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Abstract
We survey recent work, published since 2015, on equivariant Oka theory. The main results described in the survey are as
follows. Homotopy principles for equivariant isomorphisms of Stein manifolds on which a reductive complex Lie group G
acts. Applications to the linearisation problem. A parametric Oka principle for sections of a bundle E of homogeneous spaces
for a group bundle G , all over a reduced Stein space X with compatible actions of a reductive complex group on E , G , and
X . Application to the classification of generalised principal bundles with a group action. Finally, an equivariant version of
Gromov’s Oka principle based on a notion of a G-manifold being G-Oka.

Keywords Oka theory · Oka principle · Oka manifold · Elliptic manifold · Lie group · Reductive group · Geometric invariant
theory · Principal bundle · Linearisation problem

Mathematics Subject Classification Primary 32M05 · Secondary 14L24 · 14L30 · 32E10 · 32E30 · 32M10 · 32M17 · 32Q28 ·
32Q56

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Equivariant isomorphisms . . . . . . . . . . . . . . . . . . . . .

3 The linearisation problem . . . . . . . . . . . . . . . . . . . . .

4 Equivariant sections of bundles of homogeneous spaces . . . . .

5 Equivariantly Oka manifolds . . . . . . . . . . . . . . . . . . . .

6 Open problems . . . . . . . . . . . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B Finnur Lárusson
finnur.larusson@adelaide.edu.au

Frank Kutzschebauch
frank.kutzschebauch@math.unibe.ch

Gerald W. Schwarz
schwarz@brandeis.edu

1 Institute of Mathematics, University of Bern, Sidlerstrasse 5,
3012 Bern, Switzerland

2 School of Mathematical Sciences, University of Adelaide,
Adelaide, SA 5005, Australia

3 Department of Mathematics, Brandeis University, Waltham,
MA 02454-9110, USA

1 Introduction

This is a survey of recent work, published since 2015, on
equivariant Oka theory, mainly from our papers [20–24].
Oka theory is the subfield of complex geometry that deals
with various homotopy principles, in this context collectively
known as the Oka principle, stating that the obstructions to
solving certain analytic problems on Stein spaces are purely
topological. The work surveyed here incorporates group
actions—holomorphic actions of complex Lie groups—into
such homotopy principles. This work can also be viewed as
part of holomorphic geometric invariant theory.

Oka theory has its roots in the pioneering work of Kiyoshi
Oka. The Oka principle first appeared in his 1939 result that
a holomorphic line bundle on a Stein manifold is trivial if it is
topologically trivial. Oka theory was developedmuch further
in the late 1950s to early 1970s, starting with Grauert’s foun-
dational papers [8–10]. Other key contributors in this period
were Cartan [2] and Forster and Ramspott [4]. The focus was
on complex Lie groups and, more generally, complex homo-
geneous spaces, a typical result being that every continuous
map from a Stein space to a complex homogeneous space
can be deformed to a holomorphic map. In a seminal paper
of 1989 [11], Gromov initiated the modern development of
Oka theory. He discovered a way to generalise the results of
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theGrauert period beyond complex homogeneous spaces to a
larger class of manifolds that he named elliptic. They possess
a geometric structure called a dominating spray that mimics
the exponential map of a Lie group and makes it possible
to solve various analytic problems by linearising them. Over
the past 20 years, modern Oka theory has been vigorously
developed. In particular, the optimal weakening of ellipticity
for Oka principles to hold was identified and the class of Oka
manifolds defined in [6,26]. Forstnerič’s monograph [7] is a
comprehensive up-to-date reference on Oka theory.

A very brief review of the geometric invariant theory rel-
evant here starts with the foundational 1973 paper of Luna
[28]. He studied the action of a reductive complex algebraic
group G on an affine variety X and proved his famous slice
theorem. A consequence is that the quotient variety X//G has
a natural stratification, and if X is smooth, the map of X to
X//G is a G-fibre bundle over each stratum.

The holomorphic version of the theory, for a reductive
complex Lie group acting on a Stein space, was developed
by Snow [36] andHeinzner [12,13]. A reductive complex Lie
group is automatically algebraic, so there is a strong connec-
tion to the algebraic theory. Geometric invariant theory and
Oka theory of the Grauert period were first brought together
in the 1995 paper of Heinzner and Kutzschebauch [15]. The
work surveyed here builds on and continues their work and,
in our most recent paper, brings Gromov’s Oka principle into
geometric invariant theory.

Most of the work surveyed here can be summarised in
seven main results, Theorems A–G. The following sections
provide further details, relevant definitions, brief sketches of
proofs, and other related results. In the final section, we list
some open problems.

Let a complex reductive groupG act holomorphically on a
Stein manifold X . The categorical quotient X//G is a normal
Stein space that parametrises the closed G-orbits in X . Let
π : X → X//G be the quotient map (we sometimes write
πX ) and for Z ⊂ X//G let XZ denote π−1(Z). If Z = {q} is
a point, we write Xq instead of X{q}. The G-finite holomor-
phic functions (Sect. 2) on Xq give Xq an algebraic structure
which may be neither reduced nor irreducible. The pullback
by π of the sheaf of holomorphic functions on X//G is the
sheaf of G-invariant holomorphic functions on X . The quo-
tient has a locally finite stratification by locally closed smooth
subvarieties, called the Luna stratification, such that points
q, q ′ ∈ X//G lie in the same stratum if and only if the fibres
Xq and Xq ′ areG-biholomorphic (equivalently, the algebraic
structures on Xq and Xq ′ are equivariantly algebraically iso-
morphic). If S is a stratum of X//G, then π−1(S) → S
is a holomorphic G-fibre bundle (whose fibre need not be
smooth).

In Sects. 2 and 3 we consider the following problem.
Let X and Y be Stein G-manifolds. If X and Y are G-
biholomorphic, then X//G and Y//G are biholomorphic,

preserving the stratifications. So let us assume that X and
Y have a common stratified quotient Q � X//G � Y//G. To
have an Oka problem, let us also assume that there is an open
cover (Ui ) of Q and G-biholomorphisms Ψi : XUi → YUi

inducing the identity on Ui . We say that X and Y are locally
G-biholomorphic over Q. Now our equivariant Oka problem
is to see what kind of continuous or smooth G-isomorphism
of X and Y implies that there is a G-biholomorphism.

AG-diffeomorphism X → Y inducing the identitymapof
the quotient Q is called strict if it induces a biholomorphism
between Xq and Yq , with their reduced structures, for all q ∈
Q. The definition of a strong G-homeomorphism is some-
what involved andwill be given in Sect. 2. Roughly speaking,
a strongG-homeomorphism restricts to aG-biholomorphism
Xq → Yq for each q ∈ Q that depends continuously on q.
A strict G-diffeomorphism is not necessarily a strong G-
homeomorphism [21, Example 3.2].

Theorem A Let G be a reductive complex Lie group. Let X
and Y be Stein G-manifolds locally G-biholomorphic over
a common quotient.

(a) Any strict G-diffeomorphism X → Y is homotopic,
through strict G-diffeomorphisms, to a G-biholomorphism.

(b) Any strong G-homeomorphism X → Y is homotopic,
through strongG-homeomorphisms, to aG-biholomorphism.

It turns out that one can often deduce that X and Y are
locally G-biholomorphic over Q from the existence of strict
or strong G-isomorphisms! See Sect. 2 for the definitions
of “infinitesimal lifting property” and “large” used in Theo-
rems B and C.

Theorem B Let G be a reductive complex Lie group. Let X
and Y be Stein G-manifolds with common quotient Q. If
there is a strict G-diffeomorphism X→ Y, or there is a strong
G-homeomorphism X → Y and X has the infinitesimal lift-
ing property, then X and Y are locally G-biholomorphic over
Q, hence, G-biholomorphic.

