
ll
OPEN ACCESS
iScience

Article
Variational learning of quantum ground states on
spiking neuromorphic hardware
Robert Klassert,

Andreas

Baumbach, Mihai

A. Petrovici,

Martin Gärttner
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Variational learning of quantum ground
states on spiking neuromorphic hardware

Robert Klassert,1 Andreas Baumbach,1,2,* Mihai A. Petrovici,2,1 and Martin Gärttner3,1,4
SUMMARY

Recent research has demonstrated the usefulness of neural networks as varia-
tional ansatz functions for quantum many-body states. However, high-dimen-
sional sampling spaces and transient autocorrelations confront these approaches
with a challenging computational bottleneck. Compared to conventional neural
networks, physical model devices offer a fast, efficient and inherently parallel
substrate capable of related forms of Markov chain Monte Carlo sampling.
Here, we demonstrate the ability of a neuromorphic chip to represent the ground
states of quantum spin models by variational energy minimization. We develop a
training algorithm and apply it to the transverse field Ising model, showing good
performance at moderate system sizes (N%10). A systematic hyperparameter
study shows that performance depends on sample quality, which is limited by
temporal parameter variations on the analog neuromorphic chip. Our work
thus provides an important step towards harnessing the capabilities of neuromor-
phic hardware for tackling the curse of dimensionality in quantum many-body
problems.
1Kirchhoff-Institut für Physik,
Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer
Feld 227, 69120 Heidelberg,
Germany

2Department of Physiology,
University of Bern, 3012 Bern,
Switzerland

3Physikalisches Institut,
Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer
Feld 226, 69120 Heidelberg,
Germany

4Institut für Theoretische
Physik, Ruprecht-Karls-
Universität Heidelberg,
Philosophenweg 16, 69120
Heidelberg, Germany

*Correspondence:
andreas.baumbach@kip.
uni-heidelberg.de

https://doi.org/10.1016/j.isci.
2022.104707
INTRODUCTION

The Hilbert space of quantum many-body systems and consequently the computational resources

required to describe them grow exponentially with system size. On the one hand, this poses a challenge

to understanding collective quantum effects, for example in condensed matter physics (Avella and Man-

cini, 2012; Zhou et al., 2021). On the other hand, efficient numerical tools are required for the character-

ization and validation of quantum devices such as digital quantum computers currently under develop-

ment (Preskill, 2018). Fortunately, many physical systems exhibit symmetries and structure that allow to

reduce the exponential complexity and to design tractable approaches for the representation of the

wave function. For example, so-called stoquastic Hamiltonians are known to have positive ground state

wave functions allowing the application of quantum Monte Carlo methods (Becca and Sorella, 2017).

Locally interacting systems featuring an excitation gap have limited ground state entanglement, which

renders tensor network states an efficient method for approximating them (Schollwöck, 2011). Such phys-

ical structure may, however, not always be easy to discover and exploit. Because the process of automat-

ically discovering structure despite the curse of dimensionality is a discipline of machine learning, varia-

tional approaches using artificial neural networks (ANNs) have found their way into quantum many-body

physics in recent years (Carrasquilla, 2020). These so-called neural quantum states (NQS) have been

shown to serve as efficient function approximators that rival competing approaches like tensor networks

by providing accurate representations for a large class of quantum states using only a small number of

parameters. Among other applications NQS has been successfully employed as a variational ansatz for

ground state search (Carleo and Troyer, 2017; Jia et al., 2019; Carrasquilla, 2020), quantum dynamics (Car-

leo and Troyer, 2017; Czischek et al., 2018; Hartmann and Carleo, 2019; Nagy and Savona, 2019; Schmitt

and Heyl, 2020; Reh et al., 2021), and quantum state tomography (Torlai et al., 2018; Carrasquilla et al.,

2019; Torlai and Melko, 2020).

The most successful existing variational approaches for representing many-body ground states rely on the

use of Markov chain Monte Carlo (MCMC) methods to generate samples based on which observables are

estimated (Melko et al., 2019). Probabilistic inference with MCMC in high-dimensional spaces comes with a

number of associated challenges such as trading off accuracy against sample correlations and capturing

multi-modality within short simulation times. In particular, the sampling of neural network quantum states
iScience 25, 104707, August 19, 2022 ª 2022 The Author(s).
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is known to be a computationally challenging task in the case of restricted Boltzmann machines (RBM)

(Long and Servedio, 2010). To tackle this challenge we use a physical neurmorphic device which enables

the fast generation of independent samples to approximate quantum wave functions.

We develop and demonstrate a method for approximating the ground states of quantum spin systems by

variationally adapting the physical parameters of a neuromorphic hardware chip. The neuromorphic chip

functions as a spiking neural network (SNN) emulator. Such networks work in a similar way to neuronal net-

works in the brain. We use the refractory state of a neuron (refractory, z = 1, or non-refractory, z = 0) to

encode the state (up, [, or down, Y) of a quantum spin. SNNs, in contrast to ANNs, have inherent time dy-

namics and process their inputs in an event-based fashion. Because of the physical implementation the

emulation becomes inherently parallel, rendering the sampling speed independent of the network size.

We note that neuromorphic hardware has recently been used to represent entangled quantum states using

a mapping of general mixed quantum states to a probabilistic representation and training the system to

represent a given state by approximating its corresponding probability distribution (Czischek et al.,

2022). Here, instead, we directly encode the wave function of pure quantum states and use this approach

for variational ground state search through minimization of the quantum system’s total energy. Our state

representation assumes positive real wave function coefficients, a property which is guaranteed for ground

states of stoquastic Hamiltonians (Bravyi et al., 2008). Using the transverse field Ising model (TFIM) as a

benchmark case, we find that its ground state can be represented accurately for any value of the transverse

field including the quantum phase transition point.

We further study current limitations of our proposed approach. In particular, we investigate several tech-

nical limitations of our neuromorphic back-end in detail and pinpoint the main loci of potential improve-

ment for future revisions. In addition, we discuss the algorithmic advantages and drawbacks of our sam-

ple-based representation.

Note that, unlike other functional tasks that SNNs have been employed for in the past (Petrovici et al.,

2016; Kungl et al., 2019; Dold et al., 2019), which only require the reproduction of large scale features, for

example, image classes, we require the full probability distribution to be sampled with high precision.

We therefore demonstrate a new level of sampling precision for neuromorphic systems, which potentially

opens up new applications beyond the specific one considered here. Our work serves as a demonstra-

tion of variational ground state learning on neuromorphic devices. This opens the door to adaptions us-

ing alternative, analog or digital neuromorphic hardware (Davies et al., 2018; Thakur et al., 2018; Roy

et al., 2019), and the development of improved learning algorithms exploiting fast neuromorphic sample

generation.

