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a b s t r a c t 

In direct marketing, companies use sales campaigns to target their customers with personalized product 

offers. The effectiveness of direct marketing greatly depends on the assignment of customers to cam- 

paigns. In this paper, we consider a real-world planning problem of a major telecommunications com- 

pany that assigns its customers to individual activities of its direct marketing campaigns. Various side 

constraints, such as budgets and sales targets, must be met. Conflict constraints ensure that individual 

customers are not assigned too frequently to similar activities. Related problems have been addressed in 

the literature; however, none of the existing approaches cover all the side constraints considered here. 

To close this gap, we develop a matheuristic that employs a new decomposition strategy to cope with 

the large number of conflict constraints in typical problem instances. In a computational experiment, 

we compare the performance of the proposed matheuristic to the performance of two mixed-binary lin- 

ear programs on a test set that includes large-scale real-world instances. The matheuristic derives near- 

optimal solutions in short running times for small- to medium-sized instances and scales to instances 

of practical size comprising millions of customers and hundreds of activities. The deployment of the 

matheuristic at the company has considerably increased the overall effectiveness of its direct marketing 

campaigns. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Companies in competitive sectors such as banking and telecom- 

unications strongly rely on direct marketing to promote their 

roducts ( Miguéis, Camanho, & Borges, 2017 ). In direct market- 

ng campaigns, companies contact their customers individually via 

all , direct mail , email , or text message to make a personalized of-

er. The success of such campaigns greatly depends on the assign- 

ent of customers to campaigns. Increasing the overall response 

ate by targeting the right customers can result in a substantial 

rofit increase. However, contacting individual customers too fre- 

uently and offering products they are not interested in, negatively 

mpacts the effectiveness of direct marketing. 

We introduce a real-world planning problem of a major 

elecommunications provider. The problem input consists of a set 

f activities and a set of customers. Each activity is scheduled for 

 specific day, and the eligible customers, i.e., the customers who 

an be assigned, are known for each activity. An expected profit, a 

esponse probability, and a cost are given for every possible assign- 
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ent of a customer to an activity. Various business and customer- 

pecific constraints must be considered. The business constraints 

nclude assignment constraints that control the number of assign- 

ents to specific activities, budget constraints that ensure that 

he total cost associated with assignments to specific activities 

oes not exceed a prescribed budget, as well as sales constraints 

hat control the expected number of sales resulting from assign- 

ents to specific activities. The customer-specific constraints in- 

lude lower and upper bounds on the number of contacts per cus- 

omer within a prespecified time window (e.g., one month) and 

onflict constraints that ensure that each customer who is eligi- 

le for two conflicting activities is assigned to at most one of the 

wo activities. Two activities are in conflict when they take place in 

lose succession and are associated with the same channel or pro- 

ote the same product. The objective is to assign the customers to 

he activities such that the total expected profit is maximized. The 

ompany solves this planning problem on a daily basis, each time 

ith updated data. Before using our approach, a dedicated team of 

he company used to manually assign its customers to the activi- 

ies. To preserve the existing workflow, a key requirement for the 

olution approach was that it is capable of producing solutions for 

ractical instances within 30 minutes. 

To the best of our knowledge, none of the existing approaches 

rom the literature can be directly applied to the above-described 
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Table 1 

Activities of the illustrative example. 

Activity Day Channel Target products Cost 

A1 1 text message internet 1 

A2 5 text message internet 1 

A3 2 call center mobile 10 

A4 7 call center mobile 10 

A5 4 direct mail internet 4 

A6 6 email mobile 1 

A7 1 call center mobile 10 

A8 7 text message mobile 1 
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lanning problem. Approaches that have been proposed for opti- 

izing direct marketing campaigns only consider subsets of the 

onstraints of our problem setting (cf. Table 5 in Section 3.1 for an 

verview). In particular, none of the approaches consider customer- 

pecific conflict constraints. Conflict constraints in a more general 

ense have received considerable attention in the literature on re- 

ated planning problems such as the assignment problem and the 

in packing problem. However, approaches for these problems also 

annot be applied directly to our problem because they do not 

llow the assignment of the same customer to multiple activities 

r the assignment of multiple customers to the same activity. The 

lanning problem here also differs from related planning problems 

n terms of the size of typical instances. Practical instances involve 

illions of customers and hundreds of activities, which may lead 

o hundreds of millions of conflict constraints. This large number 

f conflict constraints hinders the use of exact approaches that em- 

loy a mixed-binary linear programming formulation of the en- 

ire planning problem. With hundreds of millions of conflict con- 

traints, the time required to construct the model alone exceeds 

he running time limit prescribed by the company. The large num- 

er also makes it difficult to adapt existing heuristics that were not 

pecifically designed to address this challenge. Hence, the develop- 

ent of a new solution approach is required. 

We propose a matheuristic for the above-described problem. 

he matheuristic follows the idea of solving a mathematical model 

or groups of customers rather than individual customers. The 

ain methodological feature of the matheuristic is the problem 

ecomposition strategy, which allows grouping of customers while 

till enforcing conflict constraints for individual customers. The 

ecomposition works in four steps. In the first step, customers 

ho are eligible for the same activities are grouped together such 

hat the customers in one group are subject to the same conflicts 

mong activities. In the second step, a clustering algorithm further 

ivides each group into subgroups such that the customers in the 

ame subgroup have similar expected profits. In the third step, a 

inear program decides how many customers of a subgroup are as- 

igned to an activity. To consider conflicts among activities, the lin- 

ar program employs new types of constraints which are defined 

or sets of activities of maximal size in which every two distinct 

ctivities are conflicting. To derive these sets efficiently without in- 

roducing redundancies, we developed a preprocessing technique. 

n the fourth step, an iterative algorithm assigns individual cus- 

omers to the activities in a carefully selected sequence based on 

he solution derived by the linear program. The trade-off between 

olution quality and running time can be controlled by changing 

he number of subgroups created in the second step. The proposed 

ecomposition scheme is the first to show how conflict constraints 

an be grouped and effectively incorporated into an aggregated op- 

imization model. We believe that these ideas can be useful for 

he development of heuristics for related combinatorial optimiza- 

ion problems with conflict constraints. 

In an experimental analysis, we use 27 generated and 13 real- 

orld instances to compare the performance of the matheuristic 
2 
o the performance of two mixed-binary linear programming for- 

ulations. The matheuristic finds near-optimal solutions in short 

unning times for instances that could be solved to optimality by 

t least one of the two mixed-binary linear programming formula- 

ions. For all other instances, the matheuristic clearly outperforms 

oth mixed-binary linear programming formulations in terms of 

olution quality and running time. We find that the preprocess- 

ng technique and the new types of constraints in the linear pro- 

ram contribute substantially to the effectiveness and the speed of 

he matheuristic. The matheuristic has been successfully deployed 

t the company and is now used on a daily basis. According to the 

ompany, introducing the matheuristic led to a substantial increase 

n the overall profitability of the campaigns. Moreover, the problem 

ecomposition strategy of the matheuristic allows the company to 

pproximate the impact of strategic decisions (e.g., an increase of 

udgets) in near real time by solving the linear program of the 

hird step several times with different values for the parameters. 

The rest of the paper is structured as follows. In Section 2 , we

escribe the planning problem in more detail. In Section 3 , we re- 

iew the related literature. In Section 4 , we formulate the plan- 

ing problem as a mixed-binary linear program. In Section 5 , we 

escribe the four steps of the matheuristic. In Section 6 , we ex- 

lain the preprocessing technique used in the matheuristic in more 

etail and introduce an alternative mixed-binary linear program- 

ing formulation that makes use of the preprocessing technique. 

n Section 7 , we report the results. Finally, in Section 8 , we draw

onclusions and give directions for future research. 

. Planning problem 

In Section 2.1 , we provide the business context of the plan- 

ing problem. In Section 2.2 , we specify the planning problem. In 

ection 2.3 , we illustrate the planning problem with an example. 

.1. Business context 

The telecommunications company that reported the planning 

roblem simultaneously runs multiple direct marketing campaigns 

o promote its products and services related to different market 

egments to existing customers of the company. Each campaign 

s created by a marketing manager who selects a set of target 

roducts, designs the offer, identifies eligible customers, and 

etermines the activities of the campaign, i.e., the days on which 

ustomers can be contacted via specific channels. The marketing 

anagers also define some of the business constraints such as 

ssignment constraints for activities of their campaigns. Other 

usiness constraints such as budgets are defined in a centralized 

anner by higher management. The assignment of the company’s 

ustomers to its activities is performed by a central unit instead 

f the campaign managers to prevent customers who are eligible 

or activities of multiple campaigns from being contacted too 

requently. The central unit considers all business constraints 

hen assigning the customers to the activities. To replace the 

urrent practice of manually assigning the customers to the ac- 

ivities, the company asked us to develop a heuristic to assign 

ts customers automatically. In the next section, we describe the 

lanning problem from the perspective of the central unit. 

.2. Problem description 

The problem input consists of a set of activities and a set 

f customers. Each customer can be assigned to one or multi- 

le activities. An expected profit is given for each possible as- 

ignment. The goal is to assign the customers to the activities 

uch that the total expected profit is maximized subject to various 
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onstraints. We distinguish between business and customer- 

pecific constraints. The business constraints consist of: 

• Minimum assignment constraints , which impose lower 

bounds on the number of assignments to sets of selected ac- 

tivities, and maximum assignment constraints , which im- 

pose upper bounds on the number of assignments to sets of 

selected activities. These constraints balance the number of 

assignments over activities and can be used, for example, to 

control the utilization of specific channels. 
• Budget constraints , which impose upper bounds on the to- 

tal costs that result from assignments to sets of selected ac- 

tivities. The cost per assignment depends on the channel 

over which a customer is contacted, and hence may differ 

among activities. These constraints ensure that funds allo- 

cated to individual channels or groups of channels are not 

exceeded. 
• Minimum sales constraints , which impose lower bounds 

on the number of expected sales that result from assign- 

ments to sets of selected activities, and maximum sales 

constraints , which impose upper bounds on the number of 

expected sales that result from assignments to sets of se- 

lected activities. Each possible assignment is associated with 

a response probability, which states the likelihood of a posi- 

tive customer reaction (i.e., a sale of the target product). The 

expected sales that result from assignments to a set of se- 

lected activities are computed as the sum of the correspond- 

ing response probabilities. These constraints enable the com- 

pany to control the intensity of promoting new products or 

services. Maximum sales constraints are useful to prevent an 

overload of sales channels. For example, they can be used to 

distribute the customer volume in shops over time. 

Each activity is associated with different characteristics, such as 

he day on which the assigned customers are contacted, the chan- 

el that is used to contact the customers, and the target prod- 

cts that are promoted. These characteristics allow definition of 

usiness constraints for specific time periods, channels, or target 

roducts by selecting the corresponding activities. More compli- 

ated selections of activities based on combinations of these char- 

cteristics are also possible. For example, minimum and maximum 

ssignment constraints are typically defined for specific combi- 

ations of channels and time periods. The customer-specific con- 

traints consist of: 

• Minimum contact constraints , which impose a lower 

bound on the number of times that a customer is assigned 

to a set of selected activities, and maximum contact con- 

straints , which impose an upper bound on the number of 

times that a customer is assigned to a set of selected activ- 

ities. These constraints ensure that a customer is not con- 

tacted too frequently. The contact constraints are derived 

from contact rules, which may state, for example, that a cus- 

tomer cannot be contacted more than twice in January. 
• Conflict constraints , which ensure that each customer is as- 

signed to at most one out of two conflicting activities. A 

conflict arises when two activities take place within a cer- 

tain number of consecutive days and use certain combina- 

tions of channels and target products. These constraints en- 

sure that a customer is not assigned too frequently to similar 

activities. The conflict constraints are derived from conflict 

rules, which may state, for example, that a customer cannot 

be contacted twice via a call within one week. A separate 

conflict constraint would be imposed for each customer and 

each pair of activities which use the channel call center and 
take place within seven consecutive days. a

3 
This planning problem is strongly NP -hard, as it can be reduced 

o a generalized assignment problem that is known to be NP -hard 

cf. Garey & Johnson, 2002 ). The minimum assignment constraints, 

he minimum and maximum sales constraints, and the minimum 

ontact constraints reflect strategic decisions rather than opera- 

ional requirements. Also, some of these constraints are defined 

ndependently by different marketing managers. This process may 

ead to contradictory constraints, for example, it is possible that 

wo marketing managers each define a minimum assignment con- 

traint that individually could be satisfied but together cannot be 

atisfied because of budget or conflict constraints. These depen- 

encies get more complex if all types of minimum constraints are 

onsidered. Thus, the company wants to treat the constraints of the 

forementioned four constraint types (minimum assignment, min- 

mum and maximum sales, and minimum contact constraints) in 

lmost all instances as soft constraints that can be violated sub- 

ect to a penalty. The rest of the constraints must be treated as 

ard constraints because they represent operational requirements. 

he main purpose of using the soft constraints is to be able to 

enerate a solution even if some constraints cannot be satisfied. 

nother advantage of the soft constraints is that users at the com- 

any are able to observe which slack variables take a positive value 

nd thus, which constraints cannot be satisfied in the current set- 

ing. The penalty is computed for every soft constraint by multi- 

lying the difference between the achieved assignments (or sales) 

nd the prescribed bound by a constant. The constant can be set 

ndividually for each constraint type. The objective is to maximize 

he total expected profit minus the total penalty. 

