorrected. Cluster p: corrected p-value. For full signed and positive PE 

models, the reported contrasts reflect higher BOLD activity related to larger PE (positive for US+, and larger 

for less expected US+) and lower BOLD activity for larger negative PE. For the difference, the reported 

contrast represents higher BOLD activity for larger negative PE than positive PE. This contrast would also 

reflect larger BOLD activity for smaller unsigned PE (see Fig. 1C). Opposite directions were tested for all 

models but there were no further significant findings. Anatomical labels (Neuromorphometrics, SPM12) are 

reported for each cluster for approximate localization. Peak statistics are not included as they are not 

relevant for our inferences and are by their nature biased (Davenport and Nichols, 2020).  

 

Neural representation of PEs: region-of-interest analysis 

Whole-brain search may provide limited statistical power if full signed PE representations occurred in small 

regions. Hence, we investigated PE representations in a priori defined anatomical regions of interest. We 

used a formal Bayesian model selection approach to avoid multiple null hypothesis tests. Distinct from some 

of our previous analysis, this approach seeks to simultaneously explain responses to US occurrence and US 

omission. Our analysis revealed that the symmetric full PE model was the best model (log BF > 3) for BA 9 

and ACC. The outcome-only (US+ vs. US−) model best explained the data (log BF > 3) for BA 44, BA 47, 

anterior insula and posterior insula (Fig. 4). There was no decisive evidence in any of the other regions.  

                  



17 
 

We applied the same analysis to the significant clusters from our whole-brain analysis, to facilitate 

interpretation (Fig. 5). The full signed PE cluster in superior frontal gyrus was best explained by a model 

including negative PE only (i.e., no expression of positive PE), and the full signed PE cluster in occipital and 

parietal areas was best explained by an asymmetric full PE model, which implies an encoding of positive PE 

but with different slope than negative PEs. One PE difference cluster was best explained by a negative PE 

model, and the other by an unsigned PE model (that is, opposite representation of negative and positive PE 

but with the same slope).  

In a supplementary analysis, we found that the model-free BOLD timecourses show that the US 

outcome response does not always align well with the canonical haemodynamic response function for all 

ROIs and/or conditions (Supplementary Figures 1-4).  

 

Necessary and sufficient conditions for full signed PE model 

We next evaluated whether BOLD responses in any brain region fulfill three criteria, or ‘axioms’ (Fig. 1C), to 

represent PE signals in a learning-theoretic sense. In a whole-brain analysis, there were no significant 

clusters fulfilling the conjunction of axioms 1 (i.e., higher activity for US+ than US− outcome) and 2 (i.e., 

higher activity for more unexpected US+ outcomes and for more expected US− outcomes). Axiom 1 was 

fulfilled in four large clusters approximately in the left central operculum/posterior insula, right parietal 

operculum/superior frontal gyrus, and bilateral middle cingulate gyrus/left superior frontal gyrus, and right 

cuneus (Supplementary Table 1). However, axiom 2 was not fulfilled in any region at the whole-brain level. In 

an exploratory analysis, we also verified that axiom 2 was not fulfilled in the other direction (i.e., higher 

activity for more unexpected US− outcomes and for more expected US+ outcomes).  

For region-of-interest analysis, we extracted parameter estimates, conducted Bayesian t-tests, and 

also calculated corresponding frequentist effect sizes for axiomatic comparisons. We report here the results 

on regions that showed significance or decisive model evidence in favor of full signed prediction errors in our 

previous analyses; full results are found in Figure 6, Table 4 and Supplementary Table 3. In the first 

significant full signed PE cluster from our whole-brain search, as well as in anatomical BA 9 and in anatomical 

ACC, there was no conclusive evidence (|log Bayes Factor| < 3) when looking at the difference between 

CS(33%) and CS(100%) when US occurred or between CS(0%) and CS(100%); thus signed axiom 2 

(expectation effect) and axiom 3 (equivalence of fully expected outcomes, Fig. 1C) could not be accepted or 

rejected based on this data. . Moreover, BA 9 and ACC also did not have conclusive evidence for US omission 

expectation effect. The second significant full signed PE cluster from our whole-brain search showed 

moderate evidence for a difference between CS(66%) and CS(33%) at US occurrence (log BF = 3.71), and 

somewhat  did not fulfill axiom 3 (log BF = −2.93) or axiom 2 for US omission (log BF = 1.45). Overall, no 

region had at least moderate Bayesian evidence (Table 4) or small-to-medium frequentist effect sizes (d > 

