Volcanism and the Greenland ice cores: A new tephrochronological framework for the last glacial-interglacial transition (LGIT) based on cryptotephra deposits in three ice cores

Eliza Cook a, b, *, Peter M. Abbott a, 1, Nick J.G. Pearce c, 2, Seyedhamidreza Mojtabavi d, 3, Anders Svensson b, Anna J. Bourne a, 4, Sune O. Rasmussen b, Inger K. Seierstad b, 5, Bo M. Vinther b, Joseph Harrison e, Elliott Street e, Jørgen Peder Steffensen b, Frank Wilhelms d, Siwan M. Davies a

a Department of Geography, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
b Physics of Ice, Climate and Earth, Niels Bohr Institute, University of Copenhagen, 2100, Denmark
c Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, UK
d Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
e Centre for Quaternary Research, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

Article history:
Received 8 March 2022
Received in revised form 23 May 2022
Accepted 31 May 2022
Available online xxx

Handling Editor: Giovanni Zanchetta

Keywords:
Cryptotephra
Isochron
Greenland
Ice cores
Chronology
Quaternary
Volcanism

ABSTRACT

Chemical profiles from Greenland ice cores show that the frequency of volcanism was higher during the last glacial-interglacial transition (LGIT) and early Holocene (17–9 ka b2k) than in any other period during the last 110 kyr. This increased frequency has partly been linked to climate-driven melting of the Icelandic ice sheet during the last deglaciation, with regional isostatic changes thought to alter mantle viscosity and lead to more eruptions. Our study is the first to construct a comprehensive tephrochronological framework from Greenland ice cores over the LGIT to aid in the reconstruction of volcanic activity over this period. The framework is based on extensive high-resolution sampling of three Greenland ice cores between 17.4 and 11.6 ka b2k and comprises a total of 64 cryptotephra deposits from the NGRIP, GRIP and NEEM ice cores. We show that many of these tephras are preserved within the core without an associated chemical signature in the ice, which implies that reconstructions of volcanism based solely on glacio-chemical indicators might underestimate the number of events. Single glass shards from each deposit were geochemically characterised to trace the volcanic source and many of these deposits could be correlated between cores. We show that the 64 deposits represent tephra deposits from 42 separate volcanic events, and of these, 39 are from Iceland, two from the north Pacific region (Japan and USA) and one has an unknown source. Six deposits can be correlated to terrestrial and/or marine tephra deposits in the Northern Hemisphere and the remaining 36 are unreported in other archives. We did not locate tephra from the compositionally distinctive Laacher See eruption (~13 ka b2k) in our records. Combining our new discoveries with the previously published tephra framework, raises the number of individual tephra horizons found in Greenland ice over this interval to 50. This significantly improves the regional tephrochronological framework, our knowledge of the eruptive history of Iceland during the LGIT and provides new tephra constraints over key LGIT climate events. Consequently, this framework can guide sampling strategies of future tephra studies in the terrestrial and marine realms aiming to link these records to the Greenland ice cores to assess regional climate synchrony.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction: exploiting ice repositories to establish tephrochronological frameworks

Tephra (derived from the Greek word τεφρα meaning ‘ashes’) is the pyroclastic fragmental material produced during volcanic eruptions, including ash, pumice and lapilli (Thörarinsson, 1944; 1981; Fisher, 1961). The ash component (<2 mm diameter) of tephra consists of various phases including juvenile glass grains, that can be transported over large distances and deposited instantaneously within days or weeks (Sarna-Wojcicki et al., 1981). Deposition of glass shards over ice sheets and their burial by subsequent snowfall gives rise to a unique and unrivalled repository of volcanic history (e.g. Kurbatov et al., 2006; Dunbar and Kurbatov, 2011; Davies et al., 2014; Bourne et al., 2015). Even low concentrations of glass shards, invisible to the naked eye and referred to as ‘cryptotephras’, can form stratigraphically distinct deposits in ice cores and marine and terrestrial sediments (e.g. Lowe and Hunt, 2001; Turney et al., 1997; Mortensen et al., 2005; Davies, 2015; Bourne et al., 2015). In addition, the compositional signature of the glass shards is representative of the bulk geochemistry of magma and thus present a distinct fingerprint for tracing deposits to specific volcanic sources and for correlation purposes. Identifying multiple tephra deposits in high-resolution proxy records, such as ice cores, enables the construction of a ‘tephrostratigraphy’, that can be used to correlate to distal marine and/or terrestrial palaeoarchives if they contain equivalent layers. If these tephra horizons can be dated the resulting ‘tephrochronology’ allows age estimates to be transferred to all occurrences of a specific layer (e.g. Lowe, 2011). Due to the frequency of volcanic events, the widespread nature of ash dispersal and high preservation potential, tephrochronology is an extensively applied chronological tool for constraining the high volcanic frequency reconstructed from the ice-core chronologies of three of the deep Greenland ice-core records. The aim was to construct a detailed Greenland tephra event stratigraphy of the past 110 kyr. Further support for a volcanically active Northern Hemisphere over the LGIT. Irrespective of the driving mechanisms, the high frequency of volcanic activity observed in the LGIT is not reflected in the existing record of tephra deposits. This is largely a result of limited and discontinuous sampling strategies in early studies, that found 15 deposits, guided predominantly by the presence of visible tephra deposits, the largest acidity peaks in the ECM profile and key tephras (Grönvold et al., 1995; Zielinski et al., 1996; Mortensen et al., 2005). In this study, we build on the work of Bourne et al. (2016) and Cook et al. (2018a) and adopt a detailed tephra sampling strategy to investigate the LGIT in a systematic way.

Volcanism was prevalent in different regions of the Northern Hemisphere during the LGIT (Fig. 1) and thus far of the 15 deposits identified in Greenland ice cores, 13 originate from Icelandic volcanoes, one from Japan and one from an unknown source (Grönvold et al., 1995; Mortensen et al., 2005; Bourne et al., 2016; Cook et al., 2018a) (Fig. 2). One of the key LGIT tephra deposits identified in the GRIP and NGRIP records is the Vedy Ash, a widely distributed Greenland Stadial-1 (GS-1) deposit from Katla with an age of 12,172 ± 114 ka (Grönvold et al., 1995; Mortensen et al., 2005). Ash from this eruption has been extracted from numerous terrestrial sites throughout Europe, Scandinavia and Russia and from North Atlantic marine records (e.g. Mangerud et al., 1984; Thornalley et al., 2010; Lane et al., 2012) and has been used to constrain time transgressive environmental changes between Europe and Scandinavia during GS-1 (Lane et al., 2013). Other important marker deposits identified in Greenland ice during the LGIT include two Borrobol-type tephras from Iceland (Cook et al., 2018a), found in Greenland Interstadial-1e (GI-1e) and Towada-Hachinohe (To-H) during GS-2.1a (Bourne et al., 2016), an explosive eruption which occurred in northern Honshu, Japan (Aoki and Arai, 2000) (Fig. 2).

Other studies have demonstrated that ash from Kamchatka, North America, Alaska and the Aleutian Islands (Fig. 1) has also been dispersed to the Arctic during the Holocene and last glacial (Fig. 2, Jensen et al., 2014; Sun et al., 2014; Bourne et al., 2016; van der Bilt et al., 2017; Cook et al., 2018b). The INTIMATE Framework for the Northern Hemisphere also includes well-known LGIT tephras from the Eifel and Mediterranean regions (see Fig. 2 for details and references), but as yet, ash from events such as the Laacher See Tephra, the Neapolitan Yellow Tuff from Campi Flegrei and the Y-1 layer (Etne) have not been found in Greenland.

Here we present a new tephrochronological framework for the LGIT covering 11.6–17.4 ka b2k, based on a semi-continuous sampling approach of three of the deep Greenland ice-core records. The aim was to construct a detailed Greenland tephra event stratigraphy to improve age estimates of known eruptions and identify...
new deposits to add to the INTIMATE framework. Over 240 m of ice was investigated spanning GS-1, GI-1 and GS-2.1a which represents the most comprehensive assessment of tephra preserved during this interval (Fig. 3). Sixty-four new tephra deposits are identified across the 3 cores which represent 42 individual volcanic events. This new framework significantly improves the volcanic history of this period and will guide future tephra studies in other archives.