.3. Illustrative example 

The illustrative example comprises 20 customers and eight ac- 

ivities that belong to six different campaigns. Figure 1 shows for 

ach activity the day on which it takes place, the channel over 

hich the customers are contacted, and the target products that 

re promoted. Table 1 additionally lists the cost per assignment for 

ach activity. Table 2 specifies the expected profit and the response 

robability for each possible assignment. The business constraints 

omprise a maximum assignment constraint, which ensures that 

t most 11 calls are used to contact the customers, a budget con- 

traint, which ensures that all assignments associated with the 

hannels direct mail , email , and text message do not incur costs of 

ore than 40 Euros, and a maximum sales constraint, which en- 

ures that the number of expected sales for the target product mo- 

ile does not exceed five. Moreover, minimum contact constraints 

re based on a contact rule that states that each customer must be 

ssigned at least once. Maximum contact constraints are based on 

 contact rule that states that each customer must be assigned at 

ost twice. Table 3 specifies for the business constraints and the 

ontact rules the type, the start day, the end day, the channels, the 

arget products, and the bound associated with the respective con- 

traint or contact rule. The illustrative example has four conflict 

ules. First, each customer cannot be contacted more than once 

ithin two days. Second, each customer cannot be contacted more 

han once within five days via a call . Third, each customer can- 

ot be contacted more than once within four days via direct mail . 

ourth, each customer cannot be contacted more than once within 

our days via a text message . Table 4 indicates the combinations of 

hannels and target products that lead to a conflict and the time 

ag related to a conflict rule. In Tables 3 and 4 , the entry “ALL”

ndicates that all channels or target products are affected by this 

onstraint or rule. 

All constants used to compute the total penalty for the soft con- 

traints are set to 112 Euros (maximum absolute expected profit). 

he optimal assignment is marked in bold in Table 2 and produces 

n expected profit of 2 , 973 Euros. The maximum sales constraint is 
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Fig. 1. Activities (A1 to A8) of the illustrative example. 

Table 2 

Expected profits and response probabilities of the illustrative example. 

Customer Activity Expected profit Response prob. Customer Activity Expected profit Response prob. 

1 A3 105 0.29 11 A5 108 0.25 

1 A4 105 0.29 12 A3 85 0.17 

1 A5 88 0.16 12 A4 85 0.17 

2 A5 78 0.17 12 A5 106 0.25 

2 A6 91 0.23 13 A3 88 0.18 

3 A5 88 0.28 13 A4 88 0.18 

3 A6 75 0.20 13 A5 110 0.24 

4 A5 80 0.14 14 A5 65 0.17 

4 A6 90 0.26 14 A7 75 0.23 

5 A3 91 0.19 14 A8 80 0.24 

5 A4 91 0.19 15 A1 102 0.25 

5 A5 107 0.26 15 A2 102 0.25 

6 A1 75 0.22 15 A6 93 0.21 

6 A2 75 0.22 16 A3 112 0.30 

6 A6 85 0.15 16 A4 112 0.30 

7 A5 100 0.24 16 A5 90 0.20 

7 A7 85 0.11 17 A5 89 0.29 

7 A8 71 0.22 17 A6 77 0.21 

8 A3 109 0.25 18 A1 101 0.29 

8 A4 109 0.25 18 A2 101 0.29 

8 A5 91 0.18 18 A6 95 0.19 

9 A5 76 0.15 19 A5 68 0.20 

9 A6 89 0.25 19 A7 73 0.21 

10 A5 102 0.22 19 A8 85 0.26 

10 A7 87 0.12 20 A5 66 0.19 

10 A8 68 0.23 20 A7 76 0.22 

11 A3 90 0.18 20 A8 83 0.25 

11 A4 90 0.18 

Table 3 

Business constraints and contact rules of the illustrative example. 

Index Type Start day End day Channels Target products Bound 

1 Maximum assignment 1 7 call center ALL 11 

2 Budget 1 7 direct mail , email , text message ALL 40 

3 Maximum sales 1 7 ALL mobile 5 

4 Minimum contact 1 7 ALL ALL 1 

5 Maximum contact 1 7 ALL ALL 2 

Table 4 

Conflict rules of the illustrative example. 

Index Channel 1 Target product 1 Channel 2 Target product 2 Lag 

1 ALL ALL ALL ALL 2 

2 call center ALL call center ALL 5 

3 direct mail ALL direct mail ALL 4 

4 text message ALL text message ALL 4 

4
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Table 5 

Approaches and problem features from related literature 

Approach Time Decision Objective Constraints 

Temporal Customer Expected Min Max Min Max Min Max 

Authors Exact Heuristic dimension asgmt profit asgmt asgmt Budget sales sales contact contact Conflict 

Direct Cohen (2004) � � � � ( � ) � � ( � ) 

marketing Bhaskar et al. (2009) � � ( � ) � � ( � ) 

Nobibon et al. (2011) � � � � ( � ) ( � ) � � 

Oliveira et al. (2015) � � � ( � ) ( � ) � � 

Cetin & Alabas-Uslu (2017) � � � ( � ) ( � ) � � 

Coelho et al. (2017) � � � ( � ) ( � ) ( � ) � � 

Nair & Tarasewich (2003) � � � ( � ) 

Delanote et al. (2013) � � ( � ) � ( � ) � ( � ) ( � ) 

Ma & Fildes (2017) � � � � ( � ) ( � ) ( � ) 

General Darmann et al. (2011) � ( � ) ( � ) ( � ) ( � ) ( � ) 

Öncan et al. (2019) � ( � ) ( � ) ( � ) ( � ) ( � ) 

Elhedhli et al. (2011) � ( � ) ( � ) ( � ) ( � ) 

Sadykov & Vanderbeck (2013) � ( � ) ( � ) ( � ) ( � ) 

Bigler et al. (2019) � � � � ( � ) � � ( � ) ( � ) ( � ) � � 

This paper � � � � � � � � � � � � � 
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iolated by 0.12, which leads to a penalty of 112(0 . 12) = 13 . 44 Eu-

os. The objective function value in the optimal solution is thus 

 , 959 . 56 Euros. 

. Literature 

The literature review is organized as follows. In Section 3.1 , we 

ocus on related problems in direct marketing. In Section 3.2 , we 

ocus on more general combinatorial optimization problems that 

hare specific constraints with our planning problem. Table 5 gives 

n overview of the discussed approaches and shows which prob- 

em features are exactly ( � ) or partially (( � )) covered. 

.1. Related problems in direct marketing 

There are two large streams of literature in direct marketing. 

he first stream is concerned with the development of response 

odels that predict the responses of customers to direct market- 

ng effort s (e.g., Ma, Hou, Yao, & Lee, 2016 and Lessmann, Haupt, 

oussement, & De Bock, 2021 ). The second stream pertains to the 

ptimization of direct marketing operations given the output of re- 

ponse models. We focus on the second stream because it is more 

losely related to our planning problem. 

Many of the planning problems considered in direct market- 

ng involve the assignment of individual customers to product of- 

ers. The objective in these planning problems is to maximize the 

xpected profit subject to various side constraints. Table 5 shows 

he side constraints that are covered by the different approaches. 

ohen (2004) is the first to propose a binary linear program for 

ssigning customers to direct marketing campaigns. For large-scale 

nstances, he introduces a heuristic that is based on the idea of 

rouping similar customers and using a linear program to deter- 

ine how many customers of a group are assigned to a campaign. 

haskar, Sundararajan, & Krishnan (2009) formulate a similar prob- 

em as the one of Cohen (2004) as a binary linear program and 

ropose a heuristic that builds on the idea of grouping customers. 

undararajan et al. (2011) describe the integration of the heuris- 

ic of Bhaskar et al. (2009) in a retail bank, which led to an esti-

ated financial benefit of $20 million. Nobibon, Leus, & Spieksma 

2011) consider a planning problem in which a subset of prod- 

cts must be selected for a campaign and the customers must 

e assigned to the selected products. They provide a binary lin- 

ar formulation, a branch-and-price algorithm, and eight heuristics 

or this planning problem. The two heuristics that are based on 

olumn generation and on tabu search tend to perform best. For 

he same planning problem as Nobibon et al. (2011) , Oliveira et al. 

2015) develop a heuristic that is based on a greedy randomized 

daptive search procedure combined with a variable neighborhood 

earch, and Cetin & Alabas-Uslu (2017) propose two heuristics, 

hich in a first step use a rule-based procedure to select the prod- 

cts that will be part of a campaign, and in a second step assign

he customers to the selected products. These two-step heuristics 

re competitive with the best heuristics of Nobibon et al. (2011) . 

inally, Coelho et al. (2017) develop a metaheuristic for a variant of 

he planning problem considered by Nobibon et al. (2011) where 

he objective function includes a reward-to-variability indicator, 

hich is inspired by the Sharpe ratio. One major difference be- 

ween our planning problem (cf. Section 2 ) and the ones discussed 

bove is the existence of a temporal dimension. In our planning 

roblem, each activity is scheduled on a specific day of the time 

orizon. This timing information is relevant for various business 

onstraints, and especially for the conflict constraints. In the direct 

arketing literature, only few planning problems include a tem- 

oral dimension. The planning problems which involve a temporal 

imension, however, focus primarily on the design of campaigns 

ather than the assignment of individual customers. 
6 
Nair & Tarasewich (2003) , for example, study a planning prob- 

em that consists of designing a series of promotions over time. 

ome of the side constraints are similar to the conflict constraints 

rom our planning problem. These similar constraints ensure that 

elected pairs of promotions cannot take place within a certain 

umber of consecutive days in the time horizon. Nair & Tarasewich 

2003) formulate a non-linear integer program and develop a ge- 

etic algorithm for this planning problem. Delanote, Leus, & No- 

ibon (2013) formulate an integer linear model for the planning 

f multi-round direct marketing campaigns, which consists of de- 

ermining how many customers of each customer segment are as- 

igned to which product and which channel in each round, in order 

o maximize the total expected profit. Customers who react posi- 

ively in one round cannot be assigned to the same product in later 

ounds. The number of customers who react positively is estimated 

y multiplying the response probability of a segment with the re- 

pective number of assigned customers. Ma & Fildes (2017) formu- 

ate a non-linear program and develop a genetic algorithm for the 

lanning of multi-period promotions, which consists of determin- 

ng for each period which products to advertise such that the to- 

al expected profit of the campaign is maximized. Bigler, Baumann, 

 Kammermann (2019) study a variant of the planning problem 

rom Section 2 , in which all constraints are hard constraints. The 

uthors formulate a binary linear program for this slightly differ- 

nt planning problem and apply it to four small- to medium-sized 

nstances and one large-sized instance. To the best of our knowl- 

dge, no other customer assignment approach solved instances of 

imilar size. However, this binary linear program does not scale to 

ery large real-world instances. 

As we can see from Table 5 , none of the discussed planning 

roblems fully cover all the features of our planning problem. For 

xample, most planning problems do not consider conflict con- 

traints. Conflict constraints, however, have received considerable 

ttention as an extension of more general combinatorial optimiza- 

ion problems such as the assignment problem and the bin packing 

roblem. In the next section, we review these planning problems. 