0.20) for all axiomatic tests (Supplementary Table 3).  
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Figure 3. Whole-brain PE fMRI results. A, Full signed PEs correlated with BOLD activity in the dorsomedial 

prefrontal cortex (dmPFC) and superior parieto-occipital cortex. Average responses for each condition from 

the frontal cluster show a clear linear relationship with US expectation only for US− conditions (parametric 

GLM 1). However, this cluster was entirely overlapped by the negative PE (US omission) cluster (panel D) and 

was equally well explained by negative PE as full signed PE models (Fig 5.). B, Interaction of PE with outcome 

(US) type in BOLD activity in vmPFC and rostral anterior cingulate cortex (rACC), indicating a steeper 

(negative) BOLD relation for negative (US omission) than positive (US occurrence) PE, or generally a 

representation of less expected outcomes in lower BOLD signal (parametric GLM 2). C, Negative PEs (US 

omission) correlated with BOLD activity in the dmPFC and ventromedial PFC (vmPFC), angular gyrus and 

posterior cingulate cortex (PCC) (parametric GLM 3). A-C, BOLD amplitude estimates are shown as mean and 

standard error of the mean. Statistical parametric maps were thresholded at p < 0.05 cluster-level FWE with 

initial threshold p < 0.001. Unthresholded SPMs are available online. BOLD estimates are shown for the 

cluster with the lowest corrected p-value for each PE model. D, Significant PE clusters and their overlap. The 

negative PE (US omission) PFC cluster almost entirely overlaps with or encompasses the signed PE PFC 
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cluster, whereas the PE interaction cluster extends also beyond the negative PE cluster. There were no 

significant positive PE clusters.  

 
Figure 4. Model comparison of PE and outcome-only models for BOLD signals from each anatomical region-

of-interest. Log Bayes Factors (BF) > 3 (dotted grey line) indicate moderate support for a model over the null 

model, whereas log BF < −3 denote moderate evidence for the null model, with values in between 

representing inconclusive evidence for any model. The orange line marks the evidence threshold (log BF 3) 

for moderate difference between the best model and other models. Full PE sym. = one intercept and slope 

parameter for both positive (US occurrence) and negative (US omission) PE; Full PE asym. = separate 

intercepts and slopes for positive and negative PE.   
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Figure 5. Model comparison of PE and outcome-only models for BOLD signals from the significant clusters 

for full signed PE (parametric GLM 1), difference positive (US occurrence) vs. negative (US omission) PE 

(parametric GLM 2) and negative PE (parametric GLM 3). Log Bayes Factors (BF) > 3 (dotted grey line) 

indicate moderate support for a model over the null model, whereas log BF < −3 denote moderate evidence 

for the null model, with values in between representing inconclusive evidence for any model. The orange 

line marks the evidence threshold (log BF 3) for moderate difference between the best model and other 

models. Full PE sym. = one intercept and slope parameter for both positive and negative PE; Full PE asym. = 

separate intercepts and slopes for positive and negative PE; Sup. = superior; Med. = medial. R = right 

hemisphere; L = left hemisphere. Note that this model comparison is meant for post-hoc illustrative 

purposes only, as the comparison is conducted on data that was already selected based on an association 

with one of the PE models in the whole-brain analysis.     
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Figure 6. Average BOLD amplitude estimates during maintenance for each experimental condition extracted 

from the anatomical ROIs. Left and right hemispheres are combined. BA = Brodmann Area. ACC = Anterior 

Cingulate Cortex. PAG = Periaqueductal Grey. SN = Substantia Nigra. VTA = Ventral Tegmental Area. Error 

bars are within-subject standard errors of the mean. See Table 4 for Bayesian evidence and Supplementary 

Table 3 for frequentist effect sizes of the axiomatic comparisons for these ROIs.  
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Table 4. Bayesian evidence for axiomatic comparisons for anatomical regions-of-interest and significant 

functional clusters during maintenance of threat associations. 