The depths and magma composition of 12 ice-ice tie points from this study were reported in Rasmussen et al. (2013) and Seierstad et al. (2014) to aid GICC05 timescale transfer from NGRIP to GRIP and NEEM and the full details are presented and interpreted here.

2. Methodology

Using a multi-core semi-continuous sampling approach, we explored the NEEM, NGRIP and GRIP ice cores, using three different sampling strategies as described below.

2.1. Ice core sampling and processing strategies: NEEM

2.1.1. Low-resolution screening of NEEM

Continuous, low-resolution (1.1 m) screening of NEEM was performed using discrete meltwater samples, from a meltwater stream normally discarded following measurements via the continuous flow analysis (CFA) system. This was an experimental approach with the aim of maximising cryptotephra identification in ice cores. The CFA system measures numerous parameters from ice-meltwater synchronously, including soluble and insoluble impurities and the chemical composition of gases trapped in air bubbles (Kaufmann et al., 2008). The CFA system sequentially
measures 1.1 m long sticks of ice with a 3.1 × 3.1 cm cross section. The ice is melted on a heated plate with a ‘clean’ inner sample used for high quality continuous measurements, while meltwater from the outer part of each stick is retained for less sensitive discrete analyses, including tephra. A sample of approximately 90 ml per 1.1 m section was collected in individual bottles for tephra analysis. The meltwater samples spanning GS-2 to the early Holocene (106 m long section of ice) were investigated with basic microscopy and used to pinpoint sections of NEEM for subsequent higher-resolution sampling (Fig. 3).

2.1.2. High-resolution ‘targeted’ sampling of NEEM

High-resolution sampling of NEEM ice was undertaken to explore whether the results of the low-resolution CFA screening could be replicated and if the stratigraphic position of tephra horizons could be refined. This strategy resulted in the sampling of 47.3 m of NEEM ice between 1418 and 1526 m (Fig. 3), based on three criteria: (1) depth intervals with positive tephra occurrences (typically >5 tephra glass shards) in the NEEM CFA samples, comprising 42 CFA sticks (1.1 m long); (2) ice depths spanning published age ranges for important tephras such as the Vedde Ash, Laacher See Tephra, Peni er Tephra and Borrobol Tephra; and (3) prominent peaks in the ECM record, with 7 events sampled.

2.2. Ice core sampling strategies: NGRIP and GRIP

High-resolution sampling of the NGRIP and GRIP cores (Fig. 3) was based on a broad, semi-continuous sampling approach to maximise the identification of cryptotephras, instead of targeting specific events in the chemical records. In total, 100.10 m of ice was sampled from NGRIP and 60.5 m from GRIP over the LGT. In an attempt to locate the Laacher See, Borrobol and Peni er Tephras, the entire GI-1 interval in NGRIP was sampled as well as all ice from GRIP not utilised in prior studies. In GS-2.1a, continuous ice samples from NGRIP and GRIP were taken widely around tephra layers that were already identified in NEEM CFA samples (see section 2.1.1).

2.3. Sample processing and identification techniques

The NEEM, NGRIP and GRIP cores are archived in 55 cm sections at the University of Copenhagen and direct ice samples were taken by sawing off a thin strip of ice (~2 cm²) from the outer edge of each section of interest. These strips were then divided into three pieces (0–20, 20–40 and 40–55 cm) and the individual samples were melted, producing a typical volume of 35–45 ml. This meltwater was then progressively transferred into test tubes for each individual sample and repeatedly centrifuged for 5 min at 2500 rpm to retain all particulate matter, including tephra, at the bottom of the tube. Supernatant water was discarded, leaving 2–3 ml of water per sample that was evaporated onto frosted glass microscope slides and covered in epoxy resin for optical assessment by high magnification light microscopy. Subsequently, slides containing tephra glass shards were prepared for geochemical analysis. There was a consistent background of 1–3 tephra resembling particles per sample, so typically samples containing around 10 grains, or morphologically ‘typical’ tephra grains in low concentrations were selected. There remains ~90 samples from the three ice cores that could benefit further investigation.

2.4. Geochemical analysis and interpretation

Electron probe microanalysis (EPMA) using wavelength dispersive spectrometry (WDS) was used to determine the major (Si, Al, Fe, Mg, Ca, Na, K) and minor (Ti, Mn, P) element composition of individual tephra grains. All major/minor element concentrations (wt%) described here refer to anhydrous concentrations (i.e.
analytical totals normalised to 100%). EPMA requires flat, exposed horizontal sections through individual grains for efficient electron bombardment and X-ray generation (Hunt and Hill, 1993; Hayward, 2012). These thin sections were produced by grinding down the epoxy mount on tephra-containing slides using silicon carbide paper and the exposed surfaces were then polished using 6, 3 and 1 μm diamond suspension and 0.3 μm alumina powder. All EPMA data were obtained using a Cameca SX100 electron probe microanalyser at the Tephra Analysis Unit, University of Edinburgh. This system has five wavelength dispersive spectrometers and was calibrated daily using internal standards as described by Hayward (2012). BCR2g and Lipari were analysed daily as secondary standards and monitored to identify any instrumental drift. All sample and secondary standard analyses are provided in Appendix A.

Trace element data were collected from the same glass shards that had undergone EPMA, using laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) at the Department of Geography and Earth Sciences, Aberystwyth University. A Coherent GeoLas ArF 193 nm Excimer LA system with a fluence of 10 J cm⁻² at a repetition rate of 5 Hz was used. Analyses were performed using a 10 μm laser beam diameter and spectra were collected over 24 s acquisition periods using a Thermo Finnegan Element 2 sector field ICP-MS. The minor ²⁹Si isotope was used as the internal standard (using normalised SiO₂ results from EPMA) with the NIST 612 reference glass used for calibration, taking concentrations from Pearce et al. (1997). A fractionation factor was applied to the data to account for analytical bias related to the different matrices of the reference standard and the sample material. Data were filtered to remove any analyses incorporating phenocryst phases. Full details of the methods and the LA-ICP-MS operating conditions are given in Pearce et al. (2011) and Pearce et al. (2014), and all trace element concentrations for individual shards are provided in Appendix A.

To determine the provenance of tephra deposits, the oxide concentrations from this study were compared to Icelandic whole rock and tephra glass datasets (see Appendix A) that capture the geochemical range and variability in end member products from

Fig. 3. Sampling strategies for each ice core plotted against climate events from Rasmussen et al. (2014). Individual pink bars denote the depth intervals sampled and the total length of ice retrieved (m) for each core is given at the bottom of the diagram. For NEEM, the transparent, solid pink bar indicates continuous, low resolution (1.1 m) samples (from CFA meltwater retained for discrete analyses) that were screened for tephra, that helped to inform the subsequent high resolution sampling of NEEM (deep pink bars). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
individual volcanoes.

We established ice-ice and ice-terrestrial/marine correlations using three criteria. Firstly, geochemical signatures were matched visually using biplots, to identify compositional overlap between the characterisations of deposits. Secondly, the stratigraphic position of potential matches was used to determine broad chronological validity since some volcanoes, particularly Icelandic centres, can produce tephra horizons with very similar chemical compositions up to thousands of years apart. Thirdly, statistical distance (D^2) (Perkins et al., 1995, 1998; Pearce et al., 2004a, 2008; Denton and Pearce, 2008) and similarity coefficient (SC) (Borchardt et al., 1972) tests were used to statistically compare characterisations. D^2 determines if the sample pairs are statistically different and can be used to dismiss matches whereas SC values > 0.95 strongly indicate that two signatures are from the same volcanic source and could be possible correlatives (Tables 2 and 3). Trace elements can only be compared using statistical difference. For SC comparisons element values $> 1 \text{wt} \%$ is a criterion (typically SiO$_2$, Al$_2$O$_3$, FeO, CaO, Na$_2$O, K$_2$O) (Perkins et al., 1998), and for D^2 it is $> 0.1 \text{wt} \%$. 15 high abundance trace elements (Rb, Sr, Y, Zr, Ba, La, Ce, Nd, Sm, Eu, Yb, Hf, Th, U) (Pearce et al., 2008) were used in the D^2 comparisons. Critical D^2 values (95% confidence interval) for samples which are statistically different are 18.48 (7 degrees of freedom) and 29.14 (14 degrees of freedom) respectively, with calculated D^2 values for sample comparisons greater than these values showing that samples are statistically different. There are limitations to both methods, which are outlined in Lowe et al. (2017).