The so-called linearisation problem has a long history (see
[16] and [18]). It asks whether the action of a reductive com-
plex group G on affine space C

n must be linearisable, that is,
whetherCn with such an action is isomorphic toC

n with a lin-
ear G-action. We call the latter an n-dimensional G-module.
The first counterexamples in the algebraic setting were con-
structed by Schwarz [32] for n ≥ 4. These examples are,
however, holomorphically linearisable. The first counterex-
amples in the holomorphic setting were given by Derksen
and Kutzschebauch [3]. They showed that for every non-
trivial G, there is an integer NG such that for all n ≥ NG ,
there is a non-linearisable effective holomorphic action of G
on C

n . The stratified quotients of the actions that they con-
structed are not isomorphic to the stratified quotient of any
G-module. The next main theorem states that under mild
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assumptions, this is the only obstruction to linearisability,
that is, a holomorphic G-action on C

n is linearisable if its
stratified quotient is isomorphic to the stratified quotient of
a G-module.

Theorem C Let G be a reductive complex Lie group. Let X be
a Stein G-manifold and V aG-modulewith common quotient
Q. Suppose that V (or, equivalently, X) is large or that X
and V are locally G-biholomorphic over Q. Then X and V
are G-biholomorphic.

Note that this result does more than give a solution to the
linearisation problem: it provides a sufficient condition for a
Stein manifold to be biholomorphic to affine space.

Let X be a reduced Stein space, G a complex Lie group,
and A a complex Lie subgroup of the automorphism group
of G. Then given a cocycle on X with values in A, we can
produce a holomorphic group bundle G over X whose fibres
are (non-canonically) isomorphic toG. As usual, G is said to
be trivial if it is isomorphic to X×G. Let E be ahomogeneous
holomorphic G -bundle on X , so G acts on E over X such
that the action of each fibre of G on the corresponding fibre
of E is transitive. Ramspott proved that (when G is trivial)
the inclusion of the space of holomorphic sections of E over
X into the space of continuous sections induces a bijection of
path components [30]. These and similar spaces are always
endowed with the compact-open topology.

If K is a compact real Lie group, let KC denote its
complexification, which is a reductive complex Lie group.
(Conversely, if H is a reductive complex Lie group, then H
is isomorphic to KC for any maximal compact real subgroup
of H .) Assume that KC acts on X , E , and G compatibly with
the projections to X and action of G on E . Then we say that
G is a holomorphic group KC-bundle on X and that E is
a holomorphic KC-G -bundle on X . The next main theorem
is an equivariant version of Ramspott’s theorem, with the
stronger conclusion that the inclusion is a weak homotopy
equivalence.

Theorem D Let E be a homogeneous holomorphic KC-G -
bundle on a reduced Stein space X , where K is a compact
real Lie group whose complexification KC acts on X , and G
is a holomorphic group KC-bundle on X. Then the inclusion
of the space of KC-equivariant holomorphic sections of E
over X into the space of K -equivariant continuous sections
is a weak homotopy equivalence.

Note that for holomorphic sections, K -equivariance and
KC-equivariance are equivalent. In our context, K -equivaria-
nce is an appropriate condition on continuous sections; KC-
equivariance is too strong.

Two special cases of Theorem D are of particular interest.
First, the theorem holds when E is a holomorphic princi-
pal KC-G -bundle (the fibres of G act simply transitively

on the fibres of E). The other special case is the “uncou-
pled” case. It is a parametric Oka principle for equivariant
maps from a Stein KC-space to a complex homogeneous
KC-space G/H , where the KC-action on G/H can be quite
general (see the introduction to [23]). Namely, the theorem
covers KC-actions on G/H by Lie automorphisms of G
that preserve H followed by left multiplication by elements
of G. These are the “obvious” or “natural” symmetries of
G/H . For example, we could have H = KC acting on G/H
by left multiplication. The geometry of such an action can
be quite complicated, as when H = SO(n, C) is the sub-
group of G = SL(n, C) fixed by the holomorphic involution
A �→ (A−1)t and G/H is the space of symmetric bilinear
forms on C

n of discriminant 1.
Theorem D gives an equivariant parametric Oka principle

for every actionof a reductive complexLie groupon the target
that factors through a transitive action of another group, not
necessarily reductive. When the target is a compact homoge-
neous space, this holds for every action, because the whole
automorphism group of the space is a complex Lie group.
The following is the only unrestricted equivariant paramet-
ric Oka principle known to the authors. It has not appeared
before.

Theorem E Let X be a reduced Stein space and Y be a com-
pact complex homogeneous space. Let K be a compact real
Lie group whose complexification KC acts on X and Y . Then
the inclusion of the space of KC-equivariant holomorphic
maps from X to Y into the space of K -equivariant continu-
ous maps from X to Y is a weak homotopy equivalence.

For the basic theory of compact complex homogeneous
spaces, we refer the reader to [1, Chap. 3]. We do not know
whether every action on a non-compact homogeneous space
factors through a transitive action.

Theorem D may be used to strengthen the main result
of Heinzner and Kutzschebauch [15] on the classification of
principal bundles with a group action as follows. The special
case of no action is one of the central results of the Grauert
era, proved by Grauert himself and improved by Cartan.

Theorem F Let K be a compact Lie group. Suppose that KC

acts holomorphically on a reduced Stein space X and on a
holomorphic group bundle G on X.

(a) Every topological principal K -G -bundle on X is
topologically K -isomorphic to a holomorphic principal KC-
G -bundle on X.

(b) Let P1 and P2 be holomorphic principal KC-G -
bundles on X. Every continuous K -isomorphism P1 → P2
can be deformed through such isomorphisms to a holomor-
phic K -isomorphism. In fact, the inclusion of the space of
holomorphic K -isomorphisms P1 → P2 into the space of
continuous K -isomorphisms is a weak homotopy equiva-
lence.
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The seventh and final main theorem is the first and so
far only equivariant version of Gromov’s Oka principle. The
first part of the theorem is an equivariant version of the result
that every continuous map from a Stein manifold X to an
Oka manifold Y can be deformed to a holomorphic map.
To adapt this result to actions of a reductive group G on
X and Y , we need to find the right notion of Y being G-
Oka. We define Y to be G-Oka if, for every reductive closed
subgroup H of G, the submanifold Y H of points fixed by
H is Oka in the usual sense. (By Bochner’s linearisation
theorem, the subvariety Y H is indeed smooth, but of course
not necessarily connected.) Taking H to be trivial, we see
that a G-Oka manifold is Oka. The definition is motivated in
Sect. 5 and suffices for an equivariant Oka principle to hold,
although so far not for an arbitrary action. It turns out that a
new notion of aG-Stein manifold is not required—aG-Stein
manifold should simply be a Stein G-manifold—but an Oka
G-manifold need not be G-Oka (Example 5.2).

Theorem G Let G be a reductive complex Lie group and let
K be a maximal compact subgroup of G. Let X be a Stein
G-manifold and Y a G-Oka manifold. Suppose that all the
stabilisers of the G-action on X are finite.

(a) Every K -equivariant continuous map f : X → Y is
homotopic, through such maps, to a G-equivariant holo-
morphic map.

(b) If f is holomorphic on a G-invariant subvariety Z of X ,

then the homotopy can be chosen to be constant on Z.
(c) If f is holomorphic on a neighbourhood of a G-invariant

subvariety Z of X and on a neighbourhood of a K -
invariant O(X)-convex compact subset A of X , and
� ≥ 0 is an integer, then the homotopy can be chosen
so that the intermediate maps agree with f to order �

along Z and are uniformly close to f on A.

