
ABSTRACT

Dairy farmers are motivated to ensure cows become 
pregnant in an optimal and timely manner. Although 
timed artificial insemination (TAI) is a successful man-
agement tool in dairy cattle, it masks an animal’s in-
nate fertility performance, likely reducing the accuracy 
of genetic evaluations for fertility traits. Therefore, 
separating fertility traits based on the recorded man-
agement technique involved in the breeding process or 
adding the breeding protocol as an effect to the model 
can be viable approaches to address the potential bias 
caused by such management decisions. Nevertheless, 
there is a lack of specificity and uniformity in the 
recording of breeding protocol descriptions by dairy 
farmers. Therefore, this study investigated the use 
of 8 supervised machine learning algorithms to clas-
sify 1,835 unique breeding protocol descriptions from 
981 herds into the following 2 classes: TAI or other 
than TAI. Our results showed that models that used 
a stacking classifier algorithm had the highest Mat-
thews correlation coefficient (0.94 ± 0.04, mean ± SD) 
and maximized precision and recall (F1-score = 0.96 
± 0.03) on test data. Nonetheless, their F1-scores on 
test data were not different from 5 out of the other 
7 algorithms considered. Altogether, results presented 
herein suggest machine learning algorithms can be used 
to produce robust models that correctly identify TAI 
protocols from dairy cattle breeding records, thus open-
ing the opportunity for unbiased genetic evaluation of 
animals based on their natural fertility.
Key words: breeding protocol description, Canadian 
Holstein, machine learning classifier, timed artificial 
insemination

INTRODUCTION

Dairy farmers are motivated to ensure cows become 
pregnant in an optimal and timely manner (Ribeiro et 
al., 2012). Artificial insemination programs are exten-
sively used in the dairy industry, which makes estrus 
detection crucial for successful breeding (Roelofs et al., 
2010; Silper et al., 2017). In addition to the difficulty 
of the task itself, estrus detection is greatly affected by 
management-related factors such as increased herd size, 
animal density, time standing on concrete, and limited 
number of qualified staff on dairy farms (Vailes and 
Britt, 1990; Denis-Robichaud et al., 2016). Hormonal 
synchronization protocols, also known as timed AI 
(TAI) protocols, are commonly used on dairy farms to 
increase overall herd conception rates (Ribeiro et al., 
2012). Such protocols alleviate the pressure of estrus 
detection by making ovulation time easier to predict, as 
TAI relies on hormones to synchronize follicle growth, 
corpus luteum regression, and ovulation (Cerri et al., 
2004).

A recent study (Lynch et al., 2021) with Canadian 
Holsteins looked at breeding data extracted from of-
ficial records and found that 60% of studied herds used 
TAI in 2017, whereas approximately 20% of all animals 
were on TAI in this same year. They also reported that 
around 10% of herds use TAI protocols on more than 
50% of their animals. Although TAI has been a suc-
cessful management tool in dairy cattle, it was reported 
that it potentially introduces bias in genetic breeding 
programs, as previously demonstrated in a simulation 
study (Oliveira Junior et al., 2021) and with on-farm 
data (Lynch et al., 2021). Both studies showed consid-
erable reranking of bulls when EBV were calculated 
with and without TAI records, showing evidence that 
TAI masks an animal’s true fertility performance, thus 
likely adding bias to genetic evaluations of fertility 
traits. One of the suggestions proposed by Lynch et al. 
(2021) to address this bias was to account for the ef-
fect of TAI in the genetic evaluation model for fertility 
or to split current fertility traits by the management 
technique used for the breeding.
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Official genetic evaluation for fertility traits in Canada 
does not use breeding records extracted directly from 
herd-management software. Instead, breeding records 
are provided by AI companies and accredited farms 
to Lactanet (Canadian Network of Dairy Excellence) 
through a Data Exchange System (DES; Lactanet, 
2022a). The type of service in the DES insemination 
record layout includes inseminations performed by AI 
technicians or herd owners (accredited farms only), 
natural supervised breeding, pasture natural unsuper-
vised breeding, and embryo transfer if the cow was a 
recipient (Lactanet, 2022b). Consequently, data used 
by Lactanet would match to either TAI or heat detec-
tion protocols only. Nonetheless, insemination records 
provided through the DES do not include the breeding 
protocol description used. Therefore, this information 
should be retrieved from herd management software 
and added to the national database.

However, Lynch et al. (2021) highlighted that there 
is no standardization for Canadian farmers to record 
breeding protocol information. To keep track of the 
reproductive performance of their herd, farmers record 
the breeding protocol description (BPD) used for each 
breeding, typically consisting of a combination of only 
a few keywords, abbreviations, numbers, or special 
characters, such as “Natural,” “Ovsynch,” “Standing,” 
“GGPG,” and “CIDR.” However, because there is no 
standard for creating these BPD, 2 farms might use 
different BPD for the same or variations of the same 
protocol. For instance, Lynch et al. (2021) reported that 
there were 156 unique BPD describing “Ovsynch” in 
their dataset, from which the source of variation came 
from typos, capitalization, or abbreviations. Further-
more, they found almost 6,000 different BPD across 
1,192 herds, of which 2,021 were herd specific. This 
highlights the lack of specificity and uniformity in the 
recording of BPD by farmers, making it extremely dif-
ficult to properly classify the description of the breed-
ing method using deterministic or traditional stochastic 
methods.