.2. More general combinatorial optimization problems with conflict 

onstraints 

More general combinatorial optimization problems such as the 

ssignment problem and the bin packing problem have been ex- 

ended to consider conflict constraints. In the assignment problem, 

qual numbers of agents (here customers) and tasks (here activ- 

ties) are given, and exactly one agent must be assigned to each 

ask such that the total cost is minimized. In the assignment prob- 

em with conflict constraints (APC), an assignment of an agent to a 

ask may conflict with another assignment of an agent to a task. 

his structure of the conflict constraints is visualized in Fig. 2 . 

he dashed lines correspond to potential assignments of agents to 

asks, the solid lines correspond to assignments of agents to tasks 

n a feasible solution, and the bold red line indicates a conflict. Be- 

ause of the conflict, agent i 2 cannot be assigned to task j 2 when 

gent i 1 is assigned to task j 1 , or vice versa. Darmann, Pferschy, 

chauer, & Woeginger (2011) prove that the APC is an NP -hard 

ptimization problem. Öncan, Ş uvak, Akyüz, & Altınel (2019) pro- 

ose a branch-and-bound and a Russian doll search algorithm for 

he APC. Figure 2 also illustrates the structure of the conflict con- 

traints in this paper. The customers are eligible for some, but gen- 

rally not all activities. Thus, a potential assignment in the context 

f our planning problem means that customer i is eligible for ac- 

ivity j. Other than in the APC, a customer can be assigned to mul- 

iple activities. The conflicts in this paper occur between activities 

nd apply to all customers who are eligible for the conflicting ac- 

ivities. For example, a conflict exists between activities j 1 and j 2 , 

nd thus both customers i and i can at most be assigned to one 
1 2 
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Table 6 

Notation of MBLP. 

Sets 

I Customers 

J Activities 

T Pairs of conflicting activities 

I j Eligible customers of activity j

J i Activities for which customer i is eligible 

J 
a 

l 
Activities associated with minimum assignment constraint l = 1 , . . . , n a 

J a 
l 

Activities associated with maximum assignment constraint l = 1 , . . . , n a 

J b 
l 

Activities associated with budget constraint l = 1 , . . . , n b 

J 
m 

l 
Activities associated with minimum contact rule l = 1 , . . . , n m 

J m 
l 

Activities associated with maximum contact rule l = 1 , . . . , n m 

J 
s 

l 
Activities associated with minimum sales constraint l = 1 , . . . , n s 

J s 
l 

Activities associated with maximum sales constraint l = 1 , . . . , n s 

Parameters 

b 
a 

l 
Lower bound of minimum assignment constraint l = 1 , . . . , n a 

b a 
l 

Upper bound of maximum assignment constraint l = 1 , . . . , n a 

b b 
l 

Upper bound of budget constraint l = 1 , . . . , n b 

b 
m 

l 
Lower bound of minimum contact rule l = 1 , . . . , n m 

b m 
l 

Upper bound of maximum contact rule l = 1 , . . . , n m 

b 
s 

l 
Lower bound of minimum sales constraint l = 1 , . . . , n s 

b s 
l 

Upper bound of maximum sales constraint l = 1 , . . . , n s 

c j Cost per assignment to activity j

e i j Expected profit of customer i when assigned to activity j

n a Number of minimum assignment constraints 

n a Number of maximum assignment constraints 

n b Number of budget constraints 

n m Number of minimum contact rules 

n m Number of maximum contact rules 

n s Number of minimum sales constraints 

n s Number of maximum sales constraints 

q i j Response probability of customer i when assigned to activity j

α Constant to penalize the extent to which bound in a minimum assignment constraint is violated 

β Constant to penalize the extent to which bound in a minimum sales constraint is violated 

γ Constant to penalize the extent to which bound in a maximum sales constraint is violated 

δ Constant to penalize the extent to which bound in a constraint resulting from a minimum contact 

rule is violated 

Decision variables 

x i j = 1 , if customer i is assigned to activity j; = 0 , otherwise 

z 
a 

l 
∈ [0 , b a 

l 
] , Slack variable of minimum assignment constraint l = 1 , . . . , n a 

z 
s 

l 
∈ [0 , b s 

l 
] , Slack variable of minimum sales constraint l = 1 , . . . , n s 

z s 
l 
∈ [0 , q ] , Slack variable of maximum sales constraint l = 1 , . . . , n s with q = 

∑ 

j∈ J 
∑ 

i ∈ I j q i j 

z 
m 

il 
∈ [0 , b m 

l 
] , Slack variable of minimum contact rule l = 1 , . . . , n m for customer i ∈ I

Fig. 2. Conflict constraints in more general combinatorial optimization problems. 
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f the two activities. In the feasible assignment shown in Fig. 2 , 

ustomer i 1 is assigned only to activity j 1 and customer i 2 is as- 

igned only to activity j 2 . An infeasible assignment would be, for 

xample, if customer i 1 was assigned to both activities j 1 and j 2 . 

In the bin packing problem, items (here customers) of different 

ize must be packed in a minimum number of identical bins (here 

ctivities) with limited capacity. Each item must be assigned to ex- 

ctly one bin, and each bin may contain multiple items that do 

ot exceed its bin capacity. In the bin packing problem with con- 

ict constraints (BPPC), conflicts occur between items and apply to 

ll bins. This structure is also illustrated in Fig. 2 , where items i 1 
nd i are in conflict and thus cannot be assigned to the same bin.
2 

7 
lhedhli, Li, Gzara, & Naoum-Sawaya (2011) and Sadykov & Vander- 

eck (2013) develop different branch-and-price algorithms for the 

PPC. Our planning problem differs from the BPPC in several ways. 

irst, each item in the BPPC can be assigned to each bin if the ca-

acity of the bin allows it. Second, while in our planning problem 

he conflicts occur between activities and apply to all customers 

ho are eligible for these conflicting activities, the conflicts in the 

PPC occur between items (here customers) and apply to all bins 

here activities). Even if we consider items to be bins and bins to 

e items in the BPPC, there is no direct analogy to our planning 

roblem because items must be assigned exactly once in the BPPC, 

hile customers can be assigned multiple times and activities can 
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Fig. 3. Steps of the matheuristic. 
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ave multiple assigned customers in our planning problem. Thus, 

he conflict constraints have the same structure only if we adjust 

ur planning problem such that all customers are eligible for all 

ctivities and each activity must have exactly one assigned cus- 

omer. 

Also other planning problems such as the knapsack prob- 

em with conflict constraints (cf. Bettinelli, Cacchiani, & Malaguti, 

017 and Coniglio, Furini, & San Segundo, 2021 ), the maximum 

ow problem with conflict constraints (cf. Ş uvak, Altınel, & Aras, 

020 ), and the transportation problem with conflict constraints 

cf. Sun, 2002 ) have attracted considerable attention in the liter- 

ture. However, these planning problems differ considerably from 

ur planning problem. In the knapsack problem, a conflict con- 

traint ensures that only one of two items is included in the knap- 

ack while in our planning problem a conflict constraint ensures 

hat a customer is assigned to at most one of two conflicting ac- 

ivities. In the maximum flow problem, a conflict can involve any 

wo edges of a graph while in our planning problem, a conflict al- 

ays involves the assignments of one customer to two conflicting 

ctivities. In the transportation problem, a conflict constraint en- 

ures that two conflicting goods cannot be shipped to the same 

arehouse. These conflict constraints are structurally similar to our 

onflict constraints if we consider warehouses to be customers and 

oods to be activities. However, in the transportation problem with 

onflict constraints, the supply of goods is given while in our plan- 

ing problem the number of assignments to the activities is to be 

etermined. Also, the warehouses in the transportation problem do 

ot need to have a minimum number of assigned goods while the 

ustomers in our planning problem can be affected by minimum 

ontact constraints. Finally, the assignment decisions in the trans- 

ortation problem are integer (quantities of goods) while in our 

lanning problem the assignment decisions are binary. 

Table 5 also shows some side constraints besides the conflict 

onstraints that the approaches for the APC and the BPPC cover. 

owever, we can see that none of the existing approaches cover 

ll problem features of our planning problem. 

MBLP) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

Max. 
∑ 

j∈ J 
∑ 

i ∈ I j e i j x i j −
(
α

∑ n a 

l=1 z 
a 

l 
+ β

∑ n s 

l=1 z 
s 

l 
+ γ

∑ n
l=

s.t. 
∑ 

j∈ J a 
l 

∑ 

i ∈ I j x i j + z 
a 

l 
≥ b 

a 

l ∑ 

j∈ J a 
l 

∑ 

i ∈ I j x i j ≤ b a 
l ∑ 

j∈ J b 
l 

∑ 

i ∈ I j c j x i j ≤ b b 
l ∑ 

j∈ J s 
l 

∑ 

i ∈ I j q i j x i j + z 
s 

l 
≥ b 

s 

l ∑ 

j∈ J s 
l 

∑ 

i ∈ I j q i j x i j − z s 
l 
≤ b s 

l ∑ 

j∈ J m 
l 

∩ J i x i j + z 
m 

il 
≥ b 

m 

l ∑ 

j∈ J m 
l 

∩ J i x i j ≤ b m 

l 

x i j 1 + x i j 2 ≤ 1 

x i j ∈ { 0 , 1 } 
z 

a 

l 
∈ [0 , b 

a 

l 
] 

z 
s 

l 
∈ [0 , b 

s 

l 
] 

z s 
l 
∈ [0 , q ] 

z 
m 

il 
∈ [0 , b 

m 

l 
] 
8 
. Mixed-binary linear programming formulation 

In this section, we formulate the planning problem as a mixed- 

inary linear programming formulation (MBLP). Table 6 summa- 

izes the sets, parameters and decision variables of the MBLP. The 

uperscripts (i.e., a , a , b , m , m , s , s ) indicate for which type of 

onstraint a set, parameter, or decision variable has been intro- 

uced. The information required to generate these sets and param- 

ters for a specific instance can be derived from four tables. These 

our tables are exemplarily provided for the illustrative example 

n Section 2.3 (cf. Tables 1–4 ). From the equivalent of Table 1 , we

an derive information about all activities. From the equivalent of 

able 2 , we can derive information on all eligible customers for 

ach activity. From the equivalent of Table 3 , we can identify the 

ctivities that are associated with the business constraints and the 

ontact rules. Based on the equivalents of Tables 1 and 4 , we can

dentify all pairwise conflicts between activities. The MBLP uses 

inary decision variables x i j , which take the value of one if cus- 

omer i is assigned to activity j, and zero otherwise. Furthermore, 

ontinuous slack variables are introduced for all soft constraints. 

he expected profit e i j is computed by multiplying the change 

n revenue that results if customer i accepts the offer times the 

orresponding response probability q i j minus the cost per assign- 

ent c j . The MBLP reads as follows: 

+ δ
∑ 

i ∈ I 
∑ n m 

l=1 z 
m 

il 

)
(1) 

(l = 1 , . . . , n 

a ) (2) 

(l = 1 , . . . , n 

a ) (3) 

(l = 1 , . . . , n 

b ) (4) 

(l = 1 , . . . , n 

s ) (5) 

(l = 1 , . . . , n 

s ) (6) 

(i ∈ I; l = 1 , . . . , n 

m ) (7) 

(i ∈ I; l = 1 , . . . , n 

m : | J m 

l 
∩ J i | > b m 

l 
) (8) 

(( j 1 , j 2 ) ∈ T ; i ∈ I j 1 ∩ I j 2 ) (9) 
( j ∈ J; i ∈ I j ) (10) 
(l = 1 , . . . , n 

a ) (11) 

(l = 1 , . . . , n 

s ) (12) 

(l = 1 , . . . , n 

s ) (13) 

(i ∈ I; l = 1 , . . . , n 

m ) (14) 

The objective function (1) is a linear combination of the total 

xpected profit and the total penalty. The total expected profit cor- 

esponds to the sum over all expected profits e i j that result from 

ssigning a customer i to an activity j. The total penalty corre- 

ponds to the sum of the products of the slack variables and the 

orresponding penalty constants α, β , γ , or δ. Constraints (2) rep- 

esent the minimum assignment constraints. For each minimum 

ssignment constraint l, the number of customers assigned to the 

elevant activities J 
a 

l 
plus the corresponding slack variable z 

a 

l 
must 

atisfy the lower bound b 
a 

l 
. Constraints (3) correspond to the max- 

mum assignment constraints. For each maximum assignment con- 

traint l, the number of customers assigned to the relevant activ- 

ties J a 
l 

must not exceed the upper bound b a 
l 
. Constraints (4) rep- 

esent the budget constraints. Each assignment of a customer i to 

n activity j generates a cost c j . For each budget constraint l, a 
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Fig. 4. Flowchart of the iterative algorithm. 
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a

t

a

c

udget b b 
l 

is imposed on the total cost that results from assigning 

ustomers to the relevant activities J b 
l 

. Constraints (5) represent the 

inimum sales constraints. Each assignment of a customer i to an 

ctivity j leads to a positive customer response with a probability 

 i j . For each minimum sales constraint l, the number of expected 

ales that results from assigning customers to the relevant activ- 

ties J 
s 

l 
, i.e., the sum of the corresponding response probabilities 

f the assigned customers, plus the corresponding slack variable z 
s 

l 

ust satisfy the lower bound b 
s 

l 
. Constraints (6) represent the max- 

mum sales constraints. For each maximum sales constraint l, the 

umber of expected sales that results from assigning customers to 

he relevant activities J s 
l 

minus the corresponding slack variable z s 
l 

ust not exceed the upper bound b s 
l 
. Constraints (7) represent the 

inimum contact constraints. For each contact rule l = 1 , . . . , n m ,

 separate constraint is imposed for each customer. This constraint 

nsures that the number of times customer i is assigned to the 

elevant activities J 
m 

l 
∩ J i plus the corresponding slack variable z 

m 

il 

atisfies the lower bound b 
m 

l 
. Constraints (8) correspond to the 

aximum contact constraints. For each contact rule l = 1 , . . . , n m ,

 separate constraint is imposed for each customer if this customer 

s eligible for more than b m 

l 
relevant activities J m 

l 
∩ J i . This con-

traint ensures that the number of times customer i is assigned to 

he relevant activities J m 

l 
∩ J i does not exceed the upper bound b m 

l 
.

onstraints (9) represent the conflict constraints. The conflict con- 

traints guarantee for each pair of conflicting activities ( j 1 , j 2 ) in 

et T and for each customer i who is eligible for both activities j 1 
nd j 2 that the customer can only be assigned to one of the two 

onflicting activities. Note that this formulation is very similar to 

he formulation of Bigler et al. (2019) that was developed for a 

lightly different planning problem. If one wants to consider all 

onstraints as hard constraints, the upper bounds on the slack vari- 

bles can be set to zero. 