Two special cases of interest are when the group G is
finite and when the G-action on X is free, so X is a prin-
cipal G-bundle. The first examples of G-Oka manifolds are
G-modules and G-homogeneous spaces. A small number of
other examples are known, such as any Hirzebruch surface
with its natural GL(2, C)-action and, by very recent work
of Kusakabe [19], every n-dimensional smooth toric variety
with its action of the torus (C∗)n . The class of G-Oka mani-
folds has all the good basic properties that one would expect
(see Propositions 5.3 and 5.4). It is straightforward to make
the notion of a dominating spray equivariant and, thus, define
G-ellipticity, which also has all the good basic properties that
one would expect and implies the G-Oka property.

2 Equivariant isomorphisms

Let G be a reductive complex group and let X and Y be
Stein G-manifolds. When is there a G-equivariant biholo-
morphism � : X → Y ? We try to reduce the question to a
problem in Oka theory. If Φ exists, then the induced map
ϕ : X//G → Y//G is a strata preserving biholomorphism.
Given such a map ϕ, we can identify X//G and Y//G and
we call the common quotient Q with quotient morphisms
denoted πX and πY . For U ⊂ Q, let XU denote πX

−1(U )

and similarly define YU . If Φ exists, then there is certainly
an open cover of Q by Stein open sets Ui and G-equivariant
biholomorphismsΦi : XUi → YUi which induce the identity
onUi .We then say that X andY are locally G-biholomorphic
over the common quotient Q. The existence of the biholo-
morphism ϕ and Luna’s slice theorem guarantee that there
are G-biholomorphisms Φi : XUi → YUi , but not that each
Φi induces the identity map of Ui . For now we assume that
X and Y are locally G-biholomorphic over Q. Later we will
look for sufficient conditions for this to be true.

For an open subset U of Q, let A (U ) = AutU (XU )G

denote the group of G-biholomorphic automorphisms of XU

which induce the identity onU . There is an open cover (Ui )of
Q and G-biholomorphisms Ψi : XUi → YUi which induce
the identity on Ui . Let Φi j = �i

−1 ◦ Ψ j ∈ A (Ui ∩ Uj ).
Then (Φi j ) is a cocycle, an element of Z1(Q,A ), with
corresponding class cY ∈ H1(Q,A ). If Y ′ is also locally
G-biholomorphic to X over Q, then cY = cY ′ if and only if
there is a G-biholomorphism of Y and Y ′ inducing the iden-
tity on Q. Conversely, given (Φ ′

i j ) ∈ Z1(Q,A ), there is a
G-manifold Y ′, locally biholomorphic to X over Q, whose
cocycle is precisely (Φ ′

i j ). By [21, Theorem5.11],Y ′ is Stein.
Thus, we have the following theorem.

Theorem 2.1 The isomorphism classes of Stein G-manifolds
locally G-biholomorphic to X over Q are in bijective corre-
spondence with H1(Q,A ).

Now suppose that X → Q and Y → Q are principal
G-bundles, that is, the actions of G on X and Y are free.
Then for U open in Q, A (U ) is the group of holomorphic
maps ofU toG.We also haveC (U ), the group of continuous
maps ofU to G. Then H1(Q,C ) consists, essentially, of the
isomorphism classes of topological principal G-bundles on
Q. Grauert’s Oka principle now has several consequences.

(G1) The natural map H1(Q,A ) → H1(Q,C ) is an iso-
morphism.

This implies that:

(G2) If E is a topological principal G-bundle over Q, then
it has a holomorphic structure.
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(G3) If E and E ′ are holomorphic principal G-bundles
which are continuously isomorphic, then they are holo-
morphically isomorphic.

In fact, more is true.

(G4) If Ψ : E → E ′ is a continuous isomorphism of holo-
morphic principal G-bundles over Q, then there is a
homotopyΨt of continuous isomorphisms of principal
G-bundles with Ψ0 = Ψ and Ψ1 holomorphic.

Returning to our more general case where X and Y are
not necessarily principal G-bundles, we want to find some
analogue of the sheaf of groups C for which we can prove
analogues of the results above. Most of our work has been
concentrated on proving the analogue of (G4).

Our problem here is more complicated than in Grauert’s
case since X → Q and Y → Q are only G-fibre bundles
over the strata of Q and, moreover, the fibre of each stratum
S is not usually a group or even a homogeneous space.

Let U be open in Q. Then we have the G-finite functions
Ofin(XU ) on XU , which are just the elements f of O(XU )

such that { f ◦ g−1 | g ∈ G} spans a finite-dimensional
G-module. On a fibre Xq , the G-finite functions Ofin(Xq)

are a finitely generated complex algebra. In fact, there is
a finite-dimensional G-submodule V ⊂ Ofin(Xq) which
generates Ofin(Xq). It follows that a G-biholomorphism
X → Y , inducing the identity on Q, induces algebraic G-
isomorphisms of the fibres Xq and Yq , q ∈ Q. Our analogues
of continuous isomorphisms of principal G-bundles are
G-diffeomorphisms or G-homeomorphisms which behave
reasonably on G-finite functions or on fibres.

For q ∈ Q, let (Xq)red denote the reduced structure on
Xq .

Definition 2.2 Let Ψ : X → Y be a G-diffeomorphism
inducing the identity on Q. We say that Ψ is strict if for
all q ∈ Q, the induced map Ψ : Xq → Yq induces an (alge-
braic) isomorphism of (Xq)red and (Yq)red.

The definition is from [21]; in [20] we required isomor-
phisms of Xq and Yq which turns out not to be necessary.
Here is part (a) of Theorem A.

Theorem 2.3 [21, Theorem 1.4(1)] Let X and Y be Stein G-
manifolds locally G-biholomorphic over Q. Let Ψ : X → Y
be a strict G-diffeomorphism. Then there is a continuous
deformation of Ψ , through strict G-diffeomorphisms, to a
G-biholomorphism.

Now we define strong homeomorphisms of X and Y (see
[21, Sect. 3] for details). They are G-homeomorphisms of
X and Y , inducing the identity on Q, which behave well
with respect to G-finite functions (and induce isomorphisms

of the fibres Xq and Yq , q ∈ Q). We start with a G-
homeomorphism Ψ : X → Y which induces the identity on
Q. Let V be a G-module. For a Stein neighbourhood U of
q ∈ Q, let O(XU )V denote the span of the G-submodules
of Ofin(XU ) which are isomorphic to V . For U sufficiently
small, O(XU )V is a finitely generated O(U )-module, say
with generators f1, . . . , fm . By judiciously choosing U and
V , we can assume that Ofin(XU ) is generated by O(U ) and
f1, . . . , fm . There are generators f ′

1, . . . , f ′
m of O(YU )V

which generate Ofin(YU ) as O(U )-module. We say that Ψ

is strong over U if Ψ ∗ f ′
i = ∑

ai j f j , where the ai j are con-
tinuous functions onU (considered as G-invariant functions
on XU ). We say that Ψ is a strong G-homeomorphism if it is
strong over an open cover of Q. It is not completely obvious,
but the inverse of a strongG-homeomorphism is strong. Here
is part (b) of Theorem A.

Theorem 2.4 [21, Theorem 1.4(2)] Let X and Y be Stein G-
manifolds locally G-biholomorphic over Q. Let Ψ : X →
Y be a strong G-homeomorphism. There is a continuous
deformation of Ψ , through strong G-homeomorphisms, to
a G-biholomorphism.

For U open in Q, let As(U ) denote the strict G-
diffeomorphisms of XU and let Ac(U ) denote the strong
G-homeomorphisms of XU , inducing the identity on U in
both cases. Note that Theorems 2.3 and 2.4 are versions of
Grauert’s (G4) above, where C is replaced by the sheaves of
groups As and Ac. In [35] we actually show that (G1) holds
for A and Ac.