The remainder of this work is structured as follows: We begin by laying the foundations of spike-based

computing (Section spike-based sampling) and the BrainScaleS-2 neuromorphic substrate (Section neuro-

morphic chip), followed by details about the variational algorithm, quantum state representation (Section

variational algorithm) and the physical system, namely the TFIM (Section transverse-field Ising model),

which it is applied to. In Section performance, we examine and discuss the performance of our approach

and specifically investigate the dependence on system size. Section limitations provides a detailed analysis

of the impact of hardware constraints on the performance of our method. We conclude in Section discus-

sion and describe future research directions.
THEORETICAL AND EXPERIMENTAL METHODOLOGY

Spike-based sampling

Generative models based on ANN can be used to encode and sample from probability distributions

(Ackley et al., 1985; Hinton et al., 1995). Similarly, SNNs can be shown to approximately implement Mar-

kov-chain Monte Carlo sampling, albeit with dynamics that differ fundamentally from standard statistical

methods (Petrovici, 2016). Here, we use the BrainScaleS-2 neuromorphic platform (Billaudelle et al.,

2020) to encode the wavefunction of quantum spin systems using the activity distribution of a two-layer

network architecture (Figure 1). The implementation is inspired by Boltzmann machines (BM) in that the

n network neurons encode binary values. The visible units v = ðv1;.; vNÞ are used to directly represent

the quantum spin system and the hidden units h = ðh1;.;hNh
Þ mediate correlations between spins. The

full network state is the concatenation of visible and hidden units z = ðv;hÞ.
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Figure 1. SNN sampling of quantum states

(A) A LIF neuron under Poisson stimulus forms a spiking sampling unit. For technical reasons excitatory (red) and inhibitory

(blue) connections are implemented separately.

(B) Exemplary membrane potential evolution of a spiking sampling unit. Binary states are assigned according to the

refractory state (shaded area z = 1, z = 0 otherwise), which overrides the membrane dynamics after emitting a spike (blue

dashes). States are readout periodically (gray lines).

(C) Neuronal response functions of of all 192 neurons used. For better visibility four of these are plotted in black. Note that

this diversity is because of the variability of the analog substrate; for a more in-depth discussion, we refer to Pfeil et al.

(2013); Petrovici et al. (2014); Schmitt et al. (2017).

(D) Frequency of occurrence of neuron states retrieved as described in panel (b) approximating the model distribution

pqðvÞ. The visible states v ˛ f0; 1gN are identified with basis states jvi˛ fjYi; j[ig5N of the corresponding quantum spin

system.

(E) Layered network architecture used throughout this manuscript.
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We use leaky integrate-and-fire (LIF) neurons to implement our network. The dynamics of such neurons are

governed by

Cm
du

dt
= glðVl � uÞ+ IsynðtÞ ; (Equation 1)
iScience 25, 104707, August 19, 2022 3
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where Cm is the capacitance of the neuron’s membrane, u its potential, Vl the leak potential it decays to-

ward via the leak conductance gl , and Isyn the total input current to the neuron. The input current is given by

a weighted sum over spike-triggered interaction kernels kðtÞ for all spikes from all connected neurons. For a

detailed discussion we refer to Methods D: Leaky integrate-and-fire neurons and Gerstner et al., 2002.

Whenever the membrane potential u of a neuron exceeds a threshold value Vthresh, it generates a spike and

the membrane is short-circuited to a reset value Vreset <Vthresh (Figure 1B). This reset implements the fixed

refractory time tref during which we consider the neuron to be in state z = 1 (gray shaded region in

Figure 1B, state z = 0 otherwise). The generated spikes are routed to other neurons via synapses with

interaction strength w.

Networks of such LIF neurons under Poisson stimulus (Figure 1A) can be shown to approximately sample

from characteristic Boltzmann distributions (Petrovici et al., 2016). In this scenario, biological neurons enter

a high-conductance state with a short membrane time constant tm = Cm=gl � tref , and their spike

response function (Figure 1C) is well described by a logistic function

pðz = 1jVlÞ =
1

1+ expð � ½Vl � u0�=aÞ; (Equation 2)

where u0 represents the position of and a the slope at the inflection point – for a detailed derivation see

Petrovici, 2016. Note, that changing Vl has the same effect as a change of the synaptic input Isyn. In other

words, each neuron effectively calculates pðz = 1
��IsynÞ, such that the network as a whole can be shown

to approximately sample from a Boltzmann distribution pqðzÞ = exp½� εqðzÞ� with network energy εqðzÞ =
�P

i;j

ziWijzj=2 � P
i

zibi and parameters q = ðW ;bÞ.

One can relate the abstract weightsWij to the physical strength of the synaptic interaction wij from neuron i

to neuron j and the abstract biases bi to the value of the physical leak potential Vl of each neuron. These two

parameter domains are related linearly but have different units. Themapping between physical neuron and

synapse parameters and abstract Boltzmann weights can be gauged by measuring the logistic activation

function (Equation 2) with respect to some form of current stimulus. This relation neglects some dynamic

aspects and as such only holds approximately (Petrovici, 2016). This does not restrict the learning scheme

applied here. The probability distribution of physical interest is then the marginal over the hidden space

(Figures 1D and 1E)

pqðvÞ =
1

Zq

X
h

exp½� εqðzÞ�; (Equation 3)

which is used to encode the ground state wave function (see Section variational algorithm). The partition

sum Zq =
P
z
pqðzÞ ensures proper normalization.

Neuromorphic chip

We used the BrainScaleS-2-HICANN-X-v2 physical neuromorphic system (Billaudelle et al., 2020) – in the

following abbreviated as BSS-2 – depicted in Figure 2A, for all experiments reported in this manuscript.

BSS-2 is a mixed-signal neuromorphic chip, with 512 adaptive exponential leaky integrate-and-fire

(AdEx) neuron circuits, which we configured to implement current-based LIF neurons (see Equation 1).

Because of their analog nature, neuron dynamics are 1000 times faster than in their biological counterparts.

Spikes are communicated as digital events which then trigger an analog post-synaptic interaction in down-

stream neurons. For more details see Methods A: Description of the BrainScaleS-2 ASIC or Pehle et al.,

2022.

We employed a routing protocol that forms a freely configurable network of 256 spike sources, combining

two neuronal circuits in order to increase their maximum number of presynaptic sources to 256. We as-

signed 64 of these to the on-chip (noise) spike generators to provide a pool of stochasticity required for

sampling (Petrovici, 2016). The full on-chip network structure, including both the sampling network and

the noise source allocation, is shown in Figure 2B. The bipartite connection graph is reflected in the block

structure of the connection matrix (left part) and the noise sources are randomly assigned from a fixed pool

of 32 excitatory and 32 inhibitory sources (right part). This left us with up to 192 arbitrarily connectable sto-

chastic neurons of which we used a subset to variationally learn the probability distribution representing

the ground state wave function of a physical system of interest (see Figures 1D and 1E).
4 iScience 25, 104707, August 19, 2022
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Figure 2. Neuromorphic learning scheme

(A) BrainScaleS-2 neuromorphic chip. It emulates the accelerated dynamics of up to 512 spiking LIF neurons. The learning

algorithm alternates between on-chip neural sampling and off-chip gradient calculation that informs the network

parameter updates Dq to minimize the energy of the represented state.

(B) Exemplary synaptic weight matrix w for N = 8 andNh = 20. Unused network parts (inputs 28 to 192 and neurons 64 to

192) are omitted for better visibility. The layered network structure manifests itself in the block structure of the lower left

connectivity matrix. Each neuron is randomly assigned 10 out of the 64 possible noise sources (right part).

(C) Distribution of the wall clock time spent during an experimental run. Each epoch (brown) starts with a (partial)

reconfiguration of the chip (con, green), followed by a number of consecutive sampling runs (red), followed by the

evaluation (eval, purple) which includes the gradient calculation (see Table in STARMethods). Each hardware run consists

of actual chip execution (chip, blue) and a transfer to the host (IO, orange).
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For each hardware run the BSS-2 chip returns a list of all (output) spike times and associated neuron IDs.