. Matheuristic 

The main idea of the matheuristic is to solve a mathematical 

odel for groups of customers rather than individual customers. 

he key feature is that we incorporate customer-specific con- 

traints in the group-level model, which allows transforming the 

olution from the group-level model into a customer-level solution 

ith almost no loss in solution quality. Moreover, the matheuris- 

ic is designed in such a way that the user can control the trade- 

ff between solution quality and running time with a single pa- 
9 
ameter. The matheuristic consists of four steps. Figure 3 provides 

n overview of these four steps. In Sections 5.1 –5.4 , we explain 

he four steps in detail. In Section 5.5 , we apply the proposed 

atheuristic to the illustrative example from Section 2.3 . 

.1. Build groups by eligibility pattern (Step 1) 

In the first step of the matheuristic, the customers are grouped 

ccording to their eligibility patterns. An eligibility pattern p indi- 

ates the activities for which a customer is eligible. Two customers 

hare the same eligibility pattern if they are eligible for the same 

ctivities. For example, for an instance with three activities and a 

ustomer who is eligible for activities 1 and 3, but not for activ- 

ty 2, the customer’s eligibility pattern corresponds to [1, 0, 1]. We 

enerate an eligibility matrix with | I| rows and | J| columns. This 

atrix contains values of only zero and one, where a value of one 

ndicates that a customer i ∈ I is eligible for an activity j ∈ J. All

ustomers with the same eligibility pattern are grouped together. 

his grouping can be efficiently produced by sorting the rows of 

he eligibility matrix. The grouping by eligibility patterns is es- 

ential for the decomposition strategy of the matheuristic because 

t ensures that the customers in the same group are affected by 

he same conflicts between activities. Only due to this feature of 

he customer groups we are able to enforce customer-specific con- 

traints in the third step of the matheuristic. Note that if the num- 

er of eligibility patterns is not much smaller than the number of 

ustomers, one can reduce the number of different eligibility pat- 

erns by grouping similar but not identical patterns and replacing 

ll patterns within each group with the intersection of the dif- 

erent patterns in the group. However, according to the telecom- 

unications company, the number of different patterns is always 

ubstantially lower than the number of customers in real-world 

nstances because the customers with the same subscriptions (or 

roducts) are mostly eligible for the same activities. 

.2. Divide groups according to expected profits (Step 2) 

In the second step of the matheuristic, each group is further 

ivided into up to k subgroups. We determine the subgroups by 

onsidering a clustering problem for each group. The goal is to 

artition the customers of the group into k clusters (subgroups) 

uch that the customers in the same cluster have similar expected 

rofits for the activities for which they are eligible. Note that all 

ustomers of the same group are eligible for the same activities. 

ence, the input to each clustering problem is a matrix which has 

ne row for each customer and one column for each activity for 

hich the customers are eligible. The values in the matrix corre- 

pond to the expected profits of the customers for the respective 

ctivities. To determine the partition, we apply the mini batch k - 

eans algorithm of Sculley (2010) . The mini batch k -means algo- 

ithm is particularly suitable for large-scale applications due to its 

peed and memory efficiency. If there are fewer than k customers 

n a group, all customers are placed in separate subgroups. Increas- 

ng the parameter k leads to smaller but more homogeneous sub- 

roups. For the sake of simplicity, the subgroups that result from 

his grouping step are subsequently referred to as groups of cus- 

omers. 

.3. Determine the number of customers of the groups that are 

ssigned to the activities (Step 3) 

In the third step of the matheuristic, a linear model (LP) de- 

ermines how many customers of each group are assigned to the 

ctivities. We introduce continuous decision variables x g j that indi- 

ate how many customers of group g are assigned to activity j. For 
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Table 7 

Additional notation of linear model. 

Sets 

G Groups determined in step 2 of the matheuristic 

P Eligibility patterns 

G p Groups with eligibility pattern p

J g Activities for which customers in group g are eligible 

J c 
l p 

Activities associated with constraint l = 1 , . . . , n c p , which ensures conflict rules for groups with eligibility pattern p

Parameters 

e g j Average expected profit of customers of group g when assigned to activity j

n c p Number of constraints that are set up for each group g with eligibility pattern p to ensure conflict rules 

o g Number of customers in group g

q g j Average response probability of customers of group g when assigned to activity j

Decision variables 

x g j ∈ [0 , o g ] , Number of customers of group g that are assigned to activity j

z 
m 

gl 
∈ [0 , b m 

l 
o g ] , Slack variable of group g for minimum contact rule l = 1 , . . . , n m 

e
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(

c

f

r

g

v

t

t

g

g

o

ach decision variable, we compute the corresponding average ex- 

ected profit e g j and the average response probability q g j based on 

he respective expected profits e i j and response probabilities q i j of 

he customers of group g. Table 7 shows the notation that is used, 

n addition to the notation already introduced in Table 6 . The LP 

eads as follows: 

LP) 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

Max. 
∑ 

g∈ G 
∑ 

j∈ J g e g j x g j −
(
α

∑ n a 

l=1 z 
a 

l 
+ β

∑ n s 

l=1 z 
s 

l 
+ γ

∑ n s

l=
s.t. 

∑ 

g∈ G 
∑ 

j∈ J g ∩ J a l 
x g j + z 

a 

l 
≥ b 

a 

l 
(l = 1 , . . . , n 

a ) ∑ 

g∈ G 
∑ 

j∈ J g ∩ J a l 
x g j ≤ b a 

l 
(l = 1 , . . . , n 

a ) ∑ 

g∈ G 
∑ 

j∈ J g ∩ J b l 

c j x g j ≤ b b 
l 

(l = 1 , . . . , n 

b ) ∑ 

g∈ G 
∑ 

j∈ J g ∩ J s l q g j x g j + z 
s 

l 
≥ b 

s 

l 
(l = 1 , . . . , n 

s ) ∑ 

g∈ G 
∑ 

j∈ J g ∩ J s l q g j x g j − z s 
l 
≤ b s 

l 
(l = 1 , . . . , n 

s ) ∑ 

j∈ J g ∩ J m l 
x g j + z 

m 

gl 
≥ o g b 

m 

l 
(g ∈ G ; l = 1 , . . . , n∑ 

j∈ J g ∩ J m l 
x g j ≤ o g b 

m 

l 
(g ∈ G ; l = 1 , . . . , n∑ 

j∈ J c 
lp 

x g j ≤ o g (p ∈ P ; g ∈ G p ; l =
x g j ∈ [0 , o g ] (g ∈ G ; j ∈ J g ) 
z 

m 

gl 
∈ [0 , b 

m 

l 
o g ] (g ∈ G ; l = 1 , . . . , n

(11) − (13) 

In the objective function (15), the total average expected 

rofit minus the total penalty associated with the soft con- 

traints is maximized. Constraints (16)–(22) are formulated anal- 

gously to the constraints from Section 4 for groups of cus- 

omers instead of individual customers. In the group-level model, 

t is not sufficient to simply consider pairs of conflicting activ- 

ties for incorporating the conflict rules. Considering only pairs 

f activities, as in constraints (9), will result in excessive as- 

ignments on the group level, as shown in the following ex- 

mple. Consider two customers i 1 and i 2 who both belong to 

roup g 1 . Assume that these customers are eligible for three ac- 

ivities j 1 , j 2 , and j 3 , which all have conflicts among each other.

herefore, each customer can only be assigned to one of the 

hree activities. The analogous pairwise constraints to the con- 

traints (9) for this example would be formulated as follows: 

 g 1 , j 1 
+ x g 1 , j 2 

≤ o g 1 , x g 1 , j 1 
+ x g 1 , j 3 

≤ o g 1 , x g 1 , j 2 
+ x g 1 , j 3 

≤ o g 1 with

 g 1 = 2 . The solution x g 1 , j 1 
= x g 1 , j 2 

= x g 1 , j 3 
= 1 satisfies these con-

traints. However, because there are only two customers in group 

 1 and each customer can only be assigned to one of the three 

ctivities j 1 , j 2 , and j 3 , this solution cannot be translated into

 customer-level solution without losing one assignment. To bet- 

er represent the conflict rules already in the group-level model, 

e introduce an alternative modeling technique. For each eligibil- 

ty pattern p, we generate one or multiple sets J c 
l p 

of conflicting 
10 
 δ
∑ 

g∈ G 
∑ n m 

l=1 z 
m 

gl 

)
(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

 . , n 

c 
p ) (23) 

(24) 
(25) 

ctivities of maximal size. Constraints (23) ensure that a maxi- 

um of o g customers can be assigned to two or more conflict- 

ng activities J c 
l p 

for each eligibility pattern p and each group g

ith eligibility pattern p. In Section 6 , we will explain in detail 

ow these sets of conflicting activities J c 
l p 

are efficiently generated. 

ote that there are still special cases in which the LP might as- 

ign too many customers on the group level. Consider five activ- 

ties j 1 – j 5 with T = { ( j 1 , j 2 ) , ( j 2 , j 3 ) , ( j 3 , j 4 ) , ( j 4 , j 5 ) , ( j 5 , j 1 ) } . As-

ume that group g 1 has two customers i 1 and i 2 who are eligi- 

le for all five acti vities. Then, the solution x g 1 , j 1 
= x g 1 , j 2 

= x g 1 , j 3 
=

 g 1 , j 4 
= x g 1 , j 5 

= 1 is feasible for constraints (23). However, one of 

hese five assignments will be lost in the customer-level assign- 

ent. 

.4. Assign individual customers of the groups to the activities 

Step 4) 

In this step, we apply an iterative algorithm to assign individual 

ustomers to the activities based on the group-level assignment 

rom the previous step. Figure 4 provides a flowchart of the algo- 

ithm. The basic idea is to assign the most profitable customers of 

roup g to activity j for each variable x g j of the LP with a non-zero 

alue. The iterative algorithm assigns the customers to the activi- 

ies without violating hard constraints. Next, we explain the itera- 

ive algorithm step-by-step. 

First, the algorithm determines a specific sequence for the 

roup-activity pairs of the decision variables x g j with a value 

reater than or equal to one. This sequence determines in which 

rder the customers are assigned to the activities. A random se- 
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uence is likely to lead to a loss of group-level assignments, as 

llustrated by the following example. Consider a group g 1 that 

ontains two customers i 1 and i 2 . Assume that the customers of 

roup g 1 are eligible for the three activities j 1 , j 2 , and j 3 and that

ctivity j 1 conflicts with both activities j 2 and j 3 . Further assume 

hat the solution of the LP is x g 1 , j 1 
= x g 1 , j 2 

= x g 1 , j 3 
= 1 and that the

ollowing random sequence [(g 1 , j 2 ) , (g 1 , j 3 ) , (g 1 , j 1 )] of the group-

ctivity pairs is given. If customer i 1 is assigned to activity j 2 in 

he first iteration, and customer i 2 is assigned to activity j 3 in 

he second iteration, then no customer can be assigned to activ- 

ty j 1 in the third iteration because both customers are already 

ssigned to activities that conflict with activity j 1 . Instead of us- 

ng a random sequence, we prepare a sequence based on a conflict 

raph G = (V, E) which can be constructed from the conflict rules. 

he nodes V of the conflict graph G correspond to the activities 

f an instance (i.e., V = J), and the edges E between nodes repre- 

ent conflicts among activities. We first sort all group-activity pairs 

ccording to the group index such that all activities of the same 

roup are processed sequentially. To determine the sequence of ac- 

ivities for each group g, we construct a subgraph of the conflict 

raph G that only contains the activities as nodes to which cus- 

omers from group g are assigned. The activity that corresponds to 

he node with the highest degree in this subgraph is selected first. 

hen, activities are added iteratively to the sequence in decreasing 

rder of the number of edges that connect the respective nodes in 

he subgraph to nodes that represent already added activities. Note 

hat this number of edges is recomputed every time an activity is 

dded to the sequence. In case of ties, the activity with the lower 

ndex is first. For the example from above, this sorting mechanism 

esults in the sequence [(g 1 , j 1 ) , (g 1 , j 2 ) , (g 1 , j 3 )] , based on which

ll three assignments can be conducted on the customer level. 