Nevertheless, methods based on text mining (e.g., 
text classification) are promising for the classification 
of BPD. One traditional approach for text classifica-
tion is to use the bag-of-words representation, which 
associates a text with a vector indicating the number 
of occurrences of words from a predefined dictionary 
(HaCohen-Kerner et al., 2020). Breeding protocol 
descriptions are normally short descriptions, rather 
than a full sentence; therefore, using character bigrams 
rather than n combinations of words seem to be a more 
appropriate approach for the classification of BPD. As 
reviewed by Lecluze et al. (2013), the idea of consider-
ing character N-grams rather than words has been suc-
cessfully applied on many tasks, such as author iden-

tification, language identification, speech analysis, text 
categorization, numerical classification of multilingual 
documents, information retrieval, and multilingual au-
tomatic alignment. Thus, throughout this manuscript, 
the terms feature and character bigram will be used 
interchangeably.

To our knowledge, no previous work has been done 
to automate, with or without machine learning algo-
rithms, the identification of BPD that corresponds to 
TAI protocols. However, there are publications avail-
able describing similar problems of text classification 
focused on record matching and its implication within 
the agriculture sector. As an example, Aiken et al. 
(2019) used deterministic, stochastic, and machine 
learning methods to apply and compare data linkage 
in the absence of a unique universal farm identifier. 
Among the methods used, they reported supervised 
and unsupervised algorithms (support vector machine 
and bagged clustering, respectively) to accurately 
match strings (99.9%), where the Levenshtein distance 
(Haldar and Mukhopadhyay, 2011) was the best metric.

We hypothesized that machine learning would be a 
viable approach to build robust models able to identify 
BPD corresponding to hormonal synchronization pro-
tocols. Therefore, a supervised learning approach was 
implemented in this study to classify BPD used with 
Canadian Holsteins into the following 2 categories: TAI 
protocols or not TAI protocols (NTAI).

MATERIALS AND METHODS

This study used historical data generated from the 
day-to-day operations of farms across Canada enrolled 
in Dairy Herd Improvement services. All dairy farms 
in Canada must adhere to the code of practice for the 
care and handling of dairy cattle by the National Farm 
Animal Care Council of Canada (Lacombe, Alberta).

Breeding Code Data

Breeding data recorded by Canadian Holstein farm-
ers on the dairy herd management computer program 
DairyComp (version 22.6.0, Valley Agricultural Soft-
ware) from 2007 to 2019 were available from CanWest 
DHI (a member of Lactanet) and included information 
from 781,583 cows within 1,192 herds. After remov-
ing herds where BPD were not available, final data 
contained records from 707,240 cows within 981 herds, 
which represented 73.15% of cows from the national 
Canadian Holstein herd on July 1, 2020 (Statistics 
Canada, 2020).

A total of 5,804 BPD was available, with frequencies 
ranging from 1 to 24 BPD/herd (mean = 5.8 BPD/
herd). From these, 2,481 BPD were unique and used 
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in at least 1 herd. Sixty-six percent of herds (n = 650) 
had 1 or more herd-specific BPD, totaling 2,021 BPD 
not shared among herds. The remaining 460 BPD were 
shared by 2 or more herds. The most frequent BPD 
were “Estrumate,” “CIDR,” “Ovsynch,” and “Natu-
ral,” which were used in 101, 166, 224, and 252 herds, 
respectively. Herd-specific BPD included “15HRS,” 
“2xBred-SH,” and “GGPG+Cidr.”

Although many BPD (2,410) were used in less than 
10 herds, the majority were variations of a given de-
scription (e.g., CIDR-Ovsynch, CIDR-SYNCH, CIDR/
PRID), and others contained typos or combinations 
of lower- and uppercase characters (e.g., CIDR-Sync, 
CIDR-synch, Cidr-synch). These similarities were ex-
pected to help in the model learning process by reducing 
feature dimensionality. Even though other BPD seemed 
to be less meaningful (e.g., ttt, rpt, cold, WB, CM, 
and Reg-2), or could be related to treatment of sick 
animals (e.g., CIDR for treatment of cystic ovaries), 
they remained in the dataset as they added important 
features to help the models understand what a TAI 
BPD does not look like, thus increasing overall preci-
sion and recall.

Breeding protocol descriptions were grouped into the 
following 2 main classes: (1) TAI, when TAI protocol 
was used alone (e.g., “Ovsynch”) or in combination 
with any other protocol (e.g., “PRID & Estrumate” or 
“Ovsynch & Natural”); and (2) NTAI, when BPD did 
not indicate any use of TAI protocols, such as heat de-
tection (e.g., “standing heat”), hormone use (e.g., “Es-

trumate”), or unclear descriptions (e.g., “vet advice”). 
It was assumed that classes were previously labeled 
with high accuracy by Lynch et al. (2021).