This information combined with the measured tref for each neuron is sufficient to reconstruct the network

state zðtÞ at any point in time t. We computed the network state at regular intervals, as visualized in

Figure 1B. The resulting binary configurations were collected in a histogram as shown in Figure 1D

and formed an estimate of the steady-state distribution pðzÞ of the current network configuration. By

identifying the neuronal states (z˛ f0; 1g) with the basis states of a qubit system (j[i; jYi) (see Figure 1D),

pðzÞ represents the quantum many-body state. Treating the physical network parameters as variational

parameters this representation can be tuned to the ground state of a quantum system, as detailed in

the following.
Variational algorithm

Our goal is to find an approximation of the ground state of a given stoquastic Hamiltonian H. For this we

need to determine the parameter set q for which our variational anzatz jjqi of the ground state wave func-

tion minimizes the expectation value of the energy:

Eq = hjqjHjjqi: (Equation 4)

The restriction to stoquastic Hamiltonians guarantees that the wave function of the corresponding ground

state has non-negative real coefficients in the chosen basis which is the case if all off-diagonal elements of

the Hamiltonian are negative (Bravyi et al., 2008). We use this property to directly relate the probability dis-

tribution pqðvÞ to the wave function coefficients, such that
iScience 25, 104707, August 19, 2022 5
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jjqi =
X
v

ffiffiffiffiffiffiffiffiffiffiffiffi
pqðvÞ

q
jvi; (Equation 5)

where pqðvÞ is estimated by the relative frequency of the occurrence of v in the samples generated by the

SNN (see Equation 3 and Figures 1D and 1E) as discussed above.

We employ a gradient-based minimization of the variational energy Eq. Differentiating Equation (4)

with respect to the parameters q = ðWij;biÞ results in (see Methods B: Derivation of the learning rule for

details)

vWij
Eq =

D�
E loc
v � Eq

�
zizj
E
pqðzÞ

(Equation 6)D�
loc

� E

vbk

Eq = Ev � Eq zk
pqðzÞ

; (Equation 7)

where

E loc
v =

X
v 0

Hvv0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pqðv 0Þ

q , ffiffiffiffiffiffiffiffiffiffiffiffi
pqðvÞ

q
(Equation 8)

is the local energy. Evaluating the local energies requires access to an estimate of the probabilities pqðv 0Þ
for all states v0 for which the matrix element Hvv 0 = hvjHjv 0i of the Hamiltonian is non-vanishing. Because

no analytical relation between the physical parameters of the spiking network and the abstract parame-

ters q of the assumed RBM distribution is known, we estimate the probabilities pqðvÞ from samples. In

particular, this means that we need to iterate through the whole collection of generated samples

fzg � pq twice. Once to generate the estimate for pqðv 0Þ and once to calculate the averages in Equa-

tion (6) and Equation (7).

We implement a gradient descent scheme by alternating between the neuromorphic sampling fzg � pq

and host-based gradient calculations (see Figure 2A). In each iteration the chip is reconfigured according

to the gradient given in Equation (6) and Equation (7) using the ADAMoptimizer (Kingma and Ba, 2014), see

Methods C: Adaptive momentum optimization for details. Each training iteration consists of a single hard-

ware (re)configuration followed by multiple sampling runs of 0:1 s each, which corresponds to 2$ 105 inde-

pendent samples, and subsequent gradient calculation (see Figure 2C for relative timings). We emphasize

that only the evaluation part scales with the size of the used network and thereby the represented system,

whereas the sampling time itself is system-size-independent.

In order to track the accuracy of the algorithm, the true ground states jj0i and their exact ground state energy

E0 is obtained via numerical diagonalization of the Hamiltonian. Although reaching small energy deviations

DE =
jE � E0j

N
(Equation 9)

indicates that the algorithm has converged to the ground state, we also consider the state overlap with the

exact ground state, i.e., the quantum infidelity

1 � F = 1 � jhjqjj0ij; (Equation 10)

to verify the accuracy of the obtained state representation. We train for a large number of iterations (typi-

cally 1500) keeping track of energy deviations and infidelities.
Transverse-field Ising model (TFIM)

We test the above algorithm on the 1D TFIM whose Hamiltonian consists of nearest-neighbor Ising cou-

plings and a homogeneous transverse field,

HTFIM = �J
X
hi;ji

si
zs

j
z � h

XN
i = 1

si
x ; (Equation 11)

whereJ is the interactionstrength,h is the strengthof theexternal fieldand hi; ji signifiesnearestneighborpairs.
Periodicboundary conditionsareusedsuch that there is an interactionbetween spin1andspinN. Furthermore,

we consider ferromagnetic interactions where J> 0 such that alignment of neighboring spins leads to a lower

energy. In this case the Hamiltonian of the TFIM in the z-basis is stoquastic (Bravyi et al., 2008).
6 iScience 25, 104707, August 19, 2022
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In the thermodynamic limit the TFIM features a quantum phase transition at the critical point J = h

which separates the ordered phase (h< J) where the energy is dominated by the spin-spin interactions

sizs
i + 1
z from the disordered phase (h> J) where spins increasingly align with the x-axis because of the influ-

ence of the external field six .

Thus, the two relevant observables are the magnetization in x-direction

hsxi =

P
i

�
si
x

�
N

(Equation 12)

and the two-point zz-correlation function

CzzðdÞ =

P
i

�
si
zs

i +d
z

�
N

; (Equation 13)

where d is the distance between spins.

Spin-spin correlations generically fall off exponentially, CzzðdÞxC0ðhÞexpð�d =xzzðhÞÞ whereas in the vicin-

ity of the critical point this dependence turns into a power law (Karl et al., 2017). Thus the correlation length

xzz diverges at the critical point indicating the phase transition point. Because we are dealing with finite

systems (N(10) the phase transition point is shifted and the correlation length stays finite, but becomes

maximal there. We also note that in the ferromagnetic phase the ground state is a superposition between

two components that are strongly z-magnetized in either direction, with an energy gap between symmetric

and anti-symmetric superposition that vanishes in the limit of h=J/0. Physically, this leads to spontaneous

symmetry breaking in the ferromagnetic phase. Interestingly, our SNN approximation will show an

analogous symmetry breaking effect.
PERFORMANCE

Ising phase transition

As described above, we trained a generative model using the neuromorphic platform BrainScaleS-2 to

represent ground states of the TFIM for a spin chain of size N = 8 at various transversal field strengths

h˛ f0:1;0:5;0:9;1:0;1:25;5; 10g. The observables shown in Figure 3 have been obtained through sampling

from the learned neuromorphic quantum states.

Overall, we observe very good agreement with the exact solutions for both magnetization (Figure 3A) and

zz-correlations (Figure 3C). Interestingly, the correlation length systematically deviates for field strengths

deeper in the ferromagnetic regime. As we will demonstrate, this happens because of symmetry breaking

during the learning process.