Second, the iterative algorithm selects the first/next group- 

ctivity pair (g, j) in the sequence. 

Third, the iterative algorithm identifies the customers of 

roup g that can be assigned to activity j without violating any 

ard customer-specific constraints. Even though all customers of 

roup g are initially eligible for activity j, it is possible that some 

ustomers of group g cannot be assigned to activity j because such 

n assignment would violate a conflict rule or a maximum con- 

act rule due to assignments in earlier iterations. The customers of 

roup g that can be assigned are referred to as candidates. 

Fourth, the iterative algorithm selects the 
⌊

x g j 

⌋
candidates 

ith the highest expected profits for activity j and assigns them. 

f the number of candidates is lower than 

⌊
x g j 

⌋
, then all can- 

idates are assigned. The number of candidates can be lower 

han 

⌊
x g j 

⌋
in special cases. Such a special case is the exam- 

le from Section 5.3 in which the conflict graph G represents 

 circle of five activities j 1 , j 2 , j 3 , j 4 , and j 5 , i.e., set T =
 ( j 1 , j 2 ) , ( j 2 , j 3 ) , ( j 3 , j 4 ) , ( j 4 , j 5 ) , ( j 5 , j 1 ) } . The last group-activity

air in this example may have no candidate because all customers 

f the group have been assigned to conflicting activities in previous 

terations, even though the solution of the LP intended to assign 

ne or more customers. 

Fifth, the iterative algorithm updates the eligibilities of the as- 

igned candidates for other activities. All assigned candidates are 

o longer eligible for activities that are in conflict with activity j. 

oreover, it is possible that with the assignment to activity j, 

ome of the candidates will reach their maximum number of as- 

ignments for one or multiple maximum contact rules. These cus- 

omers are no longer eligible for other activities that are affected 

y these maximum contact rules. Finally, the iterative algorithm 

etermines whether the sequence of group-activity pairs is empty. 

f that is the case, the iterative algorithm stops and returns the 

ustomer-level assignment x i j ; otherwise, the next group-activity 

air is selected from the sequence. 
11
.5. Illustrative example 

We apply the matheuristic to the illustrative example from 

ection 2.3 step-by-step. In the first step, the customers who 

re eligible for the same activities are grouped together. This 

eads to the following four groups: { 7 , 10 , 14 , 19 , 20 } , { 2 , 3 , 4 , 9 , 17 } ,
 1 , 5 , 8 , 11 , 12 , 13 , 16 } , and { 6 , 15 , 18 } . In the second step, these

roups are further divided using the mini batch k -means algorithm 

ith a value of k = 2 . The first two columns of Table 8 show the

esulting eight groups and the customers I g who belong to these 

roups. In the third step, the LP is set up and solved for the eight

roups and eight activities. Table 8 shows the resulting values of 

he decision variables x g j . A dash (-) indicates that the customers 

f this group are not eligible for this activity, and thus no assign- 

ent can be conducted. In the fourth step, the customers are itera- 

ively assigned to the activities. Figure 5 shows the conflict graph G
ased on which the sequence of the group-activity pairs is de- 

ermined. The complete sequence of the group-activity pairs is: 

(1 , A 7) , (1 , A 8) , (2 , A 7) , (2 , A 8) , (3 , A 6) , (4 , A 6) , (5 , A 4) , (5 , A 5) ,

6 , A 3) , (6 , A 4) , (6 , A 5) , (7 , A 1) , (7 , A 6) , (8 , A 1) , (8 , A 6)] . The algo-

ithm iterates over all group-activity pairs in the derived order. In 

ost of the iterations, all customers of the respective groups are 

ssigned to the activities (as intended by the solution of the LP). 

ext, we will describe the iterations in which not all customers of 

 group are assigned to the considered activity. In the third iter- 

tion, customers of group 2 are assigned to activity A7. All three 

ustomers of group 2 are candidates, but 
⌊

x 2 , A7 

⌋
= 2 . Thus, only 

he two customers with the highest expected profits for activity A7 

re assigned (here, customers 20 and 14). Also, in iteration 9, only 

ne customer of group 6 must be assigned to activity A3. Thus, 

ustomer 16 is assigned. In iterations 10 and 11, only customers 8 

nd 1 of group 6 are candidates because customer 16 has been as- 

igned to a conflicting activity in a previous iteration. Thus, these 

wo customers are assigned to both activities A4 and A5. The to- 

al expected profit of the solution obtained by the matheuristic is 

 , 973 Euros (the same as in the optimal solution). The maximum 

ales constraint is violated by 0.14 ( +0 . 02 as compared to the opti-

al solution), which leads to a penalty of 112(0 . 14) = 15 . 68 Eu-

os. The objective function value of the solution derived by the 

atheuristic is thus 2 , 957 . 32 Euros, which is 2.24 Euros below the 

bjective function value of the optimal solution. 

. Preprocessing technique 

In this section, we present the preprocessing technique that is 

sed in the third step of the matheuristic in more detail. To im- 

lement constraints (23), we need to determine for each eligibil- 

ty pattern p ∈ P one or several sets of conflicting activities J c 
l p 

.

etermining these sets without introducing redundancies is non- 

rivial and may become a computational bottleneck for large-scale 

nstances if not implemented in an efficient manner. We propose 

 preprocessing technique that combines concepts from graph the- 

ry with array-computing to efficiently generate these sets. By us- 

ng arrays (matrices) as the fundamental data structure, we can 

enefit from highly optimized array-computing libraries. The pre- 

rocessing technique consists of six steps. In Sections 6.1 –6.6 , we 

xplain each step by means of an example that involves five ac- 

ivities j 1 , j 2 , j 3 , j 4 , and j 5 . Figure 6 shows an overview of the

ifferent steps of the preprocessing technique using this example. 

able 9 provides the notation of the matrices used for the pre- 

rocessing technique. In Section 6.7 , we introduce an alternative 

ixed-binary linear programming formulation that uses the sets 

enerated by the preprocessing technique. 
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Table 8 

Groups in the illustrative example. 

x g j 

Group g Customers I g j = A 1 j = A 2 j = A 3 j = A 4 j = A 5 j = A 6 j = A 7 j = A 8 

1 { 7 , 10 } - - - - 0 - 2 2 

2 { 14 , 19 , 20 } - - - - 0 - 2 3 

3 { 3 , 17 } - - - - 0 2 - - 

4 { 2 , 4 , 9 } - - - - 0 3 - - 

5 { 5 , 11 , 12 , 13 } - - 0 4 4 - - - 

6 { 1 , 8 , 16 } - - 1 2 2 - - - 

7 { 15 , 18 } 2 0 - - - 2 - - 

8 { 6 } 1 0 - - - 1 - - 

Fig. 5. Conflict graph G for the illustrative example. 

Fig. 6. Flowchart of the preprocessing technique illustrated with an example. 

12 
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Table 9 

Matrices used in the preprocessing technique. 

Matrix Initial dimensions Domain Description 

A (c × | J| ) Binary Contains the c maximal cliques of conflict graph G in rows 

B (c ′ × | J| ) Binary Contains the c ′ rows with two or more non-zero entries that result from an 

element-wise multiplication of each row of matrix A with eligibility pattern p

C (c ′ × c ′ ) Integer Obtained by multiplying the matrices B and (B ) T 

D (c ′ × c ′ ) Integer Contains diagonal elements of matrix C in each row 

E (c ′ × c ′ ) Integer Obtained by subtracting matrix D from matrix C 

Table 10 

Generated and real-world problem instances. 

ID Customers Activities Eligibility fraction [%] Eligibility patterns 

GS1 10,000 50 small (5) few (50) 

GS1’ 10,000 50 small (5) few (50) 

GS2 10,000 50 large (15) few (50) 

GS3 10,000 50 small (5) many (100) 

GS4 10,000 50 large (15) many (100) 

GS5 20,000 75 small (5) few (50) 

GS6 20,000 75 large (15) few (50) 

GS7 20,000 75 small (5) many (100) 

GS8 20,000 75 large (15) many (100) 

GM1 100,000 100 small (5) few (300) 

GM1’ 100,000 100 small (5) few (300) 

GM2 100,000 100 large (15) few (300) 

GM3 100,000 100 small (5) many (800) 

GM4 100,000 100 large (15) many (800) 

GM5 200,000 125 small (5) few (300) 

GM6 200,000 125 large (15) few (300) 

GM7 200,000 125 small (5) many (800) 

GM8 200,000 125 large (15) many (800) 

GL1 500,000 150 small (5) few (300) 

GL1’ 500,000 150 small (5) few (300) 

GL2 500,000 150 large (15) few (300) 

GL3 500,000 150 small (5) many (1,000) 

GL4 500,000 150 large (15) many (1,000) 

GL5 1,000,000 175 small (5) few (300) 

GL6 1,000,000 175 large (15) few (300) 

GL7 1,000,000 175 small (5) many (1,000) 

GL8 1,000,000 175 large (15) many (1,000) 

RL1 987,486 133 small (1.0) many (1,830) 

RL1’ 987,486 133 small (1.0) many (1,830) 

RL2 1,101,432 215 small (0.8) many (3,196) 

RL3 1,401,582 308 small (0.7) many (5,833) 

RL4 1,401,582 385 small (0.6) many (5,833) 

RVL1 2,171,792 50 large (17.3) few (61) 

RVL1’ 2,171,792 50 large (17.3) few (61) 

RVL2 2,171,792 75 large (17.3) few (61) 

RVL3 2,171,792 100 large (16.6) few (61) 

RVL4 2,171,792 150 large (16.9) few (61) 

RVL5 2,171,792 200 large (16.9) few (61) 

RVL6 2,180,831 250 large (16.9) few (108) 

RVL7 2,180,831 295 large (16.3) few (108) 

6

c

r

a

6

g

&  

t

N

s

h

m

c

t

o

c

z

r

u

a

i

t

a

6

s

p  

g  

n

6

b

w

p

a

c

T

t  

F

6

t  

i

c

i

t

a

(  

c

t  

t

t

t

p  

i

F

w

t  

m

r

.1. Step one of the preprocessing technique 

In step 1), we generate the conflict graph G from the predefined 

onflict rules. The nodes represent the activities and the edges rep- 

esent the conflicts between activities. The conflict graph of the ex- 

mple used in this section is shown at the top of Fig. 6 . 

.2. Step two of the preprocessing technique 

In step 2), we identify all maximal cliques in the conflict 

raph G using the NetworkX implementation (cf. Hagberg, Schult 

 Swart, 2008 ) of the algorithm of Bron & Kerbosch (1973) . Even

hough the problem of finding all maximal cliques in a graph is 

P -hard, real-world graphs often exhibit properties that enable 

olving clique problems in a few seconds, even when the graph 

as millions of nodes. Walteros & Buchanan (2020) found that the 
13 
aximum clique problem is easy to solve on graphs with a small 

lique-core gap which they define to be the difference between 

he graph’s clique number and its degeneracy-based upper bound 

n the clique number. Like many other real-world graphs, also the 

onflict graphs considered in this paper have a clique-core gap of 

ero. We store these maximal cliques in a binary matrix A . Each 

ow of matrix A corresponds to a maximal clique, and each col- 

mn corresponds to an activity. A value of one indicates that the 

ctivity in the corresponding column is part of the maximal clique 

n the corresponding row. The conflict graph G of the example has 

hree maximal cliques, and thus matrix A consists of c = 3 rows 

nd | J| = 5 columns (cf. Fig. 6 ). 

.3. Step three of the preprocessing technique 

In step 3), we select the first/next eligibility pattern p from 

et P . For illustrative purposes, assume that we select an eligibility 

attern [1 , 1 , 1 , 0 , 0] with index p = 1 . All customers with this eli-

ibility pattern are eligible for the three activities j 1 , j 2 , and j 3 but

ot for the activities j 4 and j 5 . 