2.5. Tephra and chemostratigraphy

Identification of DEP, ECM and sulfate (SO$_4^{2-}$) peaks associated with cryptotephra deposits was conducted visually in comparison to background concentrations, with peaks defined as approximately three times background, to explore the reliability of these methods for tracing volcanism ice cores. DEP data from NEEM (Mojtabavi et al., 2020, 2022), NGRIP2 (Rasmussen et al., 2013) (using the Wilhelms (2000) set up) and GRIP (Wolff et al., 1997) was utilised. ECM data for NGRIP/NEEM is from Rasmussen et al. (2013) and from Clausen et al. (1997) for GRIP. NGRIP2 SO$_4^{2-}$ data is from Bigler (2004) and Lin et al. (2022). NEEM SO$_4^{2-}$ data are only available as an averaged 20-year resolution record that flattens any peaks and was thus unsuitable for use in this study.

2.6. Tephra age estimates

Each NGRIP/GRIP tephra deposit is assigned a Greenland Ice Core Chronology 2005 (GICC05) age with an uncertainty based on the maximum counting error (MCE) which is derived from the number of ambiguous layers, and can be interpreted as 2σ, where cumulative errors increase with depth (Rasmussen et al., 2006; Vinther et al., 2008). The NEEM core has its own timescale named GICC05modelext-NEEM-1 derived from the transfer of the NGRIP GICC05 chronology to the core using a series of coeval match points, including tephra horizons (Rasmussen et al., 2013).

3. Results

An overview of the tephra deposits found in Greenland ice cores between 11.6 and 17.4 ka b2k is presented in Table 1 and Fig. 4. Sixty-four individual cryptotephra deposits (28 in NGRIP, 22 in GRIP, and 14 in NEEM) are identified and geochemically characterised which due to correlations between the cores represent 42 individual volcanic events (Table 1, Figs. 5–7). Seven of these deposits are common to all three ice cores and 12 are common to NGRIP and GRIP (Table 2, Fig. 8). The majority, (36) of the tephra deposits are unreported in any other record (besides Greenland ice) and are attributed to Icelandic sources, specifically to 7 different volcanoes (Table 1). Two deposits originate from volcanoes in the north Pacific region and one has an unknown source. Of the 64 deposits, four horizons (resulting from this work) have been described in associated publications (see layers marked in grey colour, Table 1) and include two GI-1e ‘Borobol-type’ layers (Cook et al., 2018a), the GS-2.1a To-H deposit (Japan) in NEEM (Bourne et al., 2018), and a GS-2.1a Borobol-type layer found in all three cores, named GS-2.1-RHY (Cook et al., 2018a). The full tephra dataset is presented in Appendix A and more detailed layer descriptions are provided in Appendix A.

The highest number of volcanic events is found in GI-1, reflecting our comprehensive sampling effort over this period (Fig. 3), plus the longer duration of this climate interval compared to GS-1. In total, 27 individual volcanic events (comprising 38 tephra deposits from the three cores) were found in GI-1, compared to 6 volcanic events (10 deposits) in GS-1 and 9 volcanic events (15 deposits) in GS-2.1a (Table 1, Fig. 4). The concentration of glass tephra shards in the deposits varies widely from just 6 to >5000 shards, however, those with the highest concentrations seem to relate to deposits that can be traced in more than one core (Table 1). The most glass-shard rich event relates to an Óræfajökull deposit in GS-2.1a, originating from the eastern flank zone (EFZ) of Iceland, with over 5000 shards identified, some as large as 60 μm (Table 1). Average grain sizes for deposits are 25–40 μm in diameter with NEEM generally preserving the smallest grains, which is consistent with the findings of the Bourne et al. (2015) study of the 25–45 ka b2k interval in Greenland ice.

Tephra geochemical signatures are dominated by basaltic deposits (mostly transitional alkali and tholeiitic basalts), but rhyolitic deposits are also common during GI-1 and GS-2.1a (Table 1, Figs. 4–7). Deposits originate from about 7 Icelandic centres, with basaltic products originating from Hekla-Vatnajökull or Vestmannaeyjar, Katla, Grímsvötn, Veðivötn–Bárðarbunga or Reykjanes (see Appendix B for map). For the silicic tephras, Óræfajökull, Katla, Borobol-type and Hekla-Vatnajökull layers are the main sources and compositions we identified. The major element compositions of many deposits overlap in their geochemical ranges (i.e. resembling both Hekla-Vatnajökull and Vestmannaeyjar or Óræfajökull and Katla or Veðivötn–Bárðarbunga and Reykjanes), and cannot be distinguished.

In the following sections, we highlight four key aspects of this new framework: i) 19 deposits are identified in more than one core, providing important chronological constraints for validation of the ice-core timescale; ii) six deposits are correlated to previously reported tephras that are preserved in marine and/or terrestrial records including two non-Icelandic deposits originating from Towada, Japan and Mt. St. Helens, USA; iii) 30% of the tephra deposits identified are not associated with a chemo-stratigraphical signal in the ice; and iv) we identify 23 deposits that are likely to be most valuable as correlative tie-points for constraining the rapid climatic events of the LIGT.

3.1. Ice-core core correlations

The 19 ice-ice correlations presented here build on the data-sets used to validate the timescale transfer of GICC05 from NGRIP to NEEM and GRIP reported in Rasmussen et al. (2013) and Seierstad et al. (2014), respectively. GI-1c was only sampled intensively in NGRIP (Fig. 3), which accounts for the absence of tie-points in this interval. Not all of the correlations are supported by trace element data (Figs. 9–11, Table 2) as LA-ICP-MS could only be performed on deposits with large enough grains. These analyses are relatively noisy due to the low abundance of elements and the low signal to
background ratios, owing to the small (10 μm) ablation craters used (see Pearce et al., 2004b, 2011). A summary of the correlations is provided below according to the time-interval in which they are identified.

3.1. GS-1

Four tie-points are identified in GS-1; two basaltic Katla layers, including the widespread Vedde Ash, and single layers from Grímsvötn and Hekla-Vatnafjöll (Tables 1 and 2, Figs. 8 and 9). A NEEM deposit at 1429.13 m correlates to the Vedde Ash, dated 12,646 ± 93 a B.P. (Rasmussen et al., 2014) which extends its dis-
Firstly, the transitional alkali basalt Hekla-Vatnafjoll horizon in GI-1b, that links NGRIP and GRIP at 13,186 ± 145 ka b2k (and coincides with a negative excursion in the ice core δ18O records (Fig. 10c-e, g-h)). Secondly, a basaltic isochron in GI-1d from Katla links NGRIP, GRIP and NEEM at 14,021 ± 167 ka b2k (Fig. 10c-e, f-h, Section 3.2.3.). Trace element analyses of the Katla samples reveal very similar REE ratios between NGRIP and GRIP, however, the NEEM sample has a similar profile, but lower REE ratios, and when statistically compared, exceeds the critical D2 value (Table 2, Fig. 10f). This could be due to sensitivity differences between the analytical periods producing noisier analyses and larger standard deviations for low abundance elements (Pearce et al., 2008). However, NEEM concentrations plot along the same trend lines as NGRIP and GRIP, and biplot ratios demonstrate correspondence between all three cores (Fig. 10g-h).

Thirdly, a GI-1e Óræfajökull or Katla isochron links NGRIP, GRIP and NEEM and is dated to 14,109 ± 169 ka b2k (Fig. 10g-h). This tie-point is tentative due to low viable EPMA analyses obtained for NEEM (3) and GRIP (3) and differences in NEEM SiO2 and Na2O concentrations, where secondary standard data from the NEEM analytical session show both elements were not within the recommended values. Nevertheless, trace element profiles and ratios for NGRIP and GRIP provide additional evidence to support this correlation (Fig. 10k-m).