In Figure 3B the spin-spin correlations in z-direction Czz are shown as a function of distance d. The corre-

lation lengths xzz are extracted by fitting the data points of each field strength with the following function

(shown as dotted lines),

bCzzðdÞ = A expð�d = xzzÞ+B (Equation 14)

where the additional parameters A and B account for finite-size effects. The fit parameters xzz and their

standard deviations are shown in Figure 3C together with the corresponding theoretical values (solid

line). We observe that the correlation length has a maximum at h=Jz1:25 marking the phase transition

point and closely matching the theoretical prediction. Although for h=JR 0:9 the results agree well with

the exact values for both observables, hsxi and xzz , at h=J˛ f0:1; 0:5g the correlation length is significantly

underestimated.

To illustrate the origin of this deviation, we show the probabilities for finding the system in a state with

z-magnetization m (half of the difference between the number of up- and down-spins in v) in Figure 3D.

This reveals that instead of the symmetrical ground state distribution which is learned correctly for hR

0:9, the symmetry is broken for low field values. For h = 0:1 it is shown that two different ground states

with all spins up or down can be reached (see Methods E: Supplementary analysis of symmetry breaking

for more details). The average of these two distributions (dotted line) is a good approximation to the sym-

metric distribution.
iScience 25, 104707, August 19, 2022 7
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Figure 3. TFIM ground-state learning

(A) Average x-magnetization hsxi of an N = 8 spin Ising system for different external fields h=J. Measurement errors are

smaller than the marker size and not shown. The marker colors identify the field strength h=J in all panels.

(B) zz-correlation for different external fields h=J˛ f0:1; 0:5; 0:9; 5:0g as function of spin distance d. An exponential fit

(Equation (14), dotted line) was applied to the data (circles, errors not shown like in (A)) which are in agreement with theory

(crosses).

(C) As (A) but for the zz-correlation length xzz . Shown error bars are standard deviations over the last 200 training epochs.

Deviations are observable for small h.

(D) Distribution of observed z-magnetization values for different h. Although for h˛ f1; 5g symmetric distributions are

learned, one observes spontaneous symmetry breaking for the lower field value h = 0:1. In this case, whether them> 0 or

the m< 0 component of the ground state is found depends on the choice of initial parameters of the network. Averaging

over opposite initialisations (O;P) results in a good approximation (8, mixed). The remaining apparent difference is

because of the limited number of samples (where we replaced 0 entries by 10� 6). Statistical variations are too small to be

resolved, note also the logarithmic y-axis.
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Such spontaneous symmetry breaking happens physically whenever the ground state of the system is (near-)

degenerate,becauseanysmallperturbationof the systemwill break the symmetryandcollapse themacroscopic

superposition into oneof its components. That is the exact ground statebecomesharder toprepare for h/ 0 as

it then increasingly approachesa superpositionof the twoextremeconfigurations
��Yi5N and

��[ i5N. In away,we

see the samebehavior reproducedby the neuromorphic device. This is because in termsof SNNdynamics, such

a distribution requires both highly synchronous activity and synchronous inactivity. Achieving such a behavior

requires distributions with strong local minima, making it hard for anyMCMCmethod to escape. This so-called

mixing problem already manifested itself in the increased need for samples at h=J = 0:9 in order to well repre-

sent the symmetric ground state. The points h=J˛ f0:1;0:5g, are even deeper in the ferromagnetic phasewhich

made learning these highly entangled states prohibitively hard with our static stochasticity system.

Dependence on system size

In order to assess the scalability of our approach we studied its performance for different sizes of the

quantum system. In the experiment shown in Figure 4 the number of spins N is increased from N = 3 to

N = 10 for the critical point h=J = 1. For details of the used network parameters and sample sizes, see

Methods F: Details on the choice of network parameters. Note that the SNN has less parameters than

the number of wave function coefficients for N = 9 and N =10.

Overall, a quantum fidelity greater than 99% can be achieved and even up to 99:9% for systemsN% 6 (Fig-

ure 4B). Because the fidelity imposes an upper bound on the errors of any possible expectation values,

good agreement of the learned observables is guaranteed.

Figures 4C and 4D show exemplary learning curves of energy error and fidelity as a function of the training

iteration. Although the learning curves converge quickly for small system sizes, it takes progressively longer
8 iScience 25, 104707, August 19, 2022
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Figure 4. System-size dependence

Performance at h=J = 1 as a function of system size.

(A and B) Relative energy mismatch and infidelity between the learned and exact ground state increases at fixed number

of hidden units. We report median values and the 15- and 85-percentiles over the last 200 iterations as error bars.

(C and D) Evolution of the approximation quality during learning.
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to reach good metrics for larger systems, with intermediate regimes of very slow improvement. This

behavior is well-studied in the machine learning literature and related to the high number of saddle-points

in the parameter space (Dauphin et al., 2014). It should be noted that these plateaus are not observed for

h=J = 10, where the ground state distribution becomes more uniform, which is easy to reach by gradient

descent independent of the initial conditions.
Limitations

For system sizes above N = 10, we observed a significant drop in the performance of our neuromorphic

implementation after learning. One reason for this is that we are limited to a purely sample-based estimate

when calculating gradients. Estimating expressions like Eloc
v (Equation 8) requires an approximation of the

full distribution pqðvÞ. Depending on the nature of the sampled distribution, MCMC methods need a

certain number of samples to reach a given precision; this number scales linearly with the size of the

relevant sample space which, in the worst case, scales exponentially with the number of physical spins

(Speagle, 2019). This is further discussed and illustrated in Methods G: Comparing with CPU-based imple-

mentation. This issue could be overcome by explicitly computing the factors pqðv 0Þ=pqðvÞ (cf. Equation 17)

for a given set of samples v and physical network parameters, as discussed in Section discussion.

The second source of error relates to the properties of the neuromorphic substrate used. In the following,

we thoroughly study the impact of substrate induced limitations on the performance of our method. In

particular, we consider (1) limited hidden layer size, (2) limited network parameter range, (3) finite network

parameter resolution, (4) non-optimal choice of the learning rate, and (5) deviations of the substrate from

the theoretically assumed dynamics.
Hidden layer size

In order to assess the required number of hidden units for a good variational representation depending

on the system size, we have performed a grid search over ðN;NhÞ = ðf3;.; 8g; f5; 10; 20gÞ drawing

Nsample = 2$105 samples for 1500 training iterations each.

The results are shown in Figures 5A and 5B in terms of median energy error per spin and infidelity of the

state representation averaged over the last 200 training iterations. Although Nh = 5 (red line) is sufficient

to accurately describe the systems for N< 6, both energy error and infidelity increase sharply for larger N.
iScience 25, 104707, August 19, 2022 9
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Figure 5. Analysis of hardware limitations

(A and B) Approximation quality as a function of the hidden layer size, analogous to Figures 4A and 4B. Small hidden

layers can limit the fidelity of the learned state, especially for larger systems. For the system sizes used here (N< 10)

hidden layer sizes of Nh = 20 have proven to be sufficient. We report median values and the 15- and 85-percentiles over

the last 200 iterations as error bars (same as Figures 4A and 4B).

(C) Weight distribution accumulated over the final 200 epochs for N = 8, Nh = 20. The weights are not clipped

significantly by the limited range �63%w% + 63.

(D) Effect of theweight resolution:DKL between the full 7-bit distribution and a coarse grained one as a function of the smallest

possible weight step Dw. For comparison: A successfully trained system with N = 8 and Nh = 20 reached a final DKLz 10� 2

(dashed horizontal line, also in (E) and (F)). We report median and 15- and 85-percentiles over 10 repetitions as error bars.