.4. Step four of the preprocessing technique 

In step 4), we derive the clique matrix B for the selected eligi- 

ility pattern p. The clique matrix B is computed by an element- 

ise multiplication of each row of matrix A with the eligibility 

attern p. Only rows that contain two or more non-zero entries 

re relevant for setting up constraints to ensure conflict rules, be- 

ause a conflict must always occur between at least two activities. 

hus, we remove all rows that contain less than two non-zero en- 

ries. In the example, the resulting matrix B has c ′ = 3 rows (cf.

ig. 6 ). 

.5. Step five of the preprocessing technique 

In step 5), we remove cliques (rows) from the clique matrix B 

hat are a subset of another clique (row) of matrix B . Here, a clique

s a subset of another clique if it is either identical to the other 

lique or if it is contained in the other clique. A clique is contained 

n another clique if it has only values of one in columns in which 

he other clique also has values of one. In the example, the first 

nd third cliques of matrix B are a subset of the second clique 

cf. Fig. 6 ). We detect all cliques which are a subset of another

lique using array-computing steps. These steps are illustrated for 

he matrix B in Fig. 7 . We start by multiplying matrix B with the

ransposed matrix (B ) T . The resulting integer matrix C indicates, in 

he diagonal, how many values of one the corresponding clique in 

he matrix B contains. The off-diagonal elements indicate, for each 

air of cliques of the matrix B , how many values of one they have

n common (how many values of one occur in the same columns). 

or the example, matrix C is displayed in Fig. 7 (cf. 1 ©). Moreover, 

e generate a matrix D that contains the diagonal elements of ma- 

rix C in the rows. In the example, the first and the third rows of

atrix D correspond to twos, and the second row of matrix D cor- 

esponds to threes. We then subtract matrix D from matrix C and 
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Fig. 7. Example for removing cliques from the binary matrix B that are a subset of another clique. 
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tore the values in an integer matrix E (cf. 2 © in Fig. 7 ). The ele-

ents of matrix E show for each pair of cliques of the matrix B

f the clique is contained in the other clique. For example, the ele- 

ent in the first row and second column of matrix E is zero, which

eans that the first clique of the matrix B is contained in the sec-

nd clique of the matrix B . Naturally, the diagonal elements of the 

atrix E are zero, because each clique of the matrix B is identi- 

al to itself. We then want to remove the cliques that are a subset 

f another clique, i.e., the rows that contain a value of zero in an

ff-diagonal element of the matrix E . Here it is important to no- 

ice that if two cliques of the matrix B were exactly identical, then 

oth of the corresponding rows in matrix E would contain a value 

f zero as an off-diagonal element, but we only want to remove 

ne of these rows and keep the other one (otherwise we would 

iss a clique). To avoid removing too many cliques, we first check 

hether each clique in matrix B is a subset of a clique below it.

herefore, we fill the lower half and the diagonal of matrix E with 

alues of negative one (cf. 3 © in Fig. 7 ). Note that we could fill in

ny arbitrary non-zero value. Next, we check which rows in ma- 

rix E contain a value of zero. The rows that contain a value of 

ero in matrix E indicate that the corresponding clique in matrix B 

s a subset of another clique and can be removed. In the exam- 

le, we remove the first clique from matrix B (cf. 4 © in Fig. 7 ). We

lso update the matrices C and D by removing the first row and 

rst column. Next, we check whether each clique of matrix B is 

 subset of a clique above it. We continue with the updated inte- 

er matrix C and again subtract the updated matrix D to obtain 

he updated matrix E (cf. 5 © in Fig. 7 ). Then, we again fill the di-

gonal of matrix E with values of negative one (the upper half of 

atrix E no longer contains any zeros because these rows have al- 

eady been removed) and determine whether any values of zero 

ccur in the lower half of matrix E (cf. 6 © in Fig. 7 ). The rows that

ontain a value of zero in matrix E again indicate that the corre- 

ponding clique in matrix B is a subset of another clique and can 

e removed. In the example, we remove the second clique from 

atrix B (cf. 7 © in Fig. 7 ). 

.6. Step six of the preprocessing technique 

In step 6), we derive the parameter n c p and the set(s) J c 
l p 

from 

atrix B . Each row of matrix B results in a constraint for the cus-

omers with eligibility pattern p. In the example, matrix B ulti- 

ately contains one row, and thus n c 
1 

= 1 . Set J c 
l p 

corresponds to

he activities associated with constraint l = 1 , . . . , n c p . In the exam-

le, J c = { j 1 , j 2 , j 3 } because the first row of matrix B includes ac-

11 

14 
ivities j 1 , j 2 , and j 3 . Finally, we verify whether all eligibility pat-

erns have been processed. If that is the case, we stop; otherwise, 

e select the next eligibility pattern p. For large-scale instances, 

teps 3) to 6) of Fig. 6 can be parallelized for different eligibility 

atterns to further reduce running times. 

As an alternative to applying our preprocessing technique, the 

ets J c 
l p 

could be determined by computing an individual conflict 

raph for each eligibility pattern and by deriving the sets J c 
l p 

from 

hese conflict graphs directly using the algorithm of Bron & Ker- 

osch (1973) on each of these conflict graphs. However, construct- 

ng a separate conflict graph for each eligibility pattern and com- 

uting the maximal cliques in each of these conflict graphs is 

uch slower than the array-computing, especially for instances 

omprising a large number of eligibility patterns. Here, it is im- 

ortant to note that our preprocessing technique is not an alterna- 

ive algorithm to compute maximal cliques but rather a procedure 

hat generates the sets of conflicting activities J c 
l p 

for each eligibil- 

ty pattern p without introducing redundancies; i.e., cliques that 

re a subset of another clique for a specific eligibility pattern p are 

dentified efficiently, which prevents introducing a large number of 

edundant constraints (see Tables 12 and 14 ). 

.7. An alternative mixed-binary linear programming formulation 

The parameters n c p and sets J c 
l p 

can also be used in a mixed- 

inary linear programming formulation to incorporate the conflict 

ules. Constraints (26) ensure that each customer i with eligibil- 

ty pattern p is assigned to at most one of two or more conflict- 

ng activities J c 
l p 

. Set I p includes all customers with the eligibility 

attern p. 
 

j∈ J c 
lp 

x i j ≤ 1 (p ∈ P, i ∈ I p , l = 1 , . . . , n 

c 
p ) (26)

We formulate an alternative mixed-binary linear program that 

ses constraints (26) instead of constraints (9) and reads as fol- 

ows: 

MBLP’) 

{
Max. (1) 
s.t. (2) − (8) , (10) − (14) , (26) 

With constraints (26), fewer constraints are required to ensure 

he conflict rules without loss of generality. One advantage that we 

oticed is that for our problem instances the linear programming 

elaxation of model MBLP ′ was tighter than the linear program- 

ing relaxation of model MBLP. 
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Fig. 8. Performance profiles for the MBLP and the MBLP ′ (cf. Dolan & Moré, 2002 ). 
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. Results 

In this section, we compare the performance of the matheuris- 

ic to the performance of the MBLP and MBLP ′ . In Section 7.1 , we

escribe the generated and real-world instances. In Section 7.2 , 

e present the experimental design. In Section 7.3 , we compare 

he performance of the MBLP to the performance of the MBLP ′ . In 

ection 7.4 , we assess the overall performance of our matheuristic 

nd investigate the effect of two key components of the matheuris- 

ic on running time and solution quality. 

.1. Problem instances 

Our test set comprises 13 real-world instances and 27 in- 

tances that we manually generated based on real-world data (cf. 

able 10 ). First, we describe the generated instances in more de- 

ail. These instances include small (GS), medium (GM), and large 

GL) instances. The small instances comprise up to 20 , 0 0 0 cus- 

omers and 75 activities, the medium instances comprise up to 

0 0 , 0 0 0 customers and 125 activities, and the large instances com- 

rise up to 1 , 0 0 0 , 0 0 0 customers and 175 activities. We generated

ifferent instances by varying the eligibility fraction (small/large) 

nd the number of eligibility patterns (few/many). The eligibility 

raction specifies the percentage of activities a customer is eligible 

or on average. For the generated instances, the eligibility fraction 

n Table 10 might slightly differ from the actual eligibility frac- 

ion of the instance as a consequence of the randomized genera- 

ion process. The response probabilities, the costs per assignment, 

nd the expected profits were derived from real-world data. The 

osts per assignment and the expected profits were scaled with 

 factor to preserve confidentiality. The constraints were defined 

or each instance in consultation with the company. All gener- 

ted instances are publicly available (cf. https://github.com/phil85/ 

ustomer- assignment- instances ). The real-world instances consist 

f five large instances (RL) comprising up to 1.4 million customers 

nd 385 activities, and eight very large instances (RVL) comprising 

ver 2 million customers and up to 295 activities. While the RL in- 

tances have small eligibility fractions but many eligibility patterns, 

he RVL instances have high eligibility fractions but few eligibil- 

ty patterns. The real-world instances are confidential and thus not 

ublicly available. The instances GS1’, GM1’, GL1’, RL1’, RVL1’ dif- 

er from the respective instances GS1, GM1, GL1, RL1, RVL1 only in 

erms of constraints. The instances GS1’, GM1’, GL1’, RL1’, RVL1’ are 

nfeasible if all soft constraints are considered as hard constraints. 

.2. Experimental design 

The matheuristic, the MBLP, and the MBLP ′ are implemented in 

ython 3.7 and the Gurobi 8.1 solver is used. All computations are 

erformed on an HP workstation with one Intel Xeon CPU with 

.20 GHz clock speed and 128 GB RAM. Even though the running 

ime budget of the company is 30 minutes, we applied the exact 

pproaches with a time limit of 10 , 0 0 0 seconds to obtain better

eference values for evaluating the solutions of the matheuristic. 

or the matheuristic, we set parameter k = 20 for all instances. The 

atheuristic is further applied to selected instances with different 

alues of k . In consultation with the company, the constants α, β , 

, and δ are each set to the maximum absolute expected profit 

f the corresponding instance. Setting α and δ to the maximum 

bsolute expected profit ensures that the objective function value 

annot be improved by having fewer assignments or contacts than 

rescribed by the bounds. This reflects the preference of the com- 

any to reach the prescribed bounds if possible. The company ac- 

epts a shortfall or an exceedance of the lower and upper bounds 

n the number of sales if the corresponding assignments have a 

mall or a large expected profit, respectively. Setting β and γ to 
15 
he maximum absolute expected profit is an adequate penalty for 

ales constraints from the perspective of the company. The re- 

orted running times of all approaches include the time to com- 

ute relevant sets and parameters, the time to set up and solve 

he optimization models with Gurobi, and the time used for the 

terative algorithm of the matheuristic. The time used for import- 

ng and exporting data is excluded because it is equivalent for all 

hree approaches. 

.3. Comparison of MBLP and MBLP ′ 

First, we compare the performances of the MBLP and the MBLP ′ . 
able 11 reports, for each instance and each formulation, the ob- 

ective function value (OFV), the total penalty and in brackets the 

umber of slack variables that take a positive value, the MipGap, 

he total number of constraints, and the total running time. The 

ntry “lim” means that the time limit was reached. A dash (-) in- 

icates that setting up the respective model resulted in an out- 

f-memory error. From Table 11 , we can conclude that the MBLP ′ 
as much fewer constraints than the MBLP for all instances. As a 

onsequence, a larger number of feasible and also optimal solu- 

ions can be derived, and the running times are generally shorter. 

igure 8 compares the running times of the MBLP and the MBLP ′ 
sing performance profiles ( Dolan & Moré, 2002 ). Each curve cor- 

esponds to an approach and indicates for what fraction of prob- 

em instances the running time of the respective approach was 

ithin a factor τ of the shortest running time. The parameter r M 

is 

et to the highest factor that occurs plus one; and if an approach 

annot solve an instance to optimality within the time limit, the 

actor for the corresponding instance is set to r M 

. From Fig. 8 (at

= 1 ), we can see that the MBLP ′ is the faster approach for 60%

f the instances while the MBLP is faster for 17.5% of the instances. 

ote that the MBLP is only faster when solving small instances. 

he MBLP ′ maintains a considerably larger fraction up to τ = 1 . 3 .

lso for large values of τ (when the performance profiles become 

at), we can see that the fraction of instances that can be solved 

o optimality within the time limit is higher for the MBLP ′ than for 

he MBLP. To further investigate the substantial difference in the 

umber of constraints of the MBLP and the MBLP ′ , we applied the 

BLP ′ with and without step 5) of the preprocessing technique. As 

xplained in Section 6 , step 5) removes the cliques from clique ma- 

rices that are a subset of another clique. Table 12 reports the total 

umber of constraints to ensure conflict rules ( 
∑ 

) for groups of in- 

tances for the MBLP, the MBLP ′ , and the MBLP ′ without conduct- 

https://github.com/phil85/customer-assignment-instances
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Table 11 

Results of the MBLP, the MBLP ′ and the matheuristic for generated and real-world instances. 