3.1.3. GS-2.1a

There are 5 tie-points in GS-2.1a (Tables 1 and 2, Fig. 8). Geochemical characterisations and statistical tests were important factors for testing correlations, given the few chronostratigraphic match points in this period. The youngest tie-point extends the To-H isochron from Japan (15,706 ± 226 ka b2k), from NEEM to NGRIP, where the NGRIP deposit was previously reported by Mortensen et al. (2005) but published as ‘unknown origin’. The NEEM occurrence of To-H was reported in Bourne et al. (2016) but here we establish the ice-ice correlation to NGRIP and to additional proximal deposits (Fig. 11a-b, Section 3.2.4). Also in this period is a tie-point attributed to Óræfajökull (Fig. 11c-d), with an age of 17,187 ± 311 ka b2k closely followed by a tie-point that originates from either Veidivötn-Bárðarbunga or Reykjanes dated 17,238 ± 313 ka b2k (Fig. 11h-i). Both of these tie-points connect all three ice cores with good statistical and geochemical agreement (Table 2). Also in this period is a tie-point attributed to Óræfajökull (Fig. 11c-d), with an age of 17,187 ± 311 ka b2k closely followed by a tie-point that originates from either Veidivötn-Bárðarbunga or Reykjanes dated 17,238 ± 313 ka b2k (Fig. 11h-i). Both of these tie-points connect all three ice cores with good statistical and geochemical agreement (Table 2).
Öræfajökull layer displays distinguishing features, including a sub-population with lower CaO concentrations and a negative FeO–CaO covariation trend (Fig. 11c–d) that may indicate magma evolution over the course of the eruption. The average trace element profiles for this tie-point are very similar between the full NGRIP dataset (Fig. 11e–g) and the GRIP deposit (D²: 7.755), with steep gradients between the LREEs and MREEs and negative Eu anomalies. Geochemical data from a series of NGRIP samples over a 55 cm interval show that Öræfajökull likely produced tephra over a ~20-year period and a more complete range of tephra products has been captured in NGRIP, but only partially in GRIP. High resolution re-sampling over the 55 cm NGRIP section (see Appendix B) shows
that grains were located between 1663.75 and 1664.30 m, with the younger samples (1663.75–1664.05 m) containing low shard concentrations, before peaking with over 4000 grains in 1664.05–1664.15 m. Counts remained relatively high in 1664.15–1664.30 m with over 350 grains. Conversely, the GRIP deposit was constrained within a 15 cm interval with 205 grains. Trace element profiles for NGRIP shards show the older horizons (i.e., first erupted) to be most evolved and have the greatest overlap with the GRIP composition (Fig. 11g). Less evolved material, potentially from lower in the magma chamber, is found in the NGRIP youngest sample (1663.95–1664.15 m).

The oldest tie-point in this period is GS-2.1-RHY, dated 17,326 ± 319 a BP and described by Cook et al. (2018a). These tie-points fill a gap where there are few ECM/DEP match points between GICC05 and GICC05modelext–NEEM-1 due to high glacial dust content that acts to neutralise acidity (Wolff et al., 1995) (Fig. 12). The absence of match points over a wide interval of >150 m means that the time-scale transfer relies on interpolation between ECM points. The precision of the synchronization is typically within 10 cm in intervals with good ECM/DEP match points (Rasmussen et al., 2008), and the four new tephra tie-points reveal a slight NGRIP/NEEM offset from the interpolation, of about 0.5 m in GS-2.1a.

3.2. Ice core correlations to marine and terrestrial deposits

Five isochrons identified in this study allow precise tie-points to be established between Greenland ice-cores and terrestrial and/or marine records (Table 3, Figs. 8 and 13). These include the Vedde Ash, Mount St. Helens-J set, a GI-1c3 layer, a GI-1d Katla, and a GI-1e Borrobol-like deposit. Full details of each isochron are provided in Table 3 and Cook et al. (2018a) provides information on the Borrobol-like tephras and GS-2.1-RHY.

3.2.1. GS-1 Vedde Ash, 12,172 ± 114 a BP

A basaltic NEEM Katla deposit at 1429.13 m can be linked to the Vedde Ash (Table 3), marking the most northerly occurrence of this tephra. Fig. 13a–d shows the geochemical agreement to the terrestrial and marine sites. The Vedde Ash has also been found in GRIP and NGRIP, with large associated spikes in ECM, DEP and SO4/C02 values (Fig. 14a).

3.2.2. GI-1c3 Mount St. Helens set J, 13,672 ± 158 a BP

In NGRIP a low-alkali rhyolite deposit in GI-1c3 at 1557.60 m is correlated to a broad tephra unit known as the set J from Mount St. Helens (MSH) (Fig. 8, Table 3), located in the Cascade volcanic arc in western USA (Fig. 1). The layer is not associated with chemostratigraphic peaks (Fig. 14b) in the ice. The set J, dated 13.86–12.80 cal ka BP (Clynne et al., 2008), is a series of closely-spaced eruptions referred to as the ‘Swift Creek’ phase, which produced widespread ash deposits of near identical composition between GI-1 and early GS-1 (Clynne et al., 2008; Mullineaux, 1996). The NGRIP layer geochemically resembles set J type reference material as well as distal set J deposits found in three eastern seaboard lakes; Crocker Pond (Maine, USA), Thin-Ice Pond and Veinot Lake in Nova Scotia, Canada (Pyne-O’Donnell et al., 2008) (Fig. 13e–h). The ice and terrestrial samples share the same linear covariation trend between SiO2 and Al2O3, and SC and D2 values do not reveal differences between the NGRIP and MSH set J unit datasets (Fig. 13f, Table 3).

3.2.3. GI-1d Katla, 14,021 ± 167 a BP

The GI-1d basaltic Katla isochron is traced in all three ice cores and correlates to the K3 Tephra found in South Iceland Rise marine core RAPID-15-4 (Thornalley et al., 2010, 2011) and tentatively to a terrestrial deposit found in a lake core, Isl-W, from Loch Ashik on the Isle of Skye, western Scotland (Pyne-O’Donnell et al., 2008) (Figs. 1, 8 and 13, Table 3). Both studies proposed tie-points between their deposits and the NGRIP deposit at 1573 m, originally discovered by Mortensen et al. (2005). We traced the same layer in NEEM at 1472.35 m and GRIP at 1716.40 m, thus extending the
isochron in Greenland, and we also present more NGRIP shard analyses to strengthen the correlation. The event is also associated with ECM, DEP and SO4₂⁻/C₀₂ peaks (Fig. 14c).

In the RAPiD-15–4P marine core in the North Atlantic (Fig. 1), the K3 Tephra forms a 1.5 cm thick visible horizon in a cold oscillation equivalent to GI-1d, as defined by stratigraphic shifts in % abundance of Neogloboquadrina pachyderma sinistral (Nps), a planktonic temperature-sensitive foraminifera species (Thornalley et al., 2010). Thornalley et al. (2010, 2011) correlated the K3 layer to NGRIP 1573 m, and used this tie-point in the construction of the RAPiD-15-4P age model, in which the K3 is dated to 13.87 ± 14.13 cal ka BP (Table 3). A slight offset is seen in Al₂O₃ values between the glass shard analyses from the ice versus the marine deposit (Fig. 13i-l), which could be due to the use of different microprobes.

The major element compositions of the three ice-core horizons are also similar to a basaltic Katla deposit in the Loch Ashik core Isl-W between 933 and 934 cm. Bivariate plots show geochemical similarity between the Katla deposits found in the ice cores and the lake record (Fig. 13m-p) and SC and D² values support the correlations (Table 3). In Isl-W, the Katla deposit is located at the same depth as the Penifiller Tephra, which is found in numerous records across the British Isles in the Older Dryas cold interval, equivalent to GI-1d (e.g. Matthews et al., 2011; Timms et al., 2019) and dated to 14,063 ± 13,808 cal BP (95%; IntCal13) in the Scottish Abernethy Forest lake core (Bronk Ramsey et al., 2015). We therefore assume
the Abernethy Forest Penifiler Tephra age range, and apply it to the Isl-W Katla basaltic deposit. This age agrees with the GICC05 age and we therefore follow the tentative correlation to NGRIP 1573 m proposed by Pyne-O’Donnell et al. (2008), which also extends the isochron to NEEM and GRIP. Although the correlation makes sense chronologically, a robust chronology needs to be constructed for Isl-W core, to validate this tie-point.