(E) Comparison between a reference distribution pðTÞ and a distribution perturbed by a ‘‘pseudo weight update’’. We

show the DKL between these distributions as a function of hardware execution time t < T used for sampling the perturbed

distributions ~pðtÞ. We report median and 15- and 85-percentiles over 30 repetitions as error bars.

(F) Convergence behavior for a static configuration: Comparing to the final distribution of a single run (orange) we

observe the ideal 1=Nsample behavior. Convergence towards an average distribution CpðTÞDn over multiple runs stops at a

sampling time of about 0:2 s (blue). Note, for visibility reasons we plot alternative times for the different experiments. We

report median and 15- and 85-percentiles over 30 repetitions as error bars (same as in E).
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Increasing the number of hidden neurons to Nh = 10 (purple line) allows us to obtain accurate ground

state representations up to N = 6 with F > 99%, while Nh R 20 (brown line) is required for N˛ f7; 8g.

Onemight expect that usingmore hidden units could decrease the slope of the curve further, also bringing

the large systems above 99:9% fidelity. However, comparing with Nh = 40 (black dashed line, from

Figures 4A and 4B), there is no significant difference in either energy error or fidelity, suggesting that model

capacity is not the dominating limitation. Although the system is indeed overparameterized in the sense

that there are more variational parameters than wave function coefficients, the physical network parame-

ters can only be controlled with finite precision, and within a finite range. These bounds may limit the repre-

sentational power of the ansatz, as we discuss in the next two sections.
Weight range

The strongest realizable weights on BSS-2 are represented by the digital valueswmax = G63. Figure 5C shows

a typical weight distribution accumulated over the last 200 training iterations (forN = 8 andNh = 20). The dis-

tribution ispeakedaroundzerowith roughly symmetrical tails.However, there is no significantoccupancyof the

outermostweight values, henceclippingbeyond theedgesofG63 shouldhavenoeffect.Weconclude that the

chosen weight range is sufficient and does not restrict the achievable representation accuracy.
Weight resolution

On the BSS-2 system, the synaptic connections are implemented by two 6-bit configurable circuits, one for

the excitatory (wij > 0) and one for the inhibitory (wij < 0) part of the synaptic connectome. We therefore
10 iScience 25, 104707, August 19, 2022
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used two physical synapses to form a logical synapse which gives an additional bit for the sign (seeMethods

A: Description of the BrainScaleS-2 ASIC for details).

A lower parameter resolution leads to a more coarse-grained space of representable distributions. To

assess whether this has a detrimental impact, and hence is a limiting factor for learning performance, we

conducted an experiment where we randomly initialized the network weights (Nv = 8;Nh = 20) drawing

from a uniform distribution wij � Uð�63; 63Þ. The neuron biases were set to the center (i.e., half the

maximum spike rate) of their respective activation functions (cf. Figure 1C). We then artificially reduced

the resolution of the weights, and thus of the distribution, by defining a grid centered at zero and with a

minimum step size Dw > 1 between two allowed weight values. We compare distributions sampled using

the full parameter resolution pfull = pDw = 1 to the distributions pDw obtained by rounding the weights to

the low resolution grids with step sizes Dw. We quantify the distance between these distributions by the

Kullback-Leibler divergence

DKL

�
pkq	 = �

X
v

pðvÞlog�pðvÞ
qðvÞ	 (Equation 15)

such thatp = pfull and q = pDw . For everyDw we repeat 10 sampling experiments each of duration T = 0:1 s.

As Figure 5D shows, we find a quick decrease in DKL as the step size shrinks, which, however, plateaus for

DW % 2. The achieved DKL for Dw ˛ f1; 2g is consistent with the typical final DKLx10� 2 (dashed line) for

trained networks of the same size. Therefore, we conclude that the limited parameter precision also

does not explain the saturation in the observed learning performance.

Note that the network observed here had ample representational power for the system size (cf. Figure 4). It

may be that a more significant effect could be observed for smaller hidden layers. Furthermore, no training

was performed in order to isolate the effect of finite weight resolution on the accuracy of the sampled

distribution.
Learning rate

In all our ground state learning experiments we used a learning rate decay (see Methods C: Adaptive mo-

mentum optimization) to facilitate the descent into minima of the energy landscape. In addition, towards

the end of the training the gradients become small thereby also shrinking the weight updates. At late

stages of the training we typically observe changes in 2--3% of the individual discrete weights. A potential

limitation to the achievable convergence is a still too high learning rate at the end of the training which pre-

vents precise descent into local minima. To test whether this is the case, we perturbed a reference distri-

bution with a ’’pseudo update’’ and observed the size of the resulting deviation measured by the DKL.

In particular, we again initialized our systemwith a uniformly randomdistributed weightmatrixwij � Uð� 62; 62Þ
and collected samples from it over a period of T = 10 s – significantly longer than needed for convergence

z0:1 s. This defined our reference distribution pðTÞ. We then simulated a weight update by changing a fraction

pflip of the weight parameters wij by G1 and again sampled from the modified distribution. This defined a

perturbed distribution ~pðTÞ. Using only samples up to some time t < T defined a series of perturbeddistributions

~pðtÞ. In Figure 5E we demonstrate the evolution of the resultingDKL between these perturbed distributions and

the reference distribution.

We observe that the DKL (green curve) decreases quickly until around t = 0:1 s after which it saturates

because of the distortion induced by the randomweight changes. pflip = 10%was chosen such that the final

DKL corresponds to the observed finalDKLs during training (dashed horizontal line). On the other hand, for a

value of pflip = 2:5%we observe that a better approximation is reached. Because we observed 2–3% weight

flips per learning update at the late stages of the actual training, this result indicates that the ground state

search is not limited by a too large learning rate.
Temporal stability of the substrate

The key feature of the BSS-2 system – and themain catalyst of its speed and efficiency – is the analog nature

of its neuro-synaptic dynamics. However, its direct benefits for our approach come with a number of spe-

cific challenges that do not appear in digital devices or simulations, such as a certain amount of component

diversity, as shown in Figure 1C. Although this particular effect is automatically corrected for during
iScience 25, 104707, August 19, 2022 11
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learning, other phenomena are more subtle and difficult to compensate. An immanent property of analog

components is the presence of small instabilities and drifts in their parameters (Schemmel et al., 2010; Pfeil

et al., 2013; Schmitt and Heyl, 2018). In this section we study the impact of such effects on the sampling and

learning performance by conducting long-duration sampling experiments of T = 10 s (initialization as in

Section weight resolution).

First, we compare the convergence during a single run by measuring DKLð~pðtÞkpðTÞÞ (orange line in Fig-

ure 5F). Here, by construction, convergence to zero is assured and we see the expected 1=Nsample

behavior of Monte Carlo sampling. Our aim was to test the reproducibility and stability of the sampling

procedure over multiple iterations and reconfigurations for a fixed parameter set q. In a second exper-

iment, we therefore repeated the sampling procedure for T = 10 s for n = 30 times and averaged the re-

sulting distributions. We then compared the observed distributions pðtÞ to the average target distribution

ptarget = hpðTÞin. Initially, the DKL gradually decreased as more samples were gathered (Figure 5F).

However, beyond 200 ms the DKL saturated. This shows that even a repeated experiment with the exact

same configuration of network parameters q samples from a slightly different distribution than the orig-

inal one pq. This, in turn, indicates that the parameters of the physical system do not stay constant over

the duration of an entire experiment.