In [20], we proved the analogues of (G3) for As and Ac,
under the assumption that the action ofG on X (equivalently,
on Y ) is generic (see below). It is useful here to sketch the
idea of the proof. We say that a G-diffeomorphismΦ of X is
special if it is of the form x �→ γ (x) · x , where γ : X → G
is smooth and G-equivariant, where the G-action on G is by
conjugation. If Φ is holomorphic, then it is special with γ

holomorphic [20, Lemma 6]. Finally, if X and Y are locally
G-biholomorphic over Q and (Ui ) is an open cover of Q
with G-biholomorphisms Φi : XUi → YUi over Ui , then we
say that Ψ : X → Y is special if Φi

−1 ◦ Ψ : XUi → XUi is
special for all i .

Theorem 2.5 Let Ψ : X → Y be a strict G-diffeomorphism
or strong G-homeomorphism, where X is generic. Then Ψ

is homotopic, through G-isomorphisms of the same type, to
a special G-diffeomorphism of X and Y .

The proof of this theorem is by induction over the
strata of Q using local deformations of Ψ to special G-
diffeomorphisms. Once we only need to deal withΨ special,
we can use a (somewhat complicated) bundle construction to
reduce proving (G3) to the equivariantOka–Grauert principle
of Heinzner–Kutzschebauch [15]. So the plan was to deform
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our given isomorphism of X and Y to a “nicer” one (not
using an Oka principle) and then to apply an Oka principle
to deform the nice isomorphism to one that is holomorphic.

The same recipe is followed in [21], where we define the
G-diffeomorphisms of type F of X and Y (see below). Let
F also denote the corresponding sheaf of G-automorphisms
of X over Q. Then A ⊂ F ⊂ Ac and A ⊂ F ⊂ As and
we show, as in [20], the following.

Theorem 2.6 [21, Theorems 8.7, 8.8] Let Ψ : X → Y be a
strict G-diffeomorphism or strong G-homeomorphism. Then
Ψ is homotopic, through maps of the same type, to a G-
diffeomorphism of type F .

Now we are able to use the Oka–Grauert machine, as pre-
sented in [2] (see Sect. 4), to prove the following.

Theorem 2.7 Let X and Y be locally G-biholomorphic over
Q.

(1) The inclusion A ↪→ F induces an isomorphism
H1(Q,A ) → H1(Q,F ).

(2) If Ψ : X → Y is a G-diffeomorphism of typeF , then Ψ

is homotopic, through G-diffeomorphisms of type F , to
a G-biholomorphism.

Before definingG-diffeomorphisms of typeF , we define
the corresponding Lie algebra of vector fields of type LF .
ForU open inQ, letDer∞Q (XU ) (resp.DerQ(XU ))denote the
smooth (resp. holomorphic) vector fields on XU which anni-
hilateO(XU )G . A vector field D ∈ Der∞Q (X) is of typeLF
if every q ∈ Q has a neighbourhood U such that D|XU =∑

ai Ai where ai ∈ C∞(XU )G and Ai ∈ DerQ(XU ) for
all i . We let LF denote the corresponding sheaf on Q.
If D ∈ LF (U ) is

∑
ai (x)Ai (x) where ai ∈ O(U ) and

Ai ∈ DerQ(XU )G , then D(x, x ′) := ∑
ai (x)Ai (x ′) is a

family of smooth vector fields which are holomorphic for
fixed x and G-invariant in x ′. Then we have the following
similar definition.

Definition 2.8 Let Φ : X → X be a G-diffeomorphism
inducing the identity on Q. We say that Φ is of type F if
for every q ∈ Q there is a neighbourhood U of q and a map
Ψ : XU × XU → X such that:

(1) For x ∈ XU fixed, Ψ (x, y) is a G-equivariant biholo-
morphism {x} × XU → X , inducing the identity on the
quotient.

(2) Ψ is smooth in x and y and G-invariant in y.
(3) Φ(x) = Ψ (x, x), x ∈ XU .

We call Ψ a local holomorphic extension of Φ.

Note that if Φ is holomorphic, then it is of type F by
settingΨ (x, y) = Φ(y). The G-diffeomorphisms of typeF
are strict and strong.

If one wants to prove Theorem 2.7 using the approach of
[2], one needs some very basic topological properties of the
sheaves F and LF . See [21, §6]. We list a few of them.
Let U be open and Stein in Q.

(1) LF (U ) consists of complete vector fields and is closed
in the space of C∞ vector fields on XU , hence, is a
Fréchet space.

(2) F (U ) is closed in Diff(XU )G .
(3) If D ∈ LF (U ), then exp(D) ∈ F (U ).
(4) Let K ⊂ U ′ ⊂ U , where K is compact and U ′ has

compact closure in U . Then there is a neighbourhood
Ω of the identity in F (U ) such that any Φ ∈ F (U )

admits a unique logarithm D in LF (U ′). Moreover,
log : Ω → LF (U ′) is continuous.

We now turn to the question of when X and Y are locally
G-biholomorphic over Q.

Let Der(Q) denote the derivations of O(Q) which pre-
serve the strata of Q. That is, if f ∈ O(Q) vanishes on
the closure of a stratum S of Q, then so does P( f ) for any
P ∈ Der(Q). If P ∈ Der(X)G and f ∈ O(Q) � O(X)G ,
then P( f ) ∈ O(X)G � O(Q). It is not difficult to see that
the resulting derivation (πX )∗(P) of O(Q) lies in Der(Q).
We say that πX (or just X ) has the infinitesimal lifting prop-
erty (abbreviated ILP), if (πX )∗ maps onto Der(Q).

The ILP is a consequence of various more geometric con-
ditions. Assuming that Q is connected, there is a unique open
and dense stratum Qpr, the principal stratum. Let Xpr denote
πX

−1(Qpr). We say that X is k-principal if X \ Xpr has codi-
mension at least k in X . We say that the G-action is stable if
Xpr consists of closed orbits. If X is stable and k-principal,
k ≥ 2, then one can reduce all our G-isomorphism problems
to the case that Xpr consists of (closed) G-orbits with trivial
stabiliser [20, Proposition 3], in which case we say that X
has TPIG (“trivial principal isotropy groups”). Finally, if X
is 3-principal with FPIG (“finite principal isotropy groups”),
then πX has the ILP [33, Theorem 8.9]. We will see another
condition implying the ILP below. Finally, X is generic if X
is 2-principal with TPIG.

In [21, §5] some local analysis establishes Theorem B.

Theorem 2.9 Let X andY have commonquotient Q. Suppose
that Ψ : X → Y is a strict G-diffeomorphism or Ψ is a
strong G-homeomorphism and X has the ILP. Then X and
Y are locally G-biholomorphic over Q. Hence, there is a
homotopy Ψt of strict or strong G-isomorphisms Ψt with Ψ1

biholomorphic.

In our earlier work [20], we assume that X and Y are
locally G-biholomorphic over the common quotient Q and
generic. In that case, we prove the following somewhat
provocative result (which does not require X and Y to be
smooth). It relies on the equivariant Oka principle of [15].
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Theorem 2.10 Let G act holomorphically and generically
on normal Stein spaces X and Y which are locally G-
biholomorphic over a common quotient Q. Then the obstruc-
tion to X and Y being G-equivariantly biholomorphic is
purely topological. Namely, there is a bundle arising from
the data whose topological triviality is equivalent to X and
Y being G-biholomorphic.

In [20], we provided sufficient conditions for the topo-
logical obstruction to vanish. It vanishes when X is K -
contractible, where K is a maximal compact subgroup of
G [20, Theorem 13]. When G is abelian and X and Y are
smooth, it suffices that X be Z-acyclic [20, Theorem 10].