3.2.4. GS-2.1a Towada To-H, 15,706 ± 226 a b2k
Distinct low-alkali rhyolite horizons found in NEEM at 1502.60 m (Bourne et al., 2016) and NGRIP 1628.25 m (Mortensen et al., 2005) correlate to the To-H eruption (Bourne et al., 2016), which produced significant chemostratigraphic peaks in both ice cores (Fig. 14e–f) in Greenland, and also a weak signal in Antarctica (Lin et al., 2022). To-H is a marker-deposit on Honshu Island, Japan (e.g. Hayakawa, 1985; Machida and Arai, 2003) (Fig. 1), having been found in numerous marine cores, close to the Japan Trench, in the western North Pacific Ocean (e.g. Aoki and Arai, 2000; Aoki and Machida, 2006; 2006; Ikehara et al., 2013).

We compare geochemical data for the Greenland tephra deposits to the ignimbrite and co-ignimbrite phases of the eruption from Shingo Village proximal deposits (Fig. 13q) (Aoki and Machida, 2006) and To-H from marine cores (Aoki and Sakamoto, 2003) (Fig. 13r–t). All bivariate plots exhibit similar trends in FeO–CaO and MgO and negative linear covariation between SiO2–TiO2, and the datasets are not statistically separable (Table 3), supporting the correlation.

3.3. The prevalence of tephra deposits with coeval ice chemical signatures
To assess how the volcanic events from this study are recorded in the ice chemostratigraphy, we conducted a basic visual assessment to estimate the number of tephras that occur in association with peaks in ECM, DEP and SO42–/C02 records (SO42– available for NGRIP only). The tephra deposits we present are located within samples that are typically 15 or 20 cm in resolution. We found that of the 68 cryptotephras presented in Table 1 (including the tie-points published in other studies), 40 (59%) are associated with chemical peaks that occur within the same 15 or 20 cm sample as the tephra samples, although with the exception of Vedde and To-H, many peaks are small compared to baseline values of surrounding ice (e.g. Fig. 14d, g–i). For NEEM, just 35% of tephras are associated with ECM and/or DEP peaks in their sample ranges, while for GRIP the association is 45%. If we focus on NGRIP, which also has a SO42–/C02 record and the most cryptotephras (31), we find that 70% of these deposits have peaks within the same sample from one or more chemical records. Fifty-eight percent of NGRIP ECM/DEP peaks (which typically occur coevally) and 45% of SO42– peaks are associated with tephra samples. Only five NGRIP tephras are associated with perceptible peaks found across all three chemical records.

For GS-2.1a there are few ECM/DEP associations for all cores, likely due to the neutralisation signals by high dust content, around 10x higher in GS-2.1a than in GI-1 (see Ruth et al., 2003). However, given the low interstadial dust content, it is surprising that there are no tephras associated with any of the chemical records in the first half of GI-1e for NGRIP and GRIP (Table 1). Between GI-1d and GS-1 there is a good correspondence between tephras and peaks for NGRIP and GRIP, while there are some occurrences in NEEM, which has fewer tephras overall.

3.2.4. GS-2.1a Towada To-H, 15,706 ± 226 a b2k
Distinct low-alkali rhyolite horizons found in NEEM at 1502.60 m (Bourne et al., 2016) and NGRIP 1628.25 m (Mortensen et al., 2005) correlate to the To-H eruption (Bourne et al., 2016), which produced significant chemostratigraphic peaks in both ice cores (Fig. 14e–f) in Greenland, and also a weak signal in Antarctica (Lin et al., 2022). To-H is a marker-deposit on Honshu Island, Japan (e.g. Hayakawa, 1985; Machida and Arai, 2003) (Fig. 1), having been found in numerous marine cores, close to the Japan Trench, in the western North Pacific Ocean (e.g. Aoki and Arai, 2000; Aoki and Machida, 2006; 2006; Ikehara et al., 2013).

We compare geochemical data for the Greenland tephra deposits to the ignimbrite and co-ignimbrite phases of the eruption from Shingo Village proximal deposits (Fig. 13q) (Aoki and Machida, 2006) and To-H from marine cores (Aoki and Sakamoto, 2003) (Fig. 13r–t). All bivariate plots exhibit similar trends in FeO–CaO and MgO and negative linear covariation between SiO2–TiO2, and the datasets are not statistically separable (Table 3), supporting the correlation.

3.3. The prevalence of tephra deposits with coeval ice chemical signatures
To assess how the volcanic events from this study are recorded in the ice chemostratigraphy, we conducted a basic visual assessment to estimate the number of tephras that occur in association with peaks in ECM, DEP and SO42–/C02 records (SO42– available for NGRIP only). The tephra deposits we present are located within samples that are typically 15 or 20 cm in resolution. We found that of the 68 cryptotephras presented in Table 1 (including the tie-points published in other studies), 40 (59%) are associated with chemical peaks that occur within the same 15 or 20 cm sample as the tephra samples, although with the exception of Vedde and To-H, many peaks are small compared to baseline values of surrounding ice (e.g. Fig. 14d, g–i). For NEEM, just 35% of tephras are associated with ECM and/or DEP peaks in their sample ranges, while for GRIP the association is 45%. If we focus on NGRIP, which also has a SO42– record and the most cryptotephras (31), we find that 70% of these deposits have peaks within the same sample from one or more chemical records. Fifty-eight percent of NGRIP ECM/DEP peaks (which typically occur coevally) and 45% of SO42– peaks are associated with tephra samples. Only five NGRIP tephras are associated with perceptible peaks found across all three chemical records.

For GS-2.1a there are few ECM/DEP associations for all cores, likely due to the neutralisation signals by high dust content, around 10x higher in GS-2.1a than in GI-1 (see Ruth et al., 2003). However, given the low interstadial dust content, it is surprising that there are no tephras associated with any of the chemical records in the first half of GI-1e for NGRIP and GRIP (Table 1). Between GI-1d and GS-1 there is a good correspondence between tephras and peaks for NGRIP and GRIP, while there are some occurrences in NEEM, which has fewer tephras overall.

Fig. 9. (A–D, G–J) Major element-element biplots showing the geochemical relationship between corresponding ice-core deposits. Geochemical data are normalised to 100% (anhydrous basis) and analyses with totals below 94% wt were excluded. Error bars in all diagrams represent two standard deviations (2σ) of replicate analyses of the BCR2g and Lipari obsidian secondary standards, for basalt and rhyolitic analyses respectively. (E) Single grain and average chondrite-normalised REE profiles for NGRIP
These are useful estimates of the relationship between Icelandic tephra deposits and their chemical signatures in Greenland ice cores, but further stratigraphic refinement is required to conclude unequivocally that the source of peaks and tephras found in common samples are the same. It is possible that some associated peaks were produced by eruptions in other regions at the same time, or are responding to influences other than volcanism, such as sea-salt aerosols and ammonium, deposited after storms and forest burning events (Fuhrer et al., 1996).

We identify evidence of local differences in acid deposition in Greenland, with some tie-points having associated peaks in just one core. For example, the To-H deposit in NGRIP has an associated ECM signal and huge SO$_4^{2-}$ spike of 3000 ppbw (Fig. 14e), but the same deposit in NEEM does not have a related ECM nor DEP signal (Fig. 14f). This could be due to signal neutralisation in NEEM during stadial conditions, or depositional differences between the sites (e.g. Wolff et al., 2005).

Fig. 10. GI-1a-e ice-ice correlations(A-D, I-J, N–P): Major element-element biplots showing the geochemical relationship between corresponding ice-core deposits. Geochemical data are normalised to 100% and analyses with totals below 94 %wt were excluded. Error bars in all diagrams represent 2σ of replicate analyses of the BCR2g and Lipari obsidian secondary standards, for basalt and rhyolitic analyses respectively. (E-F and K): Single grain and average chondrite-normalised REE profiles for ice-ice correlations, and (G-H, I-M): element-to-element biplots for trace elements based on absolute concentrations (ppm) from single grains or ratios. Chondrite compositions are from McDonough and Sun (1995). All ages are from GICC05. * denotes correlation previously published by (Cook et al., 2018a).
4. Discussion

This work provides some additional details about the Icelandic eruptions that contributed to the sulfate peaks identified by Zielinski et al. (1996) and Lin et al. (2022) during a period of continuously enhanced volcanism during the deglaciation. Between 11.67 and 17.39 ka b2k, Lin et al. (2022) identified 175 volcanic events with sulfate deposition rates (corrected for ice layer thinning) larger than 20 kg km\(^{-2}\) (above background) in Greenland. To put in context, a volcanic mass deposition rate of 20 kg km\(^{-2}\) is half Tambora size (39.7 kg km\(^{-2}\); Sigl et al., 2015), and thus represents quite a large SO\(_2\) injecting event. We find that 9 of events identified by Lin et al. (2022) are likely associated to the eruptions identified in this study (8 Icelandic and To-H) and 4 others are attributed to Icelandic events published in Mortensen et al. (2005). The origins of the remaining 162 events are unaccounted for due to a lack of associated tephas as well as sampling gaps between 15 and 17 ka b2k, but will almost certainly include other Icelandic, Northern Hemisphere (Fig. 1) or equatorial eruptions that did not deposit tephra grains over Greenland. Additionally, we find that over half of the volcanic events presented here do not have an associated SO\(_4^{2-}\) signature. These eruptions were most likely smaller-scale (<20 kg km\(^{-2}\)) meaning previous estimates of volcanic frequency have been underestimated.