The timescale of variability observed above is significantly shorter than the total duration of both training

and evaluation, each of which covered at least 200 epochs of 100 ms. We thus conclude that the temporal

variability of the analog parameters represents the main limiting factor for the fidelity of our approach on

BSS-2. For larger system sizes, where more samples are required to obtain precise gradient estimates, this

effect becomes increasingly severe and thus causes the observed drop in the representational power of our

neuromorphic implementation. Understanding this limitation points directly to possible mitigation strate-

gies, which we address in the discusion below.
DISCUSSION

In summary, we havepresented ademonstration of neuromorphic ground state search for quantum spin sys-

tems. We have designed a variational algorithm suitable for implementation in the mixed-signal BSS-2 sys-

tem which enables fast spike-based sampling in an inherently parallel fashion and independent of the

network size. These advantages could provide significant speedups for the emulation of large networks

or quantum spin systems. For this reason we have tested the scalability of our approach, thereby expanding

previous work by Czischek et al. (2022) from representing small entangled states to larger quantum spin sys-

tems of up to N = 10 spins. Furthermore, we have analyzed the TFIM phase transition and found excellent

agreement with exact solutions. In the ferromagnetic regime we observed symmetry breaking in the SNN

activity reflecting the tendency of the quantum spin system toward spontaneous order.

For systems withN> 10, the reachable approximation quality decreased sharply. By systematically studying

potential limiting factors, we were able to exclude several possible causes of this degradation, namely the

limited number of hidden neurons, finite weight range and resolution, as well as non-optimal learning rate.

Moreover, we found that the currently available parameter stability on BSS-2 leads to a limited accuracy of

gradients and thus represents the main technical obstacle to be overcome for further improving the

approximation quality at large system sizes.

A second, algorithmic limitation of our learning scheme is the requirement of the precise knowledge

of pðv 0Þ for all non-zero observed pðvÞ that are connected by a non-zero Hvv 0 . We showed that the

effect of this limitation on purely sampling-based methods is independent of the computational sub-

strate as it is shared by CPU-based implementations (see Methods G: Comparing with CPU-based

implementation).

Neither the technical nor the algorithmic challenges are fundamental roadblocks for using neurmorphic

hardware for variational learning of quantum states and will be addressed in future research. Because

BSS-2 was developed as a multi-purpose research system, its capabilities were not optimized for

spike-based sampling. Advancements in the development of BSS-2 and other neuromorphic hardware

platforms (Roy et al., 2019) will alleviate technical issues and introduce new capabilities and tools. For

analog, and in particular accelerated platforms, parameter variability over typical experiment durations

of tens to thousands of seconds can be greatly reduced. Furthermore, increasing the system size beyond
12 iScience 25, 104707, August 19, 2022



Figure 6. Computation-time scaling

Scaling behavior of the sample generation for

different sizes of the physical system and three

different sizes of the hidden layer. Because of the

physical nature of BSS-2, its emulation time remains

constant, whereas simulation time increases

linearly for the CPU implementation. Note that

while the exact measurement values depend on the

choice of CPU and parametrization of BSS-2, the

difference in scaling is fundamental.
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the neuron number currently available on a single BSS-2 chip will likely require a multi-chip setup with

low-latency connections (see, e.g., Schemmel et al., 2010; Thommes et al., 2022, but also Petrovici

et al., 2017).

On the other hand, using purely digital neuromorphic chips such as ODIN (Frenkel et al., 2018) or Loihi

(Davies et al., 2018) would circumvent the instabilities of an analog system and thus permit scaling to larger

quantum system sizes. Although this might come at the cost of losing some of the analog advantages of

BSS-2, mainly with respect to speed and energy efficiency, it will likely still outperform more conventional,

CPU/GPU-based solutions (Göltz et al., 2021) (see Figure 6 and Methods G: Comparing with CPU-based

implementation). In either scenario, improved control and readout of the neuromorphic substrate

could also allow the direct calculation of Boltzmann factors from the weight and bias parameters. This

would enable the efficient computation of local energies (Equation 8) and thus solve the problem of having

to densely sample the visible distribution (Carleo and Troyer, 2017).

For small transverse fields we observed symmetry breaking during the training. The parity symmetry corre-

sponding to a global spin flip required two differently initialized training runs to be reproduced deep in the

ferromagnetic phase. The root cause is the near-degeneracy of the two highly synchronous states (all

active, all inactive). This corresponds to the well-known mixing problem for which spike-based solutions

have been proposed (Leng et al., 2018; Korcsak-Gorzo et al., 2022) which would be amenable to a neuro-

morphic implementation and should allow a faithful representation of such distributions without the need

for re-initialization. From an algorithmic perspective one could also enforce this symmetry by supplement-

ing the generated sample sets with the corresponding spin-flipped configuration for each sample gener-

ated by the network. This technique can be employed to enforce any given symmetry of the physical model

(Choo et al., 2018; Bukov et al., 2021; Nomura, 2021).

Another promising idea for scalable algorithms is the use of local learning rules that only involve connected

neuron pairs because most modern neuromorphic platforms support local on-chip learning. An example

for training RBMs with a local learning rule is contrastive divergence (Hinton, 2012), for which an event-

driven SNN version has been proposed (Neftci et al., 2014). In addition, such generative networks can

be further fine-tuned using error backpropagation, which, in turn, can be approximated by local learning

rules (Whittington and Bogacz, 2017; Sacramento et al., 2018; Crafton et al., 2019; Lee et al., 2020; Haider

et al., 2021), including spike-based variants already demonstrated on BSS-2 (Billaudelle et al., 2020; Göltz

et al., 2021). The question of how to translate these local update schemes to variational ground state

learning is left as an important direction for future research.

Finally, algorithmic improvements could be enabled by novel encodings of NQS with SNNs. A straightfor-

ward idea for encoding not only the amplitudes, but also phases of the wavefunction would be to use addi-

tional output units or even a second network like in (Torlai et al., 2018). Phasor networks represent another

possible avenue for encoding complex numbers with SNNs. It was shown that these networks, which

consist of resonate-and-fire neurons with complex dynamical variables, can be implemented by inte-

grate-and-fire SNNs and can robustly leverage spike-timing codes (Frady and Sommer, 2019). If successful,

these approaches to representing complex values in SNNs could enable the extension of the presented

variational method to non-stoquastic systems.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Spike-based inference Petrovici et al. (2016) (PRE)

ADAM optimizer D. P. Kingma and Ba (2014) (arXiv)

Other

BrainScaleS-2 Pehle et al. (2022)
RESOURCE AVAILABILITY

Lead contact

Additional information: Further information and requests for resources should be directed to, Andreas

Baumbach (andreas.baumbach@kip.uni-heidelberg.de).

Data and code availability

� Data availability: Data for all figures is available at GitHub repository.

� Code availability: Reproduction of the actual experiments requires access to BSS-2. The software is

available, in principle, at GitHub repository.
METHOD DETAILS

Methods A: Description of the BrainScaleS-2 ASIC

The BSS-2 application-specific integrated circuit (ASIC) features 512 neuron circuits, each capable of

emulating the adaptive exponential integrate-and-fire neuron model. With appropriate parametrization,

this reduces to the LIF model required by our approach (see Methods D: Leaky integrate-and-fire neurons

and Gerstner et al., 2002 for details). These single compartments can be wired to resemble structured neu-

rons. An on-chip analog parameter memory as well as integrated static random-access memory (SRAM)

cells allow the individual configuration of each neuron. Each neuron integrates input from 256 dedicated

synapses, which carry a 6-bit weight. Synapses can either be exclusively excitatory or exclusively inhibitory.