3 The linearisation problem

Let the complex reductive group G act holomorphically on
X = C

n . We say that the G-action is holomorphically lin-
earisable if there is aG-biholomorphismΦ : X → V , where
V is an n-dimensional G-module. Then Φ induces a strata
preserving biholomorphism ϕ : X//G → V //G. Thus, lin-
earisability implies that X//G is isomorphic to the quotient
of a linear G-action. So we have the following special case
of the problem we have considered above.

Let X be a Stein G-manifold and V a G-module with
common quotient Q. When are X and V equivariantly
biholomorphic?

Let X(n) = {x ∈ X : dimGx = n}. We say that X is
large if X is generic and codim X X(n) ≥ n + 2 for all n ≥ 1.
Largeness holds for “most” X and V . See [22, Remark 2.1].
If X//G and V //G are strata preserving biholomorphic, then
X is large if and only if V is large.

Below we need to distinguish between X//G and Q =
V //G even though they are assumed to be stratified biholo-
morphic. The following implies Theorem C.

Theorem 3.1 Let X beaSteinG-manifold and V aG-module
with a strata preserving biholomorphism ϕ : X//G → Q =
V //G.

(1) If X and V are locally G-biholomorphic over Q, then
they are G-biholomorphic [22, Theorem 1.1].

(2) If V is large, then by perhaps changing ϕ by an element
of Aut(Q), one can arrange that X and V are locally
G-biholomorphic over Q, hence, G-biholomorphic [22,
Theorem 1.4].

The largeness of V in (2) is only important because it
implies other properties of V .

Let p1, . . . , pd be homogeneous generators of C[V ]G of
degrees e1, . . . , ed . Let t ∈ C

∗ act on C
d by (y1, . . . , yd) �→

(te1 y1, . . . , ted yd). The C
∗-action preserves Q � p(V ),

where p = (p1, . . . , pd) : V → C
d . We say that V has

the deformation property (DP) if for any θ ∈ Aut(Q) fixing
0, the limit θt = t−1 ◦ θ ◦ t exists as t → 0. The limit θ0 is in
Autql(Q), the set of quasilinear elements of Aut(Q), that is,
those that commute with the C

∗-action. We say that V has
the lifting property (LP) if any θ ∈ Aut(Q) has a holomor-
phic lift Θ : V → V . The lift need not be G-equivariant, but
it has to map Vq to Vθ(q) for all q ∈ Q.

Proposition 3.2 Suppose that V is large. Then:

(1) V has the ILP [33, Theorem 0.4]. In fact, any holomor-
phic differential operator on Q lifts.

(2) V has the DP [34, Theorem 2.2]. (The condition that V
be admissible in the cited theorem is implied by V being
large.)

For any V , LP implies DP.

Here are some results of [22], which point out the inner
workings of the proof of Theorem 3.1.

Theorem 3.3 Let X beaSteinG-manifold and V aG-module
with a strata preserving biholomorphism ϕ : X//G → Q =
V //G.

(1) Let E be the Euler vector field on V . Then (πV )∗(E) ∈
Der(Q) can be considered as an element of Der(X//G)

via ϕ−1. Suppose that it has a lift B ∈ Der(X)G and
that we have a G-biholomorphic lift Φ of ϕ over a
neighbourhood of ϕ−1(0) ∈ X//G. Then ϕ lifts to a G-
biholomorphism of X and V [22, Remark 3.6].

(2) If V has the ILP and DP, then by perhaps changing ϕ by
an automorphism of Q, ϕ lifts to a G-biholomorphism of
X and V [22, Sect. 5].

The largeness condition of Theorem 3.1(2) applies to
mostG-modules. The remainingG-modules are “small”. For
small modules, we have applied the criteria of Theorem 3.3
in the following cases.

Theorem 3.4 Let X beaSteinG-manifold and V aG-module
with stratified biholomorphism ϕ : X//G → Q = V //G. In
each of the following cases, by perhaps changing ϕ by an
automorphism of Q, ϕ lifts to a G-biholomorphism of X and
V .

(1) dim Q ≤ 1.
(2) G = SL2 or SO3.
(3) G is finite.
(4) G0 = C

∗.

Parts (1) and (2) are in [22] and it is rather easy to show
that the relevant G-modules V are large or have the ILP and
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DP. Part (3) is easy and is [25, Theorem 3.8] (and should have
been noted well before!). Part (4) is much more difficult and
is established in [25]. So let us suppose that G0 = C

∗. There
are three “easy cases” where all the nonzero weights of C

∗
acting on V have the same sign, there are at least two weights
of each sign, or dim V = 2. We are then able to reduce to the
techniques and theorems above. The hard part is if there is,
say, only one strictly positive weight and at least two strictly
negative weights.

Note that XG and VG are strata of X//G and Q. It is not
hard to reduce to the case that ϕ : XG → VG is the identity.
Then one establishes the following proposition.

Proposition 3.5 Let θ ∈ Aut(U ) where U is a connected
neighbourhood of V G ⊂ Q (resp. V G0

/G ⊂ Q) and θ is
the identity on V G (resp. V G0

/G). Then, modulo Aut(Q), θ

has a G-equivariant lift Θ to πV
−1(U ).

Using the proposition we are able to lift ϕ [after chang-
ing by some elements of Aut(Q)] to a G-biholomorphism
Φ over a neighbourhood U0 of XG0

/G ⊂ X//G. Let B
denote (πV )∗(E) considered as an element of Der(X//G)

via ϕ−1. Via Φ−1 applied to E we have a holomorphic G-
invariant vector field on XU0 which lifts B. Away from XU0 ,
the isotropy groups of closed orbits in X are finite and we can
find local G-invariant holomorphic lifts of B. Since X//G is
Stein, there is a G-invariant holomorphic lift of B to X . Now
apply Theorem 3.3(1).

4 Equivariant sections of bundles of
homogeneous spaces

In [23], we combined many of the results on the Oka prin-
ciple from the Grauert era into a single theorem in the
homotopy-theoretic language of modern Oka theory. More-
over, we generalised these results to an equivariant setting,
with respect to a holomorphic action of a reductive complex
Lie group. Recall that complexification defines an equiva-
lence of categories from compact real Lie groups to reductive
complex Lie groups. Throughout this section, K denotes a
compact real Lie group with complexification KC.

A special case of this equivariant setting had been consid-
ered before by Heinzner and Kutzschebauch [15], motivated
by thenegative solutionof the algebraic linearisationproblem
by Schwarz [32]. He constructed algebraic KC-vector bun-
dles of representation spaces which are not KC-trivial and,
thus, obtainednon-linearisable algebraic actions on their total
spaces. These total spaces are isomorphic to affine spaces.
The relevant corollary of Heinzner and Kutzschebauch’s
work is that, unlike the algebraic situation, holomorphic KC-
bundles over representation spaces are always KC-trivial, so
the action on the total space is holomorphically linearisable.

Our setting is as follows. Let X be a reduced Stein space.
LetG be a complex Lie group and G be a holomorphic group
bundle on X with fibre G. By definition, G is defined by a
holomorphic cocycle with respect to some open cover of X
with values in a complex Lie subgroup A of the Lie auto-
morphism group of G. We call A the structure group of G
and we call G a holomorphic group A-bundle. Let H be a
holomorphic group subbundle of G , whose fibre is a closed
subgroup H of G, so G may in fact be defined by a holomor-
phic cocycle with values in the group of Lie automorphisms
of G that preserve H . Thus, we assume that A preserves H .