 Axiom 1 (reduced) Axiom 2 (reduced) Axiom 3 

US+ > US− US+ US− US+ > US− 

ROI Mean US+ >  

mean US− 

CS(33%) >  

CS(100%) 

CS(0%) >  

CS(66%) 

CS(100%) = CS(0%) 

 log BF log BF log BF log BF 

BA 8 0.34 −0.76 1.88 −0.85 

BA 9 3.14 * 0.16 1.73 1.32 

BA 10 1.86 −0.64 1.61 1.37 

BA 11 −0.47 −2.31 1.32 1.41 

BA 44 10.56 * −0.20 −0.69 −4.93 

BA 45 13.67 * 1.44 −0.12 −2.09 

BA 46 5.56 * −0.47 −0.48 0.34 

BA 47 9.22 * −1.08 −0.78 −0.96 

ACC ° 4.26 * −0.22 2.03 2.57 

Amygdala ° 1.55 −1.30 0.50 2.24 

Anterior insula 10.46 * −1.99 −1.67 −6.73 

Posterior insula 12.03 * −2.20 −0.74 −8.90 

Dorsal striatum 3.49 * −0.48 −0.64 0.72 

Ventral striatum −1.49 −2.01 −1.40 1.32 

PAG ° 2.84 0.33 −1.99 0.32 

SN/VTA 1.96 −0.81 −1.09 −1.03 

Thalamus ° 6.21 * 0.59 0.21 6.35 * 

Full PE cluster 1 3.81 * −0.30 12.24 * 0.16 

Full PE cluster 2 1.22 3.71 * 1.45 −2.93 

PE difference cluster 1 1.45 −1.74 5.80 * 0.78 

PE difference cluster 2 −1.20 −2.45 6.06 * −0.05 

Negative PE cluster 1 2.52 −1.24 9.18 * 0.24 

Negative PE cluster 2 1.35 −0.19 4.59 * −0.56 

Negative PE cluster 3 1.59 −0.46 6.23 * 0.57 

Log BF = logarithm of Bayes Factor (BF). BF > 3 are commonly interpreted as moderate support for the 
alternative model over the null model, whereas log BF < −3 are interpreted as moderate evidence for the 
null model, with values in between representing inconclusive evidence for either model. The alternative 
model is indicated on the third row of the table, whereas the null model is its opposite (no difference 
between conditions for axiom 1 and 2, and a difference for axiom 3). * At least moderate evidence for the 
alternative hypothesis. ◦ ROIs with informed prior based on previous literature, the others have the default 
uninformative prior.   
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Discussion 

Survival in biological environments requires learning associations between predictive cues and potential 

threatening outcomes. It has been suggested that such aversive learning is driven by prediction error (PE) 

signals, similarly to reward learning (Yau and McNally, 2018). Here, we used human BOLD fMRI to investigate 

neural representation of PEs after Pavlovian threat conditioning and under continuing CS-US pairings. We 

found no systematic evidence for theoretically expected neural PE signals. Instead, we identified regions that 

express PE signals more strongly when US was omitted as opposed to when US occurred. Such asymmetric 

PE representations cannot on their own be used to learn unbiased estimates of US probability (Dabney et al., 

2020), although they might be combined, and could serve important biological functions in the context of a 

switch to extinction (Kim et al., 2020).  

 

Neural representations of prediction errors 

Our primary analysis revealed that BOLD activity in dorsomedial PFC and posterior parietal cortex correlated 

with signed PE. However, secondary analyses provided several arguments why these BOLD signals are 

unlikely to represent full signed PEs. First, average BOLD estimates from significant PE clusters did not fulfill 

the axiomatic criteria for PE representation (Caplin and Dean, 2008; Roy et al., 2014; Rutledge et al., 2010). 

Specifically, BOLD estimates showed differences between US expectation levels (axiom 2) only for US 

omission, but not for US occurrence. Bayesian model comparison (Fig. 5) suggested these BOLD signals were 

better or equally well explained by models that included asymmetric BOLD responses for unexpected US 

omission (negative PE) and US occurrence (positive PE). Second, a whole-brain search for negative PEs 

revealed significant BOLD activity in the dorsomedial and ventromedial PFC as well as rostral ACC that 

entirely encompassed, as well as extended beyond, the prefrontal full signed PE-encoding cluster. 

Meanwhile, no significant BOLD activity was associated with positive PEs only, over and above a constant 

representation of the US. Third, in a cluster in the vmPFC and rostral ACC, the encoding of positive and 

negative PEs was significantly different. This cluster expressed negative PEs more strongly than positive PEs.  

Next, we explored whether any a priori anatomical regions of interest expressed PE signals. Formal 

model comparison revealed decisive evidence that averaged BOLD signals in BA 9 and ACC were better 

explained by full signed PE-encoding than alternative models, including some asymmetric models. In other 

areas, including PAG, Bayesian model comparison either supported outcome-encoding only, or the evidence 

was inconclusive or weak. Despite the full signed PE model winning the model comparison for two regions, 

there was no conclusive evidence that extracted BOLD signals from these, or any other region, fulfilled all of 

the axiomatic criteria for full signed PE-encoding.  