However, combining two neuron circuits to one logical neuron allows us to implement both types of con-

nections between all 256 pairs of such logical neurons on a chip.

This analog core is accompanied by supporting logic, including circuitry for communication and configu-

ration (Pehle et al., 2022). In particular, there is circuitry for providing on-chip high-frequency Poisson spike

sources. A routing module allows mixing of these spikes with external stimuli and recurrent events.

BSS-2 also comes with two general purpose embedded custom processors for implementing on-chip plas-

ticity. Future work could make use of these plasticity processing units to realize an on-chip implementation

of our training algorithm.

The analog nature of the circuitry results in a slight heterogeneity between different neurons. We compensate

for this by configuring the single circuits individually in a way that the resulting logical neuron obeys the desired

set of neuron parameters (time constants, etc.). In particular, we choose a small membrane time constant

tm = Cm

gl
z0:5 ms and comparatively large synaptic and refractory time constants tsyn = trefz10 ms.

Each logical synaptic weight is implemented by two 6-bit circuits (one for excitatory weights wij > 0 one for

inhibitory weights wij < 0). Biases are set directly using the 10-bit leak potential parameter (Vl in Equation 1).

Because of the circuit design we use only a part of the available settings as can be seen in Figure 1C where

the domain of the activation functions is restricted to a dynamic range equivalent to about 8-bit. Further-

more, because of the digital-to-analog conversion of these parameters, we have observed a reduction in

the resolution of the corresponding membrane potentials by one (least significant) bit.
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Methods B: Derivation of the learning rule

We calculate the derivative of the variational energy with respect to a weightWij of the network assuming a

stoquastic Hamiltonian H and the normalized state representation jji =
P
v

ffiffiffiffiffiffiffiffiffiffi
pðvÞp jvi:

vWij Eq = vWij

X
vv 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðvÞpðv 0Þ

q
Hvv 0 (Equation 16)ffiffiffiffiffiffiffiffiffiffiffis
=
X
vv 0

pðv 0Þ
pðvÞHvv 0vWij pðvÞ (Equation 17)ffiffiffiffiffiffiffiffiffiffiffi

0
s  !
=
X
vv0

pðv Þ
pðvÞHvv 0

X
h

zizjpðv 0 Þ � pðvÞ
X
z0

z
0
i z

0
jpðz

0 Þ (Equation 18)X
loc

X
loc

X 0 0 0

=

vh

Ev zizjpðzÞ �
v

Ev pðvÞ
z0

zi zj pðz Þ (Equation 19)X�
loc

�

=

z

Ev � Eq zizjpðzÞ (Equation 20)D�
loc

� E

= Ev � Eq zizj

pðzÞ
: (Equation 21)

FromEquations (16 and 17) we have used the symmetry of the Hamiltonian. In Equation (19) the local energy

Eloc
v =

P
v 0
Hvv 0

ffiffiffiffiffiffiffiffiffiffiffi
pðv 0Þp

=
ffiffiffiffiffiffiffiffiffiffi
pðvÞp

is introduced and the variational energy appears in Equation (20) because of

the relation Eq =
P
v
Eloc
v pðvÞ.

To deal with the numerical problem of vanishing entries in pqðvÞ a small parameter ε is added to it,

essentially introducing a bias toward a uniform distribution. The local energy thus reads

Eloc
v =

P
v
Hvv 0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pv 0 + ε

p
=
ffiffiffiffiffiffiffiffiffiffiffiffi
pv + ε

p
where ε = 10� 12 was used throughout.

With the above derivation the gradient of the BM, VqEqhDqBM, can be estimated as sample average. For

the learning scheme we assume that the variational energy gradient with respect to the BSS-2 hardware

parameters, DqBSS, is well approximated by the analogous computation over hardware samples.
Methods C: Adaptive momentum optimization

Because the gradient only provides local guidance, it is advisable to scale its components according to the

roughness of the cost landscape. An adaptive step size decay probes the cost surface at increasing reso-

lution as the training progress and bounds the number of steps that need to be computed to reach conver-

gence. We typically employed an exponentially decaying step size aðt + 1Þ = aðtÞglr such that 1=ð1 �glrÞ
sets a timescale of required optimization steps. We found the values að1Þ = 1, glr = 0:999 to work well

in practice.

In addition to the fixed step size decay, we employed the ADAM scheme (Kingma and Ba, 2014) which com-

bines momentum with an adaptive learning rate which is chosen for each network parameter individually. It

is a first-order method that estimates mean,mðtÞ, and variance, vðtÞ, of the gradient by exponential running

averages with respective decay rates b1 and b2:

mðt + 1Þ) b1

1 � bt
1

mðtÞ+ 1 � b1

1 � bt
1

DqBSSðtÞ (Equation 22)

b 1 � b

vðt + 1Þ) 2

1 � bt
2

vðtÞ+ 2

1 � bt
2

Dq2BSSðtÞ (Equation 23)

whereDq2BSSðtÞ is the component-wise square of the gradient.

The parameters are updated according to the inverted relative error of the gradient where mðtÞ acts as a
momentum and vðtÞ modifies the learning rate

qBSSðt + 1Þ) qBSSðtÞ � hðtÞ mðtÞffiffiffiffiffiffiffiffiffi
vðtÞp

+ εADAM

: (Equation 24)
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The small parameter εADAM is required for regularization purposes. BecausejDqðtÞ= ffiffiffiffiffiffiffiffi
vðtÞp j% 1 the update

implicitly adapts the step sizes based on the signal-to-noise ratio of the derivatives. The canonical hyper-

parameters for ADAM are used: b1 = 0:9, b2 = 0:999, εADAM = 10� 8.

Methods D: Leaky integrate-and-fire neurons

The LIF neuron model belongs to the family of continuous spiking neuron models (Gerstner et al., 2002).

The neuron’s membrane is modeled as a capacitor with capacitance Cm. It can be charged by the synaptic

current stimulus IsynðtÞ whereas it is constantly discharged across a leak conductance gl.

According to Kirchhoff’s laws the voltage u across the capacitance is described by

Cm
duðtÞ
dt

= glðVl � uðtÞÞ+ I synðtÞ : (Equation 25)

The potential Vl plays the role of the resting state which is, in the absence of external input, approached on

the timescale of the circuit tm = Cm=gl .

The spike mechanism is triggered when the membrane potential crosses a threshold Vthresh from below:

u
�
tspike

	
= Vthresh ^ u0�tspike	>0 : (Equation 26)

After the spike has been fired, the membrane potential is clamped to a reset value during the absolute re-

fractory period tref :

u
�
tspike % t % tspike + tref

	
= Vreset : (Equation 27)

BSS-2 implements current-based synapses in which case synaptic weights carry the unit of current. The syn-

aptic input of neuron j is determined by the exponential synaptic kernel kðtÞ = QðtÞexpð� t =tsynÞ convolved
with spike trains of presynaptic neurons SiðtÞ =

P
ts

dðt � tisÞ:

I synj ðtÞ =
X
i

wij

�
Si+k

	ðtÞ = X
i

wij

X
tis

kðt � tsÞ: (Equation 28)

The influence of spikes thus decays with the timescale tsyn.