4.1. Key deposits and tephra constraints on environmental change

The LGIT tephol stratigraphic framework for Greenland is dominated by Icelandic volcanic products, with just two non-Icelandic events found in the entire record. Even so, our
NEEM, GRIP and NGRIP tephra deposits are correlated to form tie-points between the cores, organised here by climate event. Depth interval, rock type and volcanic provenance are also provided for each of tie-points. Tie-points that have been used by Seierstad et al. (2014) for timescale transfer of the GICC05 timescale to GRIP are marked with *, and tie-points that have been used by Rasmussen et al. (2013) for the timescale transfer of GICC05 to GICC05modelext-NEEM-1 are marked with ±. Similarity coefficients (SC) (Borchardt et al., 1972) and statistical difference (D²) (Perkins et al., 1995, 1998) calculations are given for all major element sample pairs (data normalised to 100%). For major elements, elements >1 wt% and 0.1 wt% were used to calculate SC, and D² respectively, based on the method from Hunt et al. (1995). Values > 0.95 suggest products are from the same volcanic eruption. The value for testing the D² values at the 99% confidence interval is 18.48 (7 degrees of freedom). Where associated trace elements pairs were available, D² was performed using 14 elements, and the value is given in brackets (T). The value for testing D² values at the 95% confidence interval is 29.14 (14 degrees of freedom). All ages are from GICC05, except Towada (marked with ^) (GS-2.1a) which has a GICC05modelext-NEEM-1 age. See Table 1 for abbreviations of volcanic centres.

<table>
<thead>
<tr>
<th>Event</th>
<th>NGRIP range (m)</th>
<th>GRIP depth (m)</th>
<th>NEEM depth (m)</th>
<th>Age (a b2k and MCE)</th>
<th>Rock Type</th>
<th>Origin</th>
<th>SD and D² values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS-1</td>
<td>1506.11–1506.18</td>
<td>1639.54–1639.55</td>
<td>1429.08–1429.13</td>
<td>12.172 (114)</td>
<td>TAB</td>
<td>Katla (Vedde)</td>
<td>NGRIP/NEEM; SD: 0.967, D²: 4.520</td>
</tr>
<tr>
<td>GS-1</td>
<td>1516.75–1516.90</td>
<td>1651.50–1651.65</td>
<td>1437.35–1437.55</td>
<td>12.561 (127)</td>
<td>Alk/TAB</td>
<td>Katla</td>
<td>NGRIP/GRIP; SD: 0.987, D²: 5.020 (2.660 T)</td>
</tr>
<tr>
<td>GS-1</td>
<td>1518.55–1518.75</td>
<td>1653.50–1653.70</td>
<td>12.634 (129)</td>
<td>Thol-bas Grims</td>
<td>NGRIP/NEEM; SD: 0.983, D²: 7.385</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS-1</td>
<td>1518.95–1519.10</td>
<td>1653.85–1654.05</td>
<td>12.646 (129)</td>
<td>Thol-bas Grims</td>
<td>NEEM/GRIP; SD: 0.981, D²: 1.895</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1a</td>
<td>1531.60–1531.75</td>
<td>1668.15–1668.35</td>
<td>13.027 (141)</td>
<td>Thol-bas Grims</td>
<td>RD: 0.980, D²: 4.094 (12.848 T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1b</td>
<td>1537.25–1537.45</td>
<td>1674.95–1675.15</td>
<td>13.186 (145)</td>
<td>Thol-bas Grims</td>
<td>RD: 0.992, D²: 0.845 (25.309 T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1b</td>
<td>1538.55–1538.75</td>
<td>1676.40–1676.60</td>
<td>13.222 (146)</td>
<td>Thol-bas Grims</td>
<td>D: 0.976, D²: 8.170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1c</td>
<td>1564.20–1564.40</td>
<td>1706.30–1706.50</td>
<td>13.822 (162)</td>
<td>Thol-bas V-B/Reyk</td>
<td>RD: 0.976, D²: 0.921</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1d</td>
<td>1572.85–1573.00</td>
<td>1716.35–1716.40</td>
<td>14.021 (167)</td>
<td>Thol-bas V-B/Reyk</td>
<td>RD: 0.979, D²: 3.123 (30.140 T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1e</td>
<td>1576.15–1576.30</td>
<td>1719.85–1720.05</td>
<td>1473.85–1474.00</td>
<td>RD: 0.979, D²: 0.923 (3.283 T)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1e</td>
<td>1579.60–1579.80</td>
<td>1724.25–1724.45</td>
<td>14.191 (171)</td>
<td>Thol-bas V-B/Grims</td>
<td>RD: 0.988, D²: 2.727</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1e</td>
<td>1582.55–1582.75</td>
<td>1727.55–1727.75</td>
<td>14.252 (173)</td>
<td>Thol-bas Grims</td>
<td>NGRIP/NEEM; SD: 0.957, D²: 21.290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1e</td>
<td>1583.45–1583.65</td>
<td>1728.65–1728.85</td>
<td>14.270 (174)</td>
<td>Thol-bas Grims</td>
<td>NEEM/GRIP; SD: 0.935, D²: 32.852</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GI-1e</td>
<td>1597.05–1597.20</td>
<td>1744.60–1744.80</td>
<td>14.539 (181)</td>
<td>Thol-bas Grims</td>
<td>RD: 0.988, D²: 0.495</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS-2.1a</td>
<td>1628.18–1628.25</td>
<td>1502.45–1502.60</td>
<td>15.706 (226)</td>
<td>Thol-bas Grims</td>
<td>RD: 0.940, D²: 3.727</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS-2.1a</td>
<td>1662.30–1662.50</td>
<td>1814.45–1814.65</td>
<td>1522.60–1522.80</td>
<td>RD: 0.985, D²: 1.808</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS-2.1a</td>
<td>1663.60–1663.75</td>
<td>1816.10–1816.30</td>
<td>1523.35–1523.50</td>
<td>RD: 0.982, D²: 3.841</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS-2.1a</td>
<td>1663.75–1664.30</td>
<td>1816.50–1816.65</td>
<td>1524.60–1524.80</td>
<td>RD: 0.969, D²: 4.163</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS-2.1a</td>
<td>1665.40–1665.60</td>
<td>1818.15–1818.30</td>
<td>1522.60–1522.80</td>
<td>RD: 0.984, D²: 1.812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS-2.1a</td>
<td>1665.40–1665.60</td>
<td>1818.15–1818.30</td>
<td>1524.60–1524.80</td>
<td>RD: 0.985, D²: 1.855</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 12. Eight GS-1 to GS-2.1a tephra match points between NEEM and NGRIP2 are plotted against depth difference (m) between the two cores. Blue circles are ECM match points of Rasmussen et al. (2013), showing the extended gap in match points within GS-2.1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

discoveries significantly improve the Northern Hemisphere tephrochronological framework, revealing numerous, previously unreported volcanic events that will help guide future work aiming to trace these deposits in other palaeoclimate records. When combined with 15 tephra deposits identified in prior studies (Fig. 2), the updated Greenland tephra framework contains 50 individual ash deposits between 11.6 and 17.4 ka b2k (Fig. 4). All of these deposits have the potential to be traced in other palaeoarchives to assess synchronicity and regional time transgressive changes in environmental change.