Let P be a holomorphic principal bundle on X with struc-
ture group bundle G acting from the right—we call P a
principalG -bundle—and let E be the quotient bundle P/H .
Then E is a holomorphic fibre bundle on X with fibre G/H
(left cosets) and structure group bundle G acting from the
left. Each fibre of G acts transitively on the corresponding
fibre of E . We call E a homogeneous G -bundle. The princi-
pal bundle P is defined by a holomorphic G -valued cocycle,
which tells us how to form P by glueing together pieces of
G over an open cover of X . The same cocycle encodes how
E may be constructed from the quotient bundle G /H (left
cosets). Note that the action of G on P need not descend
to an action on E (right multiplication does not respect left
cosets).

Nowwedescribe the KC-actions in our setting. Let KC act
holomorphically on X , and holomorphically and compatibly
on G by group A-bundle maps (which preserve H ). This
means that KC acts on the fibres of G by elements of A,
which makes sense because each fibre of G is canonically
identifiedwithGmodulo A. Let KC also act holomorphically
and compatibly on P such that the action map P×X G → P
is KC-equivariant. We call P with such an action a principal
KC-G -bundle. The action of KC on P descends to an action
on E . We summarise all the above data by referring to E as
a homogeneous KC-G -bundle.

Viewed as a holomorphic fibre bundle with fibre G,
the bundle P can be taken to have the semidirect product
A � G as its structure group. Equivariance of the action
map P ×X G → P is equivalent to KC acting on P by
A � G-bundle maps, meaning that KC acts on the fibres
of P by elements of A � G. If P ′ is another holomor-
phic principal KC-G -bundle, then the holomorphic group
bundle Aut P with fibre G and the holomorphic principal
bundle Iso(P ′, P) with fibre G and structure group bun-
dle Aut P have induced structure groups that are complex
Lie groups and they have induced KC-actions by elements
of the respective structure group that make the action map
Iso(P ′, P) ×X Aut P → Iso(P ′, P) equivariant. All spaces
of sections are endowed with the compact-open topology.

The main result of [23] is Theorem D from the intro-
duction. As described above, we have a homogeneous
holomorphic KC-G -bundle E on the reduced Stein space X ,
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where K is a compact real Lie group and G is a holomorphic
group KC-bundle on X . The theorem states that the inclusion
of the space of KC-equivariant holomorphic sections of E
over X into the space of K -equivariant continuous sections
is a weak homotopy equivalence.

The proof of Theorem D follows the approach of the
Grauert era, clearly and elegantly described by Cartan [2].
This approach has the advantage that we can apply results
from Heinzner and Kutzschebauch’s paper [15]. Let us
review some notions central to this approach, adapted to the
equivariant setting. First we need the Kempf–Ness set.

To every real-analytic K -invariant strictly plurisubhar-
monic exhaustion function on X (such functions exist) is
associated a real-analytic subvariety R of X called a Kempf–
Ness set. It consists of precisely one K -orbit in every closed
KC-orbit in X . The inclusion R ↪→ X induces a homeomor-
phism R/K → X//KC, where the orbit space R/K carries
the quotient topology. Informally speaking, the Kempf–Ness
set is where K -equivariant continuous information can be
related to holomorphic KC-equivariant information. This is
underlined by the following result, which in its original form
is due to Neeman [29]; see also [32] and [14].

Theorem 4.1 [15, p. 341] There is a real-analytic K -
invariant strictly plurisubharmonic exhaustion function on
X , whose Kempf–Ness set R is a K -equivariant continuous
strong deformation retract of X , such that the deformation
preserves the closure of each KC-orbit.

The following equivariant version of the covering homo-
topy theorem is used to prove an important fact about the
Kempf–Ness set (Proposition 4.3).

Theorem 4.2 [23, Theorem 2.6] Let a compact Lie group K
act real analytically on a Stein space X by biholomorphisms,
and trivially on I = [0, 1]. Let G be a complex Lie group
and G be a topological group bundle on X × I with fibre
G, whose structure group A is a Lie subgroup of the Lie
automorphism group of G. Let K act continuously on G by
group A-bundle maps.

(a) Then G is isomorphic to a constant bundle (depends triv-
ially on t ∈ I ).

(b) Let P be a topological principal K -G -bundle on X × I .
(It is implicit that the action map P ×X G → P is K -
equivariant.) By (a), we may take G to be constant. Then
P is isomorphic to a constant bundle. Hence, once we
identify the bundles G |X×{t}, t ∈ I , with a topological
group K -bundle G0 on X , the topological principal K -
G0-bundles P|X×{t}, t ∈ I , are mutually isomorphic.

As a consequence we have the following result.

Proposition 4.3 [23, Proposition 2.7] Suppose that a com-
pact Lie group K acts real analytically on a Stein space X by

biholomorphisms. Let G be a complex Lie group and G be a
topological group bundle on X with fibre G,whose structure
group A is a Lie subgroup of the Lie automorphism group of
G. Let K act continuously on G by group A-bundle maps.

Let E be a topological K -G -bundle on X (not necessarily
homogeneous). The restriction map from the space of con-
tinuous K -sections of E over X to the space of continuous
K -sections of E over R is a homotopy equivalence.

In the following, we take R to be a Kempf–Ness set as
defined above. Next comes the central notion of an NHC-
section.

LetC be a compactHausdorff space and N ⊂ H be closed
subsets of C , such that N is a strong deformation retract of
C . We define a sheafQ(R) of topological groups on X//KC

as follows. For each open subset V of X//KC, the group
Q(R)(V ) consists of all K -equivariant NHC-sections of
G over W = (π−1(V ) × H) ∪ ((π−1(V ) ∩ R) × C). By
an NHC-section of G over W , we mean a continuous map
s : W → G such that:

• for every c ∈ C , the map s(·, c) is a continuous section
of G over π−1(V ) ∩ R,

• for every c ∈ H , s(·, c) is a holomorphic section of G
over π−1(V ),

• for every c ∈ N , s(·, c) is the identity section of G over
π−1(V ).

The topology on Q(R)(V ) is the compact-open topology.
Now we formulate the relevant results from [15], first the

equivariant analogue of the classical théorème principal [2,
p. 105].

Theorem 4.4 [15, p. 324]

(a) The topological groupQ(R)(X//KC) is path connected.
(b) IfU is Runge in X//KC, then the image ofQ(R)(X//KC)

inQ(R)(U ) is dense.
(c) H1(X//KC,Q(R)) = 0.

Next we state Heinzner and Kutzschebauch’s main result
on the classification of principal K -G -bundles (called G -
principal K -bundles in [15]).

Theorem 4.5 [15, pp. 341, 345]

(a) Every topological principal K -G -bundle on X is topo-
logically K -isomorphic to a holomorphic principal KC-
G -bundle on X.

(b) Let P1 and P2 be holomorphic principal KC-G -bundles
on X. Let c be a continuous K -equivariant section of
Iso(P1, P2) over R. Then there is a homotopy of con-
tinuous K -equivariant sections γ (t), t ∈ [0, 1], of
Iso(P1, P2) over R, such that γ (0) = c and γ (1) extends
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to a holomorphic K -equivariant isomorphism from P1 to
P2.

Sketch of proof of TheoremD First we prove that the inclu-
sion ΓO (E)K ↪→ ΓC (E)K induces a surjection of path
components. Let P be the holomorphic principal KC-G -
bundle associated to E . Take a continuous K -section s of E
over X . The preimage in P of its image in E is a topological
principal K -H -subbundle Q of P . We have a topological
K -isomorphism σ : Q ×H G → P . By Theorem 4.5(a),
Q is topologically K -isomorphic to a holomorphic princi-
pal KC-H -bundleQ′. Choose a topological K -isomorphism
Q′ → Q and let τ : Q′ ×H G → Q ×H G be the induced
isomorphism.