Notably, some formal reinforcement learning models build on unsigned (absolute) rather than 

signed PEs (Li et al., 2011; Pearce and Hall, 1980). In our design, testing for the negative association of 

unsigned PEs to BOLD signal was formally equivalent to testing the slope difference between positive and 
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negative PEs (“PE difference” model). We did not observe a relation of unsigned PE signals with increased 

BOLD signal for any unexpected outcome. The opposite contrast (larger BOLD signal with smaller unsigned 

PE) showed two significant clusters. Extracted BOLD estimates from these cluster however appeared more 

consistent with negative PE signals only, although we note that a Bayesian analysis revealed some evidence 

of negative association with unsigned PEs for one of the two clusters.  

 

Asymmetry of positive and negative threat prediction errors 

Using designs different from ours, previous human neuroimaging studies have reported both positive and 

negative PEs in aversive learning to be represented in the same or in different brain regions (Seymour et al., 

2005; Spoormaker et al., 2011; Roy et al., 2014; Shih et al., 2019 ; see also studies on learning-based US 

diminution, i.e. positive PE: Dunsmoor et al., 2008; Knight et al., 2010; Wood et al., 2013). For example 

during instrumental and pain intensity conditioning, Roy et al. (2014) found that BOLD activity in PAG 

fulfilled all of the axiomatic criteria for full signed PE signals. They also found that US expectation, but not 

axiomatic PE, was represented in the vmPFC, and positive PEs in the dmPFC. While instrumental and 

Pavlovian conditioning may engage distinct learning algorithms (Maia, 2010), there are also important 

differences between the Pavlovian conditioning experiments by Roy et al. (2014), and the present study. 

Specifically, Roy et al. used cues predicting different heat pain intensity, rather than different probability of 

presenting the same shock stimulus as in the present study; there were no fully predicted outcomes, and to 

derive PE they fitted a temporal difference learning model to participants’ choices, which commits a priori to 

a specific learning model.   

What could underlie the differential expression of positive and negative PE in our study? A first 

possible reason is to be found in asymmetric neural firing. Negative PEs in our study correspond to better-

than-expected outcomes. Many dopaminergic midbrain neurons encode better-than-expected outcomes in 

increased firing rates, and worse-than-expected outcomes in reduced firing rates, but this reduction is often 

less pronounced than the increase (Schultz, 2016), despite variability between individual neurons (Dabney et 

al., 2020). Assuming an asymmetry in neural firing changes, and a constant noise level in the fMRI 

measurement, it might be more difficult to detect the smaller firing reduction than the larger firing increase. 

However, different from reward learning, there is currently no electrophysiological or voltammetric evidence 

for differential encoding of aversive PE in firing rates of the same neurons: those populations that respond to 

US occurrence have not been shown to be responsive to US omission (Groessl et al., 2018; Walker et al., 

2020); as such this remains a speculative interpretation. Similarly, the time course of neural firing might 

differ between US occurrence and US omission, and this might make the hemodynamic model implicit in the 

fMRI analysis more appropriate for one or the other condition, thus hampering an unbiased estimation of 

the underlying changes in neural firing (see Supplementary Figures 1-4). Moreover, aversive positive PEs may 

be influenced to larger extent by baseline US responses than reward PEs, due to the high salience of 
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nociceptive stimuli. Accordingly, it has been shown in some rodent studies that neurons signaling aversive 

positive PEs also somewhat respond to the US alone (e.g., Walker et al., 2020). However, there is no clear 

pattern of US response with a (positive) PE-like response stacked on top in any same region in our data (but 

see e.g. PAG in Figure 6).  