Of these 50 deposits, we highlight 23 key deposits in Fig. 8 that we consider most unique, based on their stratigraphic position and distinctive composition, and includes the 19 deposits identified in more than one ice core and five deposits that are traced in other archives. In particular, three deposits fall close to rapid climatic transitions. At the onset of the Holocene a previously unreported basaltic deposit, resembling Hekla-Vatnafjoll and Vestmannaeyjar in NEEM, is dated to 11,689 ± 98 a b2k, holds huge potential to explore the relative timing of regional environmental changes related to this transition. Deposited just 14 years after the Holocene onset in the ice, its identification in lake or marine records, could help constrain the end of the Pleistocene across Northern Europe, North America and the North Atlantic. A GI-1e ryholitic deposit with an Óræfajökull or Katla composition connects all three ice cores at 14,109 ± 169 a b2k, around 34 years before the GI-1d transition. Furthermore, another GI-1e NGRIP basaltic deposit
Table 3
NEEM, GRIP and NGRIP tephra deposits with their potential counterparts in the terrestrial and/or marine realms. Geochemical composition, volcanic provenance and tephra name are listed for each set of tie-points. TAB = transitional alkali basalt. Ice-core correlations to terrestrial (T) or marine (M) sites are distinguished. Samples used for geochemical comparison are given in a separate column, with references. Details of SC and D2 calculations are provided in Table 2.

<table>
<thead>
<tr>
<th>Event</th>
<th>Ice core deposit(s)</th>
<th>Deposit previously published in an ice core</th>
<th>Geochem Origin</th>
<th>Terrestrial/ Marine Correlation</th>
<th>Tephra name</th>
<th>Age of deposit & site(s) compared to</th>
<th>SD and D2 values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI-Ic3</td>
<td>NGRIP 1557.60 m</td>
<td>Mount St. Helens USA</td>
<td>Rhyolite</td>
<td>Terrestrial</td>
<td>MSH-J set</td>
<td>14,127–13,873 cal BP (Thorvaldsey et al., 2011) Loch Ashik Island-W, Scotland: 933–934 cm (T) Pyne-O’Donnell et al. (2008) 15-4P core, North Atlantic: 500 cm (M) Thorvaldy et al. (2011)</td>
<td>NGRIP/Thin Ice Pond - SD: 0.980, D2: 3.980 NGRIP/Veinot Lake - SD: 0.955, D2: 1.298 NGRIP/Crocker Pond - SD: 0.975, D2: 2.217 NGRIP/Ref: UA2482 - SD: 0.966, D2: 2.171</td>
</tr>
<tr>
<td>GI-1d</td>
<td>NEEM 1472.25 m</td>
<td>GRIP 1734.00 m Mortensen et al. (2005)</td>
<td>TAB Katla</td>
<td>Terrestrial and Marine</td>
<td>Loch Ashik Katla (T) (tentative) and K3 Tephra (M)</td>
<td>14,127–13,873 cal BP (Thorvaldsey et al., 2011)</td>
<td>NGRIP/Loch Ashik - SD: 0.975, D2: 4.421 NEEM/Loch Ashik - SD: 0.979, D2: 4.421 GRIP/Loch Ashik - SD: 0.978, D2: 15.378 NGRIP/15–4P - SD: 0.952, D2: 6.623 NEEM/15–4P - SD: 0.964, D2: 4.724 GRIP/15–4P - SD: 0.961, D2: 1.730</td>
</tr>
<tr>
<td>GI-1e</td>
<td>GRIP 1727.75 m</td>
<td>GRIP 1734.00 m Cook et al. (2018a)</td>
<td>Rhyolite</td>
<td>Terrestrial</td>
<td>Borrobol Tephra</td>
<td>14,190–14,003 cal BP (Brook Ramsey et al., 2015) Borrobol, Scotland: BOS21 cm (T) Lind et al. (2016)</td>
<td>NGRIP/1582.75 & GRIP 1727.75/Borrobol BOS21 - SD: 0.966, D2: 3.036 (10.078 TE) GRIP 1734/BOS21 - SD: 0.969, D2: 1.812 (5.137 TE)</td>
</tr>
<tr>
<td>GS-2.1a</td>
<td>NEEM 1524.80 m</td>
<td>GRIP 1818.30 m Cook et al. (2018a)</td>
<td>Rhyolite</td>
<td>Terrestrial</td>
<td>Borrobol-type, Iceland</td>
<td>17,179–16,754 cal BP (Jarvis, 2013) NGRIP/MD99–2271 - SD: 0.990, D2: 0.836 NGRIP/MD99–2271 - SD: 0.990, D2: 0.725 NGRIP/MD99–2271 - SD: 0.986, D2: 2.022</td>
<td></td>
</tr>
</tbody>
</table>

from Grímsvötn or Veidivötn-Bárðarbunga is located just 8 years after the GS-2.1a/GI-1e transition.

Besides the Vedde Ash (hereafter VA), four further valuable GS-1 deposits are yet to be located in the marine or terrestrial realms, including a distinct NEEM rhyolite (12,127 ± 114 a b2k) probably originating from Hekla-Vatnajökull (Figs. 4 and 5a) that is just 45 years younger than the VA. A layer that connects all three cores is dated 12,561 ± 127 a b2k, 389 years older than the VA, and has a basaltic Katla composition almost identical to the VA (Figs. 8 and 9). Terrestrial or marine studies should only attribute deposits to the VA if they contain rhyolitic grains to avoid miscorrelation, since the basaltic compositions of these deposits are indistinguishable. Other NGRIP-GRIP tie-points from Grímsvötn (12,634 ± 129 a b2k) and Hekla-Vatnajökull or Vestmannaeyjar (12,646 ± 129 a b2k) (Fig. 8) are not close to climatic transitions, but are nevertheless useful when considered as part of the wider GS-1 tephrastigraphy.

The numerous deposits found in GI-1 have the potential to constrain the short-lived climate fluctuations within this period. For instance, the short 203-year GI-1a warm period contains three deposits, including a basaltic Grímsvötn layer, that connects NGRIP to GRIP (13,027 ± 141 a b2k). In the 84-year long GI-1b cold event, notable layers include a basaltic Hekla-Vatnajökull NGRIP-GRIP tie-
point (13,186 ± 145 a b2k) and rhyolitic layers with Óraefajökull or Katla (13,222 ± 146 a b2k) and Hekla-Vatnajökull compositions (13,270 ± 147 a b2k). Six layers have been found in GI-1c, and the most unique is the NGRIP MSH set J deposit (Fig. 13e–h). Our discovery extends a layer from the complex MSH-J set to its most northerly position. Set J deposits have also been traced to three distal sites along the east coast of Canada (>4000 km away from source) (Pyne-O’Donnell et al., 2016) and, via a single grain, to the Finglas River site in Ireland, >7000 km away from source (Timms et al., 2019) (Fig. 1). The full potential for using MSH set J as a tie-point to compare climatic records between different environments has yet to be realised, and requires that the stratigraphic sequence of events comprising the set J are resolved. This is challenging considering indistinguishable geochemistry (B. Jensen, pers. comm, 2021).

A basaltic Katla layer located in the 162 year-long GI-1d cold event connects all three cores just before the GI-1c boundary and has been correlated to marine core RAPID-15–4P in the North Atlantic Rise, with agreement in proxies, including low δ18O values in Greenland and increases in δNps (Thorvaldsson et al., 2011). The same layer is tentatively correlated to the Loch Ashik ash record from the British Isles (Pyne-O’Donnell et al., 2008). In GI-1e, a newly discovered ash layer from the Atlantic Rise, the Kerguelen or Katla core, is correlated to NGRIP-GRIP-NEEM just 34 years before the GI-1d onset, and there are two closely-spaced Borrobol-type layers in GI-1e dated 14,252 ± 173 a b2k and 14,358 ± 177 a b2k, the occurrences and implications of which have been discussed in Cook et al. (2018a). These two Borrobol-type deposits probably equate to the well-known Borrobol Tephra, found in terrestrial records of the British Isles (i.e. it is likely the Borrobol Tephra represents amalgamation of tephra from both of the GI-1e events identified in the ice-cores) but a firm correlation is precluded due to the indistinguishable composition and close stratigraphic association (Fig. 8). We recommend these deposits be sought out as key markers in any LGIT studies using tephra to improve their chronologies, but care should be taken if only one layer of Borrobol-type composition is found. GI-1e is otherwise dominated by previously unreported basaltic deposits of tholeiitic composition from Grímsvötn and Veíðivötn-Bárðarbunga and alkali/transitional alkali composition from Hekla-Vatnajökull or Vestmannaeyjar, which are useful in the stratigraphic context if traced to other records.