By Theorem 4.5(b) and Proposition 4.3, the topological
K -isomorphism σ ◦ τ : Q′ ×H G → P can be deformed
to a holomorphic K -isomorphism over X . Applying the
deformation to Q′, viewed as a subbundle of Q′ ×H G ,
gives a deformation of Q through topological principal
K -H -subbundles of P to a holomorphic principal KC-H -
subbundle. Pushing down to E yields a deformation of s
through continuous K -sections of E to a holomorphic sec-
tion.

Now let B be the closed unit ball in R
k , k ≥ 1, and let

α0 : B → ΓC (E)K be a continuousmap taking the boundary
sphere ∂B into ΓO (E)K . Choose a base point b0 ∈ ∂B. We
shall prove that there is a deformation α : B× I → ΓC (E)K

of α0 = α(·, 0) with αt (b0) = α0(b0) and αt (∂B) ⊂
ΓO (E)K for all t ∈ I , and α1(B) ⊂ ΓO (E)K . This implies
that the inclusion ΓO (E)K ↪→ ΓC (E)K induces a πk−1-
monomorphism and a πk-epimorphism.

Consider the holomorphic group KC-bundle Aut P of
principal G -bundle automorphisms of P . We seek a global
K -equivariant NHC-section γ0 of Aut P (with C = B,
H = ∂B, N = {b0}) such that for every b ∈ B, γ0(b), by its
left action on E , maps α0(b0) to α0(b), over X if b ∈ ∂B but
only over R if b ∈ B \ ∂B.
Claim. On a sufficiently small saturated neighbourhood of
each point of X , that is, locally over X//KC, such an NHC-
section exists.

The proof of the claim is quite involved. It requires a
detailed analysis of the equivariant local structure of the bun-
dles involved. We will not attempt a summary, but refer the
reader to [23].

On the intersection of two such saturated neighbourhoods,
two such NHC-sections differ by a K -equivariant NHC-
section of the holomorphic group KC-bundleA of principal
G -bundle automorphisms of P that fix α0(b0). Glueing these
local NHC-sections together to produce γ0 amounts to split-
ting a cocycle, and the cocycle does split by Theorem 4.4(c)
applied to A .

By Theorem 4.4(a) applied to Aut P , we can deform γ0
through K -equivariant NHC-sections γt of Aut P , t ∈ I , to

the identity section. Let αt (b) be the section of E obtained
by letting γt (b) act on α0(b0). For b ∈ B \∂B and t ∈ (0, 1),
αt (b) is only defined over R. Thus, we have a deformationα :
B × I → ΓC (E |R)K , such that α factors through ΓC (E)K

on B×{0} and throughΓO (E)K on ∂B× I ∪B×{1}, in such
a way that αt (b0) is fixed and α1 takes all of B to α0(b0).

At this stage the continuous sections are defined over the
Kempf–Ness set only, whereas the holomorphic sections are
defined over all of X . The problem is that the extension of
continuous sections using the strong deformation retraction
of X onto R does not give back the holomorphic sections for
parameters in ∂B.

The proof would now be done if we could show that the
following commuting square has a continuous lifting.

∂B × I ∪ B × {0, 1} β ��

j

��

ΓC (E)K

p
��

B × I
α ��

���������
ΓC (E |R)K

In fact, it suffices to show that α can be deformed, keeping
β fixed and the square commuting, until a lifting exists. This
can be deduced by homotopy-theoretic considerations from
Proposition 4.3.

5 Equivariantly Okamanifolds

We begin by motivating the definition of a G-Oka manifold.
HereG is a reductive complexLie group. Let K be amaximal
compact subgroup ofG. It is natural to say that aG-manifold
Y has the basicG-Oka property (G-BOP) if every continuous
K -map from a Stein G-manifold X to Y can be deformed
through such maps to a holomorphic map.

Consider the following consequences of Y satisfying G-
BOP. First, if the G-action on X is trivial, then a K -map
X → Y is nothing but a plainmap from X to the submanifold
Y K = YG . Hence, every continuous map X → YG can be
deformed to a holomorphic map, so YG has the basic Oka
property (BOP).

Second, let L be a closed subgroup of K . The complexi-
fication of L is a reductive closed subgroup H of G. Let X
be a Stein H -manifold and consider the adjunction

homG(indGH X ,Y ) ∼= homH (X , resGH Y ).

Here, the subscripts denote equivariance, hom refers to either
continuous or holomorphic maps, resGH Y is Y viewed as an
H -manifold, indGH X is the Stein G-manifold G ×H X [the
geometric quotient of G × X by the H -action h · (g, x) =
(gh−1, hx)], and∼= denotes a homeomorphism that is natural
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in X and Y . We conclude that if Y satisfies G-BOP, then Y
also satisfies H -BOP, so by the above, Y H satisfies BOP.

Approximation and interpolation can easily be included
in the above and we are led to the following definition.

Definition 5.1 Let a reductive complex Lie groupG act holo-
morphically on a manifold Y . We say that Y is G-Oka if the
fixed-point manifold Y H is Oka for all reductive closed sub-
groups H of G.

Taking H to be the trivial subgroup, we see that a G-Oka
manifold is Oka. On the other hand, the following example
shows that an Oka G-manifold need not be G-Oka, even for
G = Z2.

Example 5.2 [24, Example 2.7] If f ∈ O(Cn), n ≥ 2, is a
polynomial such that d f vanishes nowhere on f −1(0), then
the affine algebraic manifold X = {(u, v, z) ∈ C

n+2 : uv =
f (z)} has the algebraic density property and is, therefore,
Oka [17]. The fixed-point set W of the involution u ↔ v of
X is smooth, given by the formula u2 = f (z), and is a double
branched covering of C

n with branch locus f −1(0). Choose
f such that f −1(0) is not Oka; this is easy. IfW is Oka, then
our promised example is Y = W and YG = f −1(0). If it
is not, then the example is Y = X and YG = W . (There is
no particular f for which we have determined whether W is
Oka or not.)

The expected basic properties of the equivariantOka prop-
erty are easily established straight from the definition or from
basic properties of Oka manifolds.

Proposition 5.3 [24, Proposition 2.1] Let a complex reduc-
tive group G act holomorphically on a complex manifold Y .

(1) If G acts trivially on Y , then Y is G-Oka if and only if Y
is Oka.

(2) If Y is G-Oka and H is a reductive closed subgroup of
G, then Y is H-Oka with respect to the restriction of the
action to H.

(3) If Y j is G j -Oka, j = 1, 2, then Y1 ×Y2 is G1 ×G2-Oka.
(4) If Y1 and Y2 are G-Oka, then Y1 × Y2 is G-Oka with

respect to the diagonal action.
(5) A holomorphic G-retract of a G-Oka manifold is G-Oka.
(6) If Y is the increasing union of G-Oka G-invariant

domains, then Y is G-Oka.

Here are three ways to construct new equivariantly Oka
manifolds from old. The first two are from [24]. The locali-
sation principle in (c) is due to Kusakabe [19, Theorem A.5].

Proposition 5.4 Let G be a complex reductive group and let
H be a reductive closed subgroup of G.

(a) If Y is an H-manifold, then G ×H Y with its natural
G-action is G-Oka if and only if Y is H-Oka.

(b) Let π : Y → Z be a holomorphic fibre bundle with fibre
F. Assume that Y , Z , and F are G-manifolds and π is
G-equivariant. Further assume that Z is Stein and F is
G-Oka. Then Y is G-Oka if and only if Z is G-Oka.

(c) If Y is covered by G-Oka G-invariant Zariski-open sub-
sets, then Y is G-Oka. (Zariski-open means that the
complement is a closed analytic subvariety.)

The first main theorem of [24] is Theorem G for the case
when G = K is a finite group. Let us give a rough sketch
of the proof of part (a). Parts (b) and (c) then follow by
equivariant adaptations of standard methods. The proof of
Theorem G is completed in [24, Sect. 5].