MBLP MBLP ′ Matheuristic 

OFV Penalty MipGap Constr. CPU OFV Penalty MipGap Constr. CPU OFV Penalty Sum Constr. CPU Gap 

[100k] [100k] [%] [1k] [sec] [100k] [100k] [%] [1k] [sec] [100k] [100k] slack [1k] [sec] [%] 

ID (#pos. slack.) (#pos. slack.) (#pos. slack.) var. 

GS1 1.5 0.00 (0) 0.0 34 3.4 1.5 0.00 (0) 0.0 14 8.4 1.5 0.00 (0) 0.00 2 5.7 0.3 

GS1’ 1.2 0.27 (1) 0.0 34 2.7 1.2 0.27 (1) 0.0 14 8.2 1.2 0.27 (1) 47.00 2 4.3 0.4 

GS2 1.4 0.00 (0) 0.0 172 8.1 1.4 0.00 (0) 0.0 36 11.5 1.4 0.00 (2) 0.03 4 5.4 1.7 

GS3 1.0 0.00 (0) 0.0 41 2.7 1.0 0.00 (0) 0.0 17 9.0 1.0 0.00 (0) 0.00 5 7.9 0.3 

GS4 5.1 0.00 (0) 0.0 180 11.4 5.1 0.00 (0) 0.0 36 14.7 5.0 0.00 (0) 0.00 7 10.3 1.6 

GS5 1.3 0.00 (0) 0.0 36 3.3 1.3 0.00 (1) 0.0 20 8.9 1.3 0.00 (1) 0.05 2 4.8 0.2 

GS6 13.9 0.00 (0) 0.0 815 37.6 13.9 0.00 (0) 0.0 83 26.7 13.5 0.01 (2) 1.00 4 7.3 2.5 

GS7 4.2 0.00 (0) 0.0 72 5.0 4.2 0.00 (0) 0.0 29 10.3 4.2 0.01 (1) 1.00 4 8.9 0.5 

GS8 9.2 0.00 (0) 0.0 736 39.9 9.2 0.00 (0) 0.0 83 29.8 8.9 0.00 (0) 0.00 8 12.4 2.9 

GM1 36.0 0.00 (0) 0.0 1,154 95.0 36.0 0.00 (0) 0.0 275 78.0 35.5 0.00 (1) 0.05 18 32.8 1.4 

GM1’ 32.8 1.16 (1) 0.0 1,154 109.2 32.8 1.16 (1) 0.0 275 82.7 32.3 1.16 (2) 135.05 18 32.9 1.3 

GM2 88.4 0.00 (0) 0.0 5,993 317.1 88.4 0.00 (0) 0.0 529 184.1 84.8 0.00 (1) 0.10 32 49.8 4.0 

GM3 25.1 0.00 (0) 0.0 1,244 68.3 25.1 0.00 (0) 0.0 285 52.3 24.9 0.00 (1) 0.03 48 84.3 0.8 

GM4 30.1 0.00 (0) 0.0 5,811 869.0 30.1 0.00 (0) 0.0 524 653.0 29.3 0.00 (0) 0.00 84 114.7 2.7 

GM5 47.6 0.00 (0) 0.0 3,162 450.9 47.6 0.00 (0) 0.0 623 341.5 46.8 0.01 (2) 1.13 19 39.0 1.8 

GM6 147.4 0.00 (0) 0.0 18,358 1,449.5 147.4 0.00 (0) 0.0 1,210 845.8 141.3 0.00 (1) 0.19 36 65.6 4.2 

GM7 71.4 0.00 (0) 0.0 3,292 303.4 71.4 0.00 (0) 0.0 617 233.2 70.5 0.00 (2) 0.15 51 97.8 1.4 

GM8 130.0 0.00 (0) 0.0 18,309 7,282.6 130.0 0.00 (0) 0.0 1,200 5,982.5 123.6 0.00 (0) 0.00 96 150.8 4.9 

GL1 248.8 0.00 (0) 0.0 10,033 3,708.4 248.8 0.00 (0) 0.0 1,673 3,037.1 243.0 0.01 (2) 1.01 21 58.3 2.4 

GL1’ -389.7 616.69 (2) 0.0 10,033 3,335.9 -389.7 616.69 (2) 0.0 1,673 2,696.2 -394.9 616.69 (2) 53,273.00 21 57.2 1.3 

GL2 -172.2 295.48 (3) 402.4 69,790 lim -172.2 295.48 (3) 402.1 3,533 lim 256.1 0.00 (0) 0.00 42 115.1 -248.7 

GL3 197.3 0.00 (0) 0.0 10,137 1,371.5 197.3 0.00 (0) 0.0 1,641 1,034.9 194.0 0.00 (0) 0.00 67 139.3 1.7 

GL4 58.2 31.69 (1) 630.9 67,492 lim 58.2 31.69 (1) 631.2 3,491 lim 211.8 0.01 (2) 1.30 139 251.2 -263.9 

GL5 -229.9 323.26 (2) 216.3 25,676 lim -229.9 323.26 (2) 216.3 3,496 lim 202.0 0.00 (1) 0.09 22 89.7 -187.8 

GL6 - - (-) - - - 166.7 4.89 (1) 443.6 7,163 lim 452.1 0.00 (1) 0.53 43 209.3 -171.3 

GL7 475.3 0.00 (0) 0.0 26,239 5,087.4 475.3 0.00 (0) 0.0 3,528 4,148.5 465.9 0.00 (1) 0.03 72 185.4 2.0 

GL8 - - (-) - - - -2,084.1 2,378.82 (3) 201.8 7,136 lim 1,022.2 0.00 (1) 0.01 143 354.6 -149.0 

RL1 109.8 0.00 (0) 0.0 388 579.6 109.8 0.00 (0) 0.0 244 548.5 109.2 0.00 (0) 0.00 21 46.5 0.6 

RL1’ 110.4 1.83 (1) 0.0 388 623.4 110.4 1.83 (1) 0.0 244 593.6 109.7 1.83 (1) 415.00 21 46.5 0.6 

RL2 149.3 0.00 (0) 0.0 755 2,570.6 149.3 0.00 (0) 0.0 538 2,352.9 148.7 0.00 (0) 0.00 39 85.2 0.4 

RL3 224.6 0.00 (0) 0.0 2,079 4,937.4 224.6 0.00 (0) 0.0 1,012 4,097.6 223.0 0.00 (0) 0.00 85 173.9 0.7 

RL4 237.6 0.00 (0) 0.0 3,200 5,523.6 237.6 0.00 (0) 0.0 1,197 5,044.9 236.0 0.00 (0) 0.00 106 205.8 0.7 

RVL1 292.6 0.00 (0) 0.0 64,911 1,724.3 292.6 0.00 (0) 0.0 3,052 545.2 291.7 0.00 (0) 0.00 6 100.2 0.3 

RVL1’ 247.8 44.87 (1) 0.0 64,911 1,735.8 247.8 44.87 (1) 0.0 3,052 519.8 246.8 44.87 (1) 2,000.00 6 99.8 0.4 

RVL2 - - (-) - - - 378.6 0.00 (0) 0.0 3,999 1,917.1 377.0 0.00 (0) 0.00 9 144.9 0.4 

RVL3 - - (-) - - - 537.1 0.00 (0) 0.0 9,431 3,868.9 534.7 0.00 (0) 0.00 15 182.3 0.4 

RVL4 - - (-) - - - - - (-) - - - 751.0 0.00 (0) 0.00 28 273.5 - 

RVL5 - - (-) - - - - - (-) - - - 975.9 0.00 (0) 0.00 40 365.2 - 

RVL6 - - (-) - - - - - (-) - - - 1,273.3 0.00 (0) 0.00 84 476.4 - 

RVL7 - - (-) - - - - - (-) - - - 1,501.8 0.00 (0) 0.00 102 554.0 - 

(-) Not available due to out-of-memory error 

1
6
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Table 12 

Number of constraints to ensure the conflict rules. 

ID MBLP MBLP ′ MBLP ′ without step 5) ∑ 

GS 2,039,866 250,808 (-88%) 1,528,941 (-25%) ∑ 

GM 57,273,804 4,334,985 (-92%) 47,112,825 (-18%) ∑ 

GL 569,555,040 27,113,838 (-95%) 422,135,617 (-26%) ∑ 

(RL+RVL) 71,089,558 5,653,887 (-92%) 23,701,370 (-67%) 
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Table 13 

Average gaps of the matheuristic for generated instances by eligibility fraction and 

eligibility patterns. Only instances that are solved to optimality by the MBLP ′ are 

considered. 

Eligibility patterns 

few many aggregated 

Eligibility fraction small 1.1 1.1 1.1 

large 3.1 3.0 3.1 

aggregated 1.8 1.9 1.8 
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ng step 5). The results clearly show that the preprocessing tech- 

ique is effective and that step 5) is essential. 

We also examined two alternatives to the use of soft con- 

traints. First, we tested a variant of the model MBLP ′ in which 

ll soft constraints are replaced by hard constraints. Of course, this 

ariant was not able to devise solutions for the instances GS1’, 

M1’, GL1’, RL1’, and RVL1’. For the other instances, the variant 

ith hard constraints obtained identical or very similar results in 

erms of solution quality and running time as the variant with soft 

onstraints. 

Second, we tested a Lagrangian relaxation scheme (LRS). To ob- 

ain the LRS, we first formulated all soft constraints as hard con- 

traints and deleted the penalty terms in the objective function. 

ext, we dualized the former soft constraints to obtain the La- 

rangian subproblem. We iteratively solved the Lagrangian sub- 

roblem using the subgradient algorithm as described in Fisher 

1981) and Fisher (1985) . It turns out that for most instances, the 

RS is inferior to the MBLP ′ in terms of running time and solution 

uality. Only for some of the large instances, the LRS was able to 

evise better solutions than the MBLP ′ . However, these solutions 

re with one exception (GL5) still much worse than the solutions 

btained by the matheuristic. For problem instance GL5, the LRS 

btained a slightly better solution than the matheuristic (gap of 

.3%). The LRS also runs out of memory for the largest real-world 

roblem instances. In our view, a main factor that negatively af- 

ects the performance of the LRS is that the Lagrangian subprob- 

em in each iteration cannot be solved much faster than the origi- 

al problem with hard or soft constraints because it still contains 

he large number of conflict constraints. 

.4. Performance of matheuristic 

Next, we compare the performance of the matheuristic to the 

erformance of the MBLP ′ . The right part of Table 11 reports the 

esults of the matheuristic. The columns for the matheuristic are 

he same as for the MBLP ′ except for the column sum slack vari- 

bles, which states the sum of the slack variables, and the last col- 

mn, which reports the gap between the OFV of the solution de- 

ived by the matheuristic and the OFV of the solution derived by 

he MBLP ′ . For each instance, we highlight the shortest running 

ime and the highest OFV of all three approaches in bold. Note 

hat some small positive penalties are rounded down to zero in 

able 11 (cf. e.g., instance GS2). First, we compare the matheuris- 

ic and the MBLP ′ in terms of solution quality. Most of the solu- 

ions of the matheuristic obtained with k = 20 are near-optimal. 

or problem instance GM8, we investigate how changing the value 

f parameter k affects the gap to the optimal solution and the run- 

ing time of the matheuristic. Figure 9 visualizes the gap to the 

ptimal solution and the running time of the matheuristic for var- 

ous values of k . We can see that the gap can be further reduced

y increasing parameter k . Interestingly, the gap decreases faster 

han linearly, whereas the running time appears to increase lin- 

arly. Parameter k can therefore be used to control the trade-off

etween solution quality and speed. Overall, there are only a few 

lack variables that take positive values, and the resulting penal- 

ies for the matheuristic are minor. Exceptions are the instances 

S1’, GM1’, GL1’, RL1’, RVL1’ which are infeasible if all soft con- 
17
traints are considered as hard constraints and thus, a (large) pos- 

tive penalty value cannot be avoided. 