As a second possible reason, biased PE encoding in individual neurons can, when integrated on the 

population level, afford probabilistic learning (Dabney et al., 2020). This study addressed variability of 

reward PE encoding bias in neurons within one region, but the same mechanism could also act across 

regions. Indeed, opponent learning systems for reward and punishment have been suggested, possibly 

separated in different neurotransmitter systems and/or topographically distinct regions, and there are 

instances where these opponent learning systems might be integrated to solve a single task (Janssen et al., 

2015; Skvortsova et al., 2014). Reward and punishment learning may also converge, for example in the case 

where avoiding punishment becomes rewarding (Palminteri et al., 2015). Consequently, the neural 

representations of PE may be different depending on the context and therefore the precise experimental 

design. Hence, it appears possible that positive PE are expressed in other brain areas that our present study 

was not optimally designed to detect. For example, positive PE have been suggested in PAG during aversive 

learning (Herry and Johansen, 2014; Walker et al., 2020), and our fMRI sequence was not specifically 

optimized for PAG coverage. It is also possible that aversive PEs, even for simple forms of associative 

learning, are not expressed in the same brain regions across mammal species, and therefore we cannot 

directly derive hypotheses for aversive PE representation from rodent studies.  

As a final reason, some learning algorithms use teaching signals that are distinct from PE signals. For 

example, a normative Bayesian learner used previous work (Tzovara et al., 2018) requires only a categorical 

representation of the US to update its predictions. This raises the question whether the negative PE-

encoding regions identified here are truly part of a learning system, or whether they encode an output signal 

that drives behavior after US omission. For example, mPFC has an important role in fear and extinction 

memory consolidation (Marek et al., 2013) and in signaling safety to the amygdala to diminish fear responses 

(Likhtik et al., 2014). The negative PE signals in the vmPFC in our study could reflect phasic safety signals in 

response to upward changes in environmental circumstances, consistent with previous studies (Fullana et 

al., 2016; Harrison et al., 2017), and could possibly engage inhibitory extinction learning. We note that 

previous studies have demonstrated a categorical representation of punishment omission in increased 

midbrain dopaminergic firing (Luo et al., 2018; Salinas-Hernández et al., 2018), whereas here we report a 

parametric PE-like representation in the opposite direction (lower BOLD activity with more unexpected 

omission). Previous research in humans has shown categorical dopamine-dependent activity patterns in a 

similar region in the ventromedial prefrontal cortex (Gerlicher et al., 2018).    
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Limitations 

As a general limitation of the mass-univariate fMRI approach used here and in previous work, it is possible 

that PEs are represented by neural populations that are sparse (Reijmers et al., 2007), or that differ in sign 

and have an interleaved spatial organization, as has for example been shown for reward value 

representation in orbitofrontal cortex (Kahnt et al., 2014), CS+ representations in amygdala (Ciocchi et al., 

2010; Haubensak et al., 2010), or biased PE signals in dopaminergic midbrain (Dabney et al., 2020). 

Multivariate analysis of high-resolution fMRI might be more appropriate to delineate such representations 

(Bach et al., 2011; Staib et al., 2020; Staib and Bach, 2018). Finally, the sample size of this study is small due 

to practical constraints. After the data acquisition for this study was finished, two further studies using the 

axiomatic approach with different paradigms were published (Fazeli and Büchel, 2018; Geuter et al., 2017). 

When taking the information from previous studies and the current study together, it is clear that much 

larger sample sizes will be required to robustly investigate US expectation effects that are much smaller than 

US outcome effects (i.e., Cohen’s d = 0.15 to 0.4 on average, corresponding to sample sizes of N = 40 to 

hundreds of participants to reach statistical power of 80% with alpha level 0.05, see Supplementary Table 2). 

Next to increasing sample sizes to detect smaller effects, it would also be important to consider what size 

effects are considered theoretically or practically meaningful, and how to optimize our experimental designs 

to detect these effects (Melinscak and Bach, 2020). Finally, as we were unable to acquire valid 

psychophysiological signals in the MRI scanner environment and had opted to not measure US expectation 

on each trial due to potential effects on the learning process, we had no online index of learning, and as such 

cannot confirm whether participants’ US expectations changed during the maintenance phase.  

 

Conclusions 

We found no evidence of full signed PE signals in any brain region but show that BOLD signals in a 

ventromedial prefrontal region encode negative PEs more strongly than positive PE. We speculate this may 

be due to biophysical asymmetries, integration of biased PE signals across regions, or reflect biological 

functions outside simple learning algorithms, such as engaging extinction learning. However, many open 

research questions remain regarding aversive PE signaling, which has been studied far less extensively than 

reward PEs. Future studies may shed light on the commonalities and differences of Pavlovian conditioning to 

different intensities or probabilities of aversive outcomes, further investigate the causal roles of the putative 

aversive PE encoding regions for learning, utilize optimized sequences to search for aversive PE signals in the 

midbrain and brainstem nuclei, and refine our understanding of possible sparse or multivariate encoding of 

aversive PEs in both humans and animal models.  
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