Sketch of proof of part (a) of TheoremG Since G is finite, the
Luna strata in Q = X/G are finite in number. Let π : X →
Q be the quotient map. We have a filtration Q = Qm ⊃
Qm−1 ⊃ · · · ⊃ Q0 ⊃ Q−1 = ∅ of Q, where the subvariety
Qk is the union of the strata of dimension at most k. Each
difference Qk \ Qk−1, k = 0, . . . ,m, is smooth and each
of its connected components is contained in a Luna stratum.
We will produce a homotopy of continuous G-maps from a
given map f : X → Y to a holomorphic map.We let f0 = f
on π−1(Q0) and proceed by induction in two steps for each
k = 1, . . . ,m.
Step 1. Suppose that we have a homotopy of f |π−1(Qk−1)

,
through continuousG-maps, to a holomorphicG-map fk−1 :
π−1(Qk−1) → Y . Then fk−1 and the homotopy extend to a
G-invariant neighbourhood of π−1(Qk−1) in X .

For k = 1, we start with the constant homotopy. For
k ≥ 2, the input is Step 2 for k − 1. Using Siu’s Stein
neighbourhood theorem and Heinzner’s equivariant embed-
ding theorem, we move the problem into a G-module. The
holomorphicmap extends byCartan’s extension theorem fol-
lowed by averaging. Finally, the homotopy extends since Y is
an absolute neighbourhood retract in the category of metris-
able G-spaces.
Step 2.There is a homotopy of f |π−1(Qk )

, through continuous
G-maps, to a holomorphic G-map fk : π−1(Qk) → Y .

This step may be reduced to an application of Forstnerič’s
Oka principle for sections of branched holomorphic maps
([5, Theorem2.1]; see also [7, Theorem6.14.6]). Forstnerič’s
result is the only known Oka principle in modern Oka theory
that does not require the map in question to be a submersion.
A parametric version of the result is not available and appears
difficult to prove.

The remarkable fact that Oka manifolds can be defined
in many nontrivially equivalent ways points to the concept
being natural and important. The same has been proved to
some extent in the equivariant setting. Above we defined the
basicG-Okaproperty. It is the property ascribed to theG-Oka
manifold Y in part (a) of Theorem G. The stronger property
ascribed to Y in part (b) is called the basic G-Oka property
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with interpolation (G-BOPI), and the property ascribed to Y
in part (c) is called the basicG-Oka propertywith approxima-
tion and jet interpolation (G-BOPAJI). The definition of the
basicG-Oka propertywith approximation (G-BOPA) should
be obvious. The following result combines [24, Corollary
4.2] and [19, Corollary A.4]. The property G-Ell1 is defined
below.

Theorem 5.5 For a complex manifold with an action of a
finite group G, the following properties are equivalent:
G-BOPA, G-BOPI, G-BOPAJI, G-Ell1, and the G-Oka
property.

We believe that generalising Theorem G to arbitrary
reductive groups will require new methods. In [24, Sect. 5]
we took the following step towards this goal.

Theorem 5.6 Let G be a complex reductive group and K
a maximal compact subgroup of G. Let X be a Stein G-
manifold and Y be a G-Oka manifold. Assume that X has
a single slice type, that is, the quotient map X → X//G
is a holomorphic G-fibre bundle. Then every K -equivariant
continuous map X → Y is homotopic, through such maps,
to a G-equivariant holomorphic map.

We now turn to the equivariant versions of two funda-
mental properties in Oka theory. A manifold Y is said to be
elliptic—Gromov’s definition [11] marked the beginning of
modern Oka theory—if it carries a dominating spray, that
is, there is a holomorphic map s : E → Y , called a spray,
defined on the total space of a holomorphic vector bundle E
on Y , such that s(0y) = y for all y ∈ Y , which is dominating
in the sense that s|Ey : Ey → Y is a submersion at 0y for all
y ∈ Y . If a complex Lie group G acts on Y , then we say that
s is a G-spray if the action on Y lifts to an action on E by
vector bundle isomorphisms such that both s and the projec-
tion E → Y are equivariant. We say that Y is G-elliptic if it
carries a dominating G-spray.

The weaker notion of relative G-ellipticity, also known
as G-Ell1 and mentioned above, is defined as follows. The
manifold Y satisfies G-Ell1 if for every holomorphic G-map
f from a Stein G-manifold X to Y , there is a holomorphic
G-vector bundle E over X and a dominating G-spray s :
E → Y over f . This means that s(0x ) = f (x) for every
x ∈ X , where 0x is the zero vector in the fibre Ex of E over
x , and s|Ex : Ex → Y is a submersion at 0x .

We say that Y is G-Runge if for every Stein G-manifold
X and every G-invariant Runge domain Ω in X , the closure
of the image of the restriction mapOG(X ,Y ) → OG(Ω,Y )

is a union of path components (perhaps empty). (To say that
Ω is Runge means that Ω is Stein and the restriction map
O(X) → O(Ω) has dense image.) In other words, approx-
imability of holomorphic G-maps Ω → Y by holomorphic
G-maps X → Y is deformation invariant.WhenG is the triv-
ial group, theG-Runge property of Y is one of the equivalent

formulations of the Oka property. When G is reductive, the
property of a domain Ω in X being G-invariant and Runge
can be described in several equivalent ways [24, Sect. 6]. For
example, it is equivalent to say that Ω is the preimage of a
Runge domain in X//G.

Analogues of the basic results about the G-Oka property
hold for both G-ellipticity and the G-Runge property [24,
Sects. 3 and 6], except we do not know a simple proof that
a G-homogeneous space is G-Runge. This is what we know
about the relationships between the three properties.

Theorem 5.7 Let G be a reductive complex group and Y a
G-manifold.

(a) If Y is G-elliptic, then Y is G-Runge.
(b) If Y is G-Runge, then Y is G-Oka.
(c) If G is finite and Y is Stein and G-Oka, then Y is G-

elliptic.

The proof of (a) is somewhat involved: it is an equivariant
version of Gromov’s linearisation method, sketched in [11,
Sect. 1.4]. It uses some equivariant Stein theory, most impor-
tantly the equivariant version of Theorem B of Cartan and
Serre, due to Roberts [31]. The proof of (b) is a quick reduc-
tion to the fact that a manifold satisfying the Runge property
for trivial actions is Oka. The proof of (c) is a straightforward
adaptation of the well-known proof in the case of no action.

Now let Y be a G-homogeneous space and take the trivial
G-vector bundle Y ×g → Y , whereG acts on its Lie algebra
g by the adjoint representation. Then Y × g → Y , (y, v) �→
exp(v) · y, is a dominating G-spray, so Y is G-elliptic. By
Theorem 5.7(a), Y is G-Runge.

6 Open problems

(1) Does the parametric version of TheoremA hold? That is,
in the setting of the theorem, is the inclusion of the space
of G-biholomorphisms X → Y into the space of strict
G-diffeomorphisms a weak homotopy equivalence with
respect to the appropriate topology? The same question
for strong G-homeomorphisms.

(2) Is there a counterexample to Theorem B if X does not
have the infinitesimal lifting property?

(3) Does Theorem 3.4 hold if G0 is a torus (C∗)n of dimen-
sion n ≥ 2?

(4) Build approximation and interpolation into Theorem D.
(5) Show that theweak homotopy equivalence in TheoremD

is a genuine homotopy equivalence under suitable con-
ditions. There are, by now, several such results in the
literature, the first in [27]. The same question for Theo-
rem F.
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(6) Does TheoremG hold for arbitrary actions of a reductive
group G? Does it hold for actions for which all the G-
orbits are closed?

(7) Does the parametric version of Theorem G hold?
(8) Let G be a reductive group and Y be a G-Oka manifold.

Is Y G-Runge?
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