Methods E: Supplementary analysis of symmetry breaking

In the experiments shown in Figure 3 we saw that the symmetry of the ground state was broken for h˛
f0:1; 0:5g in favor of ’’spin up’’ or simultaneous firing of all visible neurons. This bias for the high activity state

might be because of the exponential synaptic kernel’s influence extending beyond the refractory period.

Below Figure shows the energy and infidelity data after training as function of h=J, respectively. The infidel-

ity with the symmetric ground state suddenly jumps to Fz10� 1 for the symmetry broken states. The reason

why the observables in Figure 3 were still relatively close to the exact values despite low fidelity is that our

minimization objective, the energy expectation value, has the form Eq = � JCzzðd = 1Þ � hhsxi. The
Hamiltonian is precisely the sum of zz and x terms and thus the symmetry broken states in fact optimize

the sum of both observables.
Performance across a quantum phase transition

Relative energy error (left) and infidelity (right) as function of h=J. Note that the field values are not spaced equidistantly.

The network parameters used in this figure is as in Figure 3. We report median values and 15- and 85-percentiles over the

last 200 iterations as error bars.
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By setting an initial negative bias with respect to the neurons’ activation functions one can steer the variational

algorithm to converge to the opposite symmetry broken state where visible neurons are collectively inhibited.

BelowFigure compares the learned state for standard bias initialization at the center of the activation functions

and for a shift of Db = � 2 LSB with the symmetrical ground state distribution, confirming this effect.
Spontaneous symmetry breaking in the ordered phase

Symmetry breaking at h=J = 0:1. Learned probability distribution over visible neuron configurations v corresponding to

basis states of the spin system (dots) compared to the exact ground state distribution (solid). Standard initialization (blue)

favors a high activity state, while an initial negative bias offset on all neurons (red) results in final state with low network

activity. The network parameters used in this figure is as in Figure 3.
Methods F: Details on the choice of network parameters

Here we specify the network and learning parameters used to produce the data shown in the figures in the

main text.

� Figure 3 (Ising phase transition): Each data point used slightly different network topologies and sam-

pling parameters which are summarized in below Table. Note that these parameters were not opti-

mized and most models are overparameterized with respect to the Hilbert space dimension and

likely oversampled. For h = 0:9 more samples were required in order to adequately learn both

modes of the symmetric ground state.
Overview of experiment parameters

h=J 0.1 0.5 0.9 1.0 1.25 5.0 10.0

Nsample½105� 2 2 4 2 2 2 2

Nh 50 30 40 40 30 20 30

#weights 400 240 320 320 240 160 240

#biases 58 38 48 48 38 28 28

Parameter settings for learning the ground state with N = 8 (256 wave function coefficients) at different h=J.

20
� Figure 4 (system-size dependence): Learning is performed in a network with Nh = 40 hidden units

and Nsample = 2$105 samples are drawn in each iteration for N = f3;.;8g. For N˛ f9; 10g slightly

more hidden units Nh = 50 and Nsample = 4$105 samples were used.

� Figure 5C (weight resolution): The uniformly random weights are rounded to subgrids of the full

resolution grid f�63;�62;.; 0;.; 62; 63g with equidistant steps of sizes Dw ˛ f2; 4; 8; 16; 32; 64g.
We construct the grid starting at zero and counting up to 64 in Dw-steps. Because the maximum

possible weight value is 63 we decremented the grid edges from G64 to G63. Thus, the resulting

grids have 128=Dw + 1 possible weight values. Note that Dw = 1 represents full resolution with 127

weight values.
iScience 25, 104707, August 19, 2022
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Methods G: Comparing with CPU-based implementation

Quality

For this comparison, we perform an analogous experiment to the one shown in Figure 4 using a conven-

tional RBM implementation (see below figure, circles) by running the same learning algorithm on a CPU.

Gibbs sampling (Geman and Geman, 1984) is used for probabilistic inference of the spin states pqðvÞ and
stochastic estimation of the gradients VqEq. Specifically, a network with Nh = 40 hidden units is used and

Nsamples = 2$105 are generated across 10 randomly initialized Markov chains (for better exploration of the

state space) in each iteration. The network weights were trained for 10,000 iterations with a learning rate

of 0.001.
System-size dependence compared to software models

The energy error of the BSS-2 implementation (crosses) as a function of the system size N (as shown in Figure 4A). The

performance of a comparable software RBM (circles) is shown running the same learning scheme with the same number of

samples using Gibbs sampling on a CPU. We report median values and the 15- and 85-percentiles over the last 200 it-

erations as error bars.
As the system size increases we observe an exponential increase of the energy error, albeit at a lower over-

all error level. This can be explained by the decrease in samples per estimated parameter as the physical

system size increases, leading to high variance in the distribution and gradient estimates. Note that unlike

BSS-2 the CPU implementation has access to weights and biases with floating-point precision (64-bit, see

Methods A: Description of the BrainScaleS-2 ASIC).

This experiment highlights an algorithmic limitation of the employed learning scheme for both CPU and

BSS-2 implementations, namely the reliance on a sample estimate of the distribution over spin states

pqðvÞ. Implementations in the NQS literature instead compute the local energy associated with a

sample v by exactly calculating the relevant likelihoods pqðv0Þ from the network weights. For a sufficiently

accurate conversion of hardware parameters to the parameters of the hardware distribution, this method

can be applied to neuromorphic back-ends as well. For digital systems, this approach would be straight-

forward, whereas for analog ones such as BSS-2 it will need to rely on sufficient precision in the calibration

data and in the analytical approximation of the sampled distribution.

Performance

In Figure 6 we compare a handcrafted, reasonably optimized C++ implementation of the Gibbs sampling

algorithm with our spike-based implementation on BSS-2. Both methods are tasked to generate

samples for multiple sizes of the physical system (N˛ f4; 8; 12; 16; 20; 50; 100g) and multiple hidden layer

sizes (Nh ˛ f20; 40; 80g).

To demonstrate the fundamental difference in scaling behavior we restrict the investigation to a single

sampling run. In order to decrease the relative uncertainty of the measured timing we increase the number

of samples to 106.
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The CPU calculation is dominated by the number of synaptic interactions and thus runtime scales bilinearly

with both the number of visible and number of hidden units, as can be seen in Figure 6. The CPU implemen-

tation ran in a single thread on a 2021 MacBookProM1Pro. Further improvement would be possible by e.g.

using multiple Markov chains running in parallel on multiple cores.

For BSS-2 these systems fit on a single ASIC (for details see Methods A: Description of the BrainScaleS-2

ASIC) and therefore the runtime is network-size-independent. Consecutive samples can be taken every

tref=2 which, for our parametrization, results in the 5 s for generating 106 samples, shown in Figure 6.

A reduction of both tsyn = tref should also be possible, which would further speed up the sampling

generation, at the price of a more demanding calibration process and higher communication bandwidth

requirements. This is achievable with modern manufacturing technologies, as predecessors of the BSS-2

architecture have already demonstrated higher speed-up factors of 105 and 104 w.r.t. biological real-

time (Pfeil et al., 2013; Schemmel et al., 2010).
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