Combined with the work of Mortensen et al. (2005), there are now 11 tephra layers within GS-2.1a (Fig. 4). Four closely spaced tie-lines are recorded between 17.18 and 17.32 ka b2k that should be used to aid timescale transfer between ice cores and direct any future terrestrial and marine tephra sampling strategies. The deepest GS-2.1a layer is dated 17,326 ± 319 a b2k, and has the oldest known Borrobol-type composition. This isochron was traced in all three ice cores and to three North Iceland Shelf marine cores (Fig. 8) (Cook et al., 2018a). Just 60 years prior, a series of silicic eruptions from Óraefajökull is recorded over ~22 years (17,243–17,265 ± 315 a b2k) in NGRIP. We interpret the changing trace element compositions with depth as a temporal change in magma composition over the course of a series of eruptions, attributed to a zoned magma chamber (Fig. 11e–f). The events are only partially captured in GRIP and IN-1e 319 a b2k and 311 a b2k and 313 a b2k with Veiðivötn-Bárðarbunga or Reykjanes composition (Table 1, Fig. 8) is found in all three ice cores, between the two Óraefajökull deposits, that could act as a stratigraphic marker.

4.2. Key deposits missing from the ice core framework

Despite the high resolution and continuous sampling over broad intervals, key LGIT tephras such as the Laacher See Tephra (LST), Penifiller Tephra, Glacier Peak and Neapolitan Yellow Tuff of GI-1 and Y-1, Greenish and Pomici di Base of GS-2 (Fig. 2), have not been identified in Greenland. We did not find any deposits with trachyte, trachydacite or trachy-andesite compositions, that could be indicative of products from the Mediterranean, Azores, Jan Mayen, Masfist Central or Eifel regions (Fig. 1). This ‘regional absence’ extends from the Holocene to the Eemian and raises questions as to the dominant barrier to dispersal of tephra in a north-western direction from central and southern Europe, despite numerous explosive eruptions (e.g. Riede, 2008; Wulf et al., 2012). The absence of prominent Plinian events suggests that external mechanisms influence northern transport of tephra, and barriers could include wind patterns or the Polar Front Jet Stream. For example, the LST from Germany, of GI-1 age, is a key isochron that could help assess synchronicity of the GS-1 onset between Europe and the Arctic. The LST remains elusive in Greenland despite sampling three ice cores, over depth ranges that encompass best age estimates (Brock Ramsey et al., 2015; Reing et al., 2021; Abbott et al., 2021). In novel simulations, Niemeier et al. (2021) find that both radiative heating of ash as well as rotation influence distribution pathways, which most likely led to LST ash dispersal to the south and east.

Contrary to high Holocene eruption frequencies, the first continuous reconstruction of LGIT volcanism from Kamchatkan Peninsula deposits (Ponomareva et al., 2021) reveals lower volcanic activity with infrequent, less explosive events between 30 and 12 ka BP. This could explain why no Kamchatkan tephra horizons were identified in the Greenland LGIT tephra framework.

5. Conclusions

- This study significantly improves our knowledge of Icelandic volcanism during the LGIT and aids the validation and/or transfer of the GICC05 timescale between Greenland ice cores, particularly during GS-2.1a.
- The framework provides a focus for future studies seeking to assess the regional development of rapid climatic events across ice, marine and terrestrial records – a key aim of the INTIMATE project. We highlight at least 23 layers that hold most potential for these purposes (Fig. 8), including a Hekla-Vatnajökull or a multi ice-core sampling approach over key periods of interest. A younger Óraefajökull eruption occurs ~45 years earlier, dated 17,187 ± 311 a b2k, and is captured in all three ice cores. If a single Óraefajökull event is located in marine/terrestrial records, we have identified two criteria that may help validate correlations. Firstly, the older deposit has a unique sub-population characterised by higher SiO2 and lower FeO and CaO values (Fig. 11c–d). Secondly, a layer (dated 17,238 ± 313 a b2k with Veíðivötn-Bárðarbunga or Reykjanes composition (Table 1, Fig. 8) is found in all three ice cores, between the two Óraefajökull deposits, that could act as a stratigraphic marker.

Fig. 13. Major element-element biplots showing the geochemical relationship between ice-core deposits and terrestrial and/or marine deposits (normalised to 100%), excluding totals >9 wt%. Error bars represent 2σ of replicate analyses of the BCR2g and Lipari obsidian secondary standards, for basalt and rhyolitic analyses respectively. (T) – terrestrial and (M) – marine deposits. (A–D) NEEM 142,913 m against Vedde Ash deposits from MD99-2271 (M) (Galbany-Ridaura et al., 2011) and Loch Ashik (T) (Law et al., 2012), (E–H) NGRIP 155,760 cm compared to NGRIP (Pyne-O’Donnell et al., 2016) data from Thin Ice Pond, Nova Scotia – MSH set J (T) Veinot Lake, Nova Scotia – MSH set J (T) Crocker Pond, Maine USA – MSH set J (T) and proximal reference U2482 – JY (T) (M–P) and (I–L) NEEM 1472.35 m, NGRIP 1573.00 m and GRIP 1716.40 m with basaltic GI-1d layers from Lock Ashik Isl-W, Scotland (T) from Pyne-O’Donnell et al. (2008) and North Atlantic core RAPID-15–4P (M) (Thorvaldsson et al., 2011), (Q–T) NEEM 1502.60 m and NGRIP 1628.25 m against proximal Shingo Village samples (T) (Aoki and Machida, 2006) and deposits from the Forearc terrace of the Japan Trench, from ODP cores Hole 1150A, 1151C and KH94-3 LM-8 A, 1151C and KH94-3, LM-8 (M) (Aoki and Sakamoto, 2003).
Vestmannaeyjar deposit located at the Holocene transition, a MSH set J event, a GI-1d-Katla, and a series of GS-2.1a deposits. The isochrons originating from Öræfajökull in GS-2.1a have not yet been identified proximally in Iceland, nor in other regional climate archives and creates opportunities to research Icelandic silicic volcanism and GS-2.1a tephrochronology.

We recommend that ice-core tephra deposits are included in future regional and global eruption frequency estimates alongside chemostratigraphic markers. Seventy percent of NGRIP tephra deposits presented here occur with associated ECM, DEP or SO4\(^2^-\) peaks meaning calculations of LGIT volcanism, especially from smaller eruptions remain underestimated.

The continuous direct ice sampling method is most reliable for locating the maximum number of tephra deposits in the ice and creating a comprehensive tephra record within a targeted interval.

Author contributions

Eliza Cook: Conceptualization, Methodology, Formal analysis, Investigation, Visualization, Validation, Writing - Original Draft, Writing - Review & Editing. **Siwan M. Davies:** Conceptualization, Methodology, Funding Acquisition, Resources, Writing - Review & Editing, Supervision. **Peter M. Abbott:** Methodology, Supervision, Writing - Review & Editing. **Nick J.G. Pearce:** Methodology, Resources, Writing - Review & Editing. **Seyedhamidreza Mojtabavi:** Formal analysis, Writing - Review & Editing. **Anders Svensson:** Methodology, Writing - Review & Editing. **Anna J. Bourne:** Investigation, Writing - Review & Editing. **Inger K. Seierstad:** Investigation, Writing - Review & Editing. **Sune O. Rasmussen:** Writing - Review & Editing. **Bo M. Vinther:** Funding Acquisition. **Joseph Harrison:** Investigation. **Elliott Street:** Investigation. **Jørgen Peder Steffensen:** Methodology. **Frank Wilhelms:** Methodology.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

EC was supported by PhD studentship funding from Swansea University. EC, SMD, AJB and PMA were supported by the European Research Council (ERC) project Tephra constraints on Rapid Climate Events (TRACE project: 259253). Financial and laboratory funding was provided to EC from the ERC under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement 610055 as part of the ice2ice project. This is also a TiPES contribution #129, having received funding from the European
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.quascirev.2022.107596.

References

Donnell and.