Next, we compare the two approaches in terms of running time. 

he matheuristic is substantially faster than the MBLP ′ , especially 

or medium instances with a high eligibility fraction and for large 

nd very large instances. Furthermore, the matheuristic is scalable 

o very large real-world instances. Figure 10 shows the running 

ime for different steps of the matheuristic. From the bars, we can 

ee that setting up the LP only plays a significant role if the in- 

tance has many eligibility patterns (cf. e.g., GL3–GL4, GL7–GL8, 

nd RL1–RL4). In the first step of the matheuristic, customers who 

re eligible for the same activities are grouped together. Thus, in- 

tances with many eligibility patterns result in more groups and 

xhibit larger models, which explains the higher time consump- 

ion for setting up the LP for these instances. With increasing size 

f the RVL instances, primarily the running time for generating all 

ets and parameters increases (e.g., for deriving subsets of the ac- 

ivities that are associated with a specific constraint), whereas the 

est of the steps require only a slightly longer running time. The 

reprocessing technique runs fast for all instances. Even for the 

argest instances, the matheuristic (with k = 20 ) always terminates 

n less than 10 minutes and is thus well within the running time 

udget prescribed by the company. 

Next, we analyze the impact of the complexity parameters on 

he quality of the solutions obtained by the matheuristic. There- 

ore, we only consider the generated instances for which we sys- 

ematically varied the complexity parameters. Generally, the av- 

rage gaps increase with increasing eligibility fraction, as we can 

ee from Table 13 . While the eligibility fraction has an effect on 

he average gaps, the number of eligibility patterns has almost 

o effect. We can see from Table 11 that the gaps remain small 

ven with increasing numbers of customers and activities in the 

nstances. Overall, the matheuristic provides high-quality solutions 

n a shorter running time than the MBLP and the MBLP ′ . 
Finally, we performed two experiments to assess the effect of 

wo key components of the matheuristic on running time and so- 

ution quality. In the first experiment, we analyze the impact of 

tep 5) of the preprocessing technique and in the second experi- 

ent, we analyze the impact of the new modeling technique used 

o consider the conflict constraints in the LP. 

Table 14 summarizes the results of the first experiment. It 

hows the total number of constraints to ensure conflict rules (# 

onflict const. in LP) for groups of instances ( 
∑ 

) for the matheuris- 

ic and the matheuristic without conducting step 5) of the pre- 

rocessing technique. For the matheuristic without step 5), the 

ncrease in percent of the number of constraints to ensure con- 

ict rules in the LP is stated in brackets (increase). Moreover, 

able 14 states the total running time of both approaches (CPU). 

e can see that applying step 5) removes a substantial number of 

onflict constraints in the LP, and that setting up a smaller model 

eads to a lower total running time for all instance groups. Note 

hat the solution quality is not affected by step 5) of the prepro- 

essing technique. 
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Fig. 9. Instance GM8: gap to optimal solution vs. running time of the matheuristic for different values of k . 

Fig. 10. Running times for the different matheuristic steps. 

Table 14 

Number of constraints to ensure the conflict rules in matheuristic. 

Matheuristic Matheuristic without step 5) 

ID #conflict const. in LP CPU [s] #conflict const. in LP (increase) CPU [s] ∑ 

GS 24,910 67.1 138,030 ( + 454.1%) 73.7 ∑ 

GM 307,346 667.6 3,285,126 ( + 968.9%) 837.9 ∑ 

GL 458,967 1,460.0 7,404,226 ( + 1,513.2%) 1,912.5 ∑ 

(RL+RVL) 389,873 2,754.1 1,570,423 ( + 302.8%) 2,905.1 
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In the second experiment, we compare the proposed 

atheuristic to a benchmark version of the matheuristic that 

oes not use the new modeling technique to incorporate the 

onflict constraints in the linear program. Instead of using the 

ew modeling technique, the benchmark version incorporates 

he conflict constraints in the linear program by formulating 

onstraints (9) of the MBLP for groups of customers. The resulting 

inear program LP reads as follows: 

 LP ) 

{ 

Max. (15) 
s.t. (11) − (13) , (16) − (22) , (24) , (25) 

x g j 1 
+ x g j 2 

≤ o g (g ∈ G ; ( j 1 , j 2 ) ∈ T : j 1 , j 2 ∈ J g ) (27) 
18 
Table 15 summarizes the results of the second experiment. It 

eports the objective function value (OFV), the penalty, the number 

f assignments (#agmts) in the LP solution (or in the LP solution), 

he number of assignments that are conducted in the iterative al- 

orithm (#agmts (it. alg.)), and the total running time (CPU). The 

esults in Table 15 demonstrate the advantages of using the new 

odeling technique. The new modeling technique considers the 

ustomer-specific constraints very effectively already in the group- 

evel model such that almost all assignments in the LP solution 

an be conducted by the iterative algorithm. In contrast, the LP so- 

ution has many assignments that cannot be conducted by the iter- 

tive algorithm because they would violate customer-specific con- 



T. Bigler, M. Kammermann and P. Baumann European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; May 16, 2022;23:40 ] 

Table 15 

Effectiveness of new modeling technique to incorporate conflict constraints in group-level model. 

Matheuristic Matheuristic without new modeling technique 

ID OFV Penalty #agmts #agmts CPU OFV Penalty #agmts #agmts CPU 

[100k] [100k] (LP) (it. alg.) [s] [100k] [100k] ( LP ) (it. alg.) [s] 

GS1 1.5 0.0 8,331 8,331 5.7 1.0 0.4 8,600 7,946 5.4 

GS1’ 1.2 0.3 8,331 8,331 4.3 0.7 0.7 8,600 7,946 6.3 

GS2 1.4 0.0 17,079 17,079 5.4 -0.1 1.3 20,020 15,722 7.7 

GS3 1.0 0.0 9,826 9,826 7.9 0.9 0.1 9,943 9,263 9.3 

GS4 5.0 0.0 17,594 17,594 10.3 3.2 1.0 19,193 15,786 13.2 

GS5 1.3 0.0 16,698 16,698 4.8 1.3 0.0 18,295 16,014 5.5 

GS6 13.5 0.0 40,975 40,975 7.3 1.2 10.2 51,067 34,559 10.6 

GS7 4.2 0.0 20,897 20,897 8.9 3.1 0.7 23,304 19,530 10.6 

GS8 8.9 0.0 38,903 38,902 12.4 -3.7 10.8 48,212 33,501 18.9 

GM1 35.5 0.0 149,790 149,790 32.8 3.3 27.5 184,503 135,298 45.7 

GM1’ 32.3 1.2 143,902 143,902 32.9 -46.2 76.4 174,792 133,806 46.7 

GM2 84.8 0.0 220,773 220,773 49.8 31.1 35.3 279,628 175,282 81.2 

GM3 24.9 0.0 151,642 151,639 84.3 -18.0 38.1 177,748 130,791 118.8 

GM4 29.3 0.0 215,672 215,672 114.7 -75.5 98.0 257,281 174,272 216.4 

GM5 46.8 0.0 310,369 310,350 39.0 14.5 25.6 390,896 274,002 59.4 

GM6 141.3 0.0 448,297 448,297 65.6 71.2 41.4 573,383 365,234 120.7 

GM7 70.5 0.0 320,507 320,507 97.8 -22.9 81.0 401,804 279,353 155.2 

GM8 123.6 0.0 461,223 461,223 150.8 49.8 42.0 564,119 345,302 308.6 

GL1 243.0 0.0 834,008 834,008 58.3 28.3 186.5 1,030,637 760,945 83.1 

GL1’ -394.9 616.7 838,189 838,189 57.2 -492.7 694.0 988,698 787,555 81.6 

GL2 256.1 0.0 1,149,637 1,149,637 115.1 190.7 15.4 1,468,184 931,097 179.2 

GL3 194.0 0.0 787,395 787,395 139.3 146.3 24.0 951,477 712,955 244.0 

GL4 211.8 0.0 1,193,477 1,193,477 251.2 -326.5 499.1 1,446,367 936,972 499.2 

GL5 202.0 0.0 1,637,333 1,637,333 89.7 124.7 49.5 2,086,706 1,461,946 125.0 

GL6 452.1 0.0 2,418,241 2,418,241 209.3 312.0 67.9 2,901,633 1,956,749 306.9 

GL7 465.9 0.0 1,611,220 1,611,220 185.4 -404.3 801.3 2,003,448 1,427,594 314.2 

GL8 1,022.2 0.0 2,378,114 2,378,114 354.6 74.4 762.1 2,942,362 1,861,592 830.3 

RL1 109.2 0.0 231,224 231,224 46.5 109.0 0.0 231,047 230,778 95.8 

RL1’ 109.7 1.8 240,704 240,704 46.5 109.0 2.3 240,494 240,008 95.3 

RL2 148.7 0.0 369,377 369,377 85.2 147.0 0.0 368,244 365,422 232.9 

RL3 223.0 0.0 534,595 534,595 173.9 213.5 1.6 545,604 518,135 614.8 

RL4 236.0 0.0 596,515 596,515 205.8 217.3 4.1 594,679 565,202 814.5 

RVL1 291.7 0.0 186,499 186,499 100.2 236.4 0.0 186,125 159,361 101.8 

RVL1’ 246.8 44.9 187,086 187,086 99.8 191.5 44.9 186,712 159,948 102.7 

RVL2 377.0 0.0 257,332 257,309 144.9 288.6 0.0 279,060 195,974 148.6 

RVL3 534.7 0.0 350,901 350,751 182.3 403.7 0.0 372,490 274,505 187.9 

RVL4 751.0 0.0 510,249 509,998 273.5 554.1 0.0 554,051 380,332 282.8 

RVL5 975.9 0.0 658,216 657,843 365.2 742.1 0.0 723,998 497,519 377.2 

RVL6 1,273.3 0.0 823,361 822,628 476.4 959.8 6.9 886,967 612,202 506.0 

RVL7 1,501.8 0.0 941,824 941,284 554.0 1,119.8 0.0 1,004,740 676,107 592.6 
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ict constraints. When a large fraction of assignments cannot be 

onducted by the iterative algorithm, some bounds of minimum 

ssignment and sales constraints that were satisfied in the group- 

evel model are violated after applying the iterative algorithm. This 

xplains the large penalties and hence lower objective function val- 

es of the solutions of the matheuristic which uses model LP . The 

ew modeling technique not only improves the solution quality 

ut also reduces the running time because the group-level model 

as fewer constraints and a smaller number of assignments needs 

o be processed by the iterative algorithm. 

. Conclusion 

In this study, we introduced a real-world planning problem 

f a telecommunications company. The planning problem consists 

f assigning existing customers to direct marketing activities sub- 

ect to various business constraints, such as budget and sales con- 

traints, and various customer-specific constraints. The customer- 

pecific constraints ensure, for example, that individual customers 

re generally not assigned to the activities too often and that the 

ustomers are not assigned to activities that are subject to a con- 

ict. Such a conflict may exist, for example, between two activities 

hat are scheduled within the same week. Existing approaches that 
19 
eal with customer assignment in direct marketing do not consider 

uch customer-specific constraints and are thus not applicable to 

he planning problem at hand. We developed a matheuristic that 

rst solves an optimization problem for groups of customers and 

hen iteratively assigns individual customers to the activities based 

n the solution to the group-level problem. New modeling tech- 

iques and a preprocessing technique are introduced to consider 

ustomer-specific constraints already in the group-level model. In 

 computational analysis, we demonstrated the effectiveness of the 

reprocessing technique and the problem decomposition strategy 

f the matheuristic based on a test set that includes generated 

nd real-world instances. The proposed preprocessing technique 

s able to reduce the number of constraints in the models by up 

o 95%. Even when the number of groups is relatively small, the 

verage gap of the solutions derived by the matheuristic to the 

ptimal solutions of the generated instances is only 1.8%. Increas- 

ng the number of groups further reduces the gap while prolong- 

ng the running time only slightly. The matheuristic is currently 

n use at the company and has lead to an overall improvement of 

ts key performance indicators. The company estimates based on 

 proof of benefit conducted on a selected campaign that the use 

f the matheuristic increased the number of sales by 90%, which 

mproved the profitability of this campaign by around 300%. 
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In future research, we will extend the planning problem to in- 

lude multi-stage campaigns. In such campaigns, customers can 

nly be assigned to activities of a non-initial stage when they have 

een assigned to an activity of each previous stage. A promising 

irection for future research is the development of strategies for 

rouping customers with different eligibility patterns, as pointed 

ut in Section 5.1 . Moreover, it would be interesting to adapt the 

reprocessing technique and the decomposition strategy to related 

lanning problems such as the bin packing problem with conflict 

onstraints. Finally, another direction for future research is to in- 

orporate the conflict constraints with branching rules as done in 

he exact solution approaches of Ş uvak et al. (2020) for the maxi- 

um flow problem with conflict constraints and of Ş uvak, Altınel, 

 Aras (2021) for the minimum cost flow problem with conflict 

onstraints. 
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