Data Preprocessing

Transformation of all BPD to lowercase and the 
replacement of underscores to single spaces were per-
formed, leading to a reduction of 26.0% in the number 
of unique BPD, from 2,481 to 1,835. The number of 
new unique BPD (Figure 1) added to the dataset every 
year stabilized after 2010; therefore, data from 2007 to 
2010 were pooled as 1 group. From 2010 to 2019, an 
average of 139 new unique BPD was used yearly, which 
represents an average increase of 15.8% per year.

Feature Construction for Training and Test Datasets

Nine training datasets were created by grouping BPD 
according to years of use starting from 2007 to 2010 
and incrementally adding 1 yr to the previous group 
until 2018 (i.e., 2007–2010, 2007–2011, 2007–2012, ..., 
2007–2018).

Construction of new features (Figure 2) for the learn-
ing problem was performed using a character bigram 
approach with the CountVectorizer() function from the 
Scikit-learn software, version 0.24.2 (Pedregosa et al., 
2011), implemented in Python 3.8. This approach was 
assumed to reduce the eventual differences between the 
official Canadian languages (i.e., French and English).
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Figure 1. Number of unique breeding protocol descriptions (BPD) used for the first time from 2007 to 2019 among all herds. Numbers within 
bars represent the number of records per group in each year (e.g., in 2011, there were a total of 40 unique breeding protocol descriptions used 
for timed artificial insemination (TAI) protocols that were not previously used from 2007–2010]. Orange: BPD containing TAI protocols; green: 
BPD that do not contain TAI protocols (NTAI).
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A dictionary specific to each training set was created 
with all possible unique bigrams of 2 consecutive ASCII 
characters present among all BPD in a training set. 
Bigrams formed with a whitespace (i.e., representing 
start- and end-of-word letters) and duplicated bigrams 
were removed from the dictionary. The dictionary was 
used in a vectorizer function to convert BPD into a 
sparse matrix of character bigram counts of size n by 
m, where n represents the number of unique BPD, and 
m is the size of the dictionary (number of character 
bigrams). Feature construction created between 491 
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Figure 2. Example of data preprocessing and feature construction. Step 1: breeding protocol descriptions (BPD) were preprocessed by con-
verting uppercase to lowercase, and underscore to whitespace. Step 2: a dictionary specific to each dataset was created with all possible unique 
bigrams of 2 consecutive ASCII characters present among all BPD in the dataset. In the example above, this dictionary contains 29 unique 
character bigrams. Step 3: this dictionary was used in a vectorizer function to convert BPD into a sparse matrix with row vectors of frequency 
counts of character bigrams from the dictionary that were present in the BPD. This matrix had the size n by m, where n represents the number 
of unique BPD, and m the size of the dictionary (number of character bigrams). Each column vector in the matrix represents one feature. TAI 
= timed artificial insemination protocols.

Table 1. Number of records and constructed features in each training 
dataset

Training dataset Number of records Number of features

2007–2010 697 491
2007–2011 850 540
2007–2012 964 580
2007–2013 1,106 611
2007–2014 1,237 636
2007–2015 1,365 653
2007–2016 1,483 676
2007–2017 1,619 704
2007–2018 1,748 727
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(2007–2010) and 727 (2007–2018) unique character 
bigrams, with an average increase of 4.5% new features 
per year (Table 1).

A total of 45 test datasets were created, each consist-
ing of unique BPD used in the years following a given 
training dataset until 2019, using 1 file per year. For 
example, models trained with data from 2007 to 2010 
were tested on 9 datasets (i.e., 1 for each year from 
2011–2019), whereas models trained with data from 
2007 to 2017 were only tested on 2 datasets (i.e., 1 
with unique BPD used in 2018, and another in 2019). 
Test datasets were further adjusted so that all and only 
those bigrams present in the corresponding training 
dataset used to train the model were kept, whereas the 
rest were discarded. Furthermore, for a fair comparison 
of testing performance, each test dataset consisted of a 
defined number of 87 randomly sampled records, which 
was the number of records available in the smallest test 
dataset (i.e., in 2019).

Modeling Pipeline

Algorithms. Supervised ML classification algo-
rithms were evaluated for the classification of BPD 
used with Canadian Holsteins: decision tree classifier 
(DT), k-nearest neighbors classifier (KNN), linear 
discriminant analysis (LDA), logistic regression (LR), 
support vector machines classifier (SVM), linear SVM 
(LSVM), random forest (RF), and stacking classifier 
(STK). Stacking classifier is an ensemble algorithm 
that works with 2 levels of models. Level zero contains 
already trained base models, whereas level 1 uses a 
meta-model that is responsible to learn how to best 
combine the predictions given by the base models by 

deducing the biases of the generalizers from level zero 
in a second space. The meta-model uses as its inputs 
the predictions of the base models taught with part of 
the learning set and tries to predict the rest of it (Wol-
pert, 1992). In this study, models produced with the 
former 7 algorithms were used as base models, whereas 
LR was also used as the algorithm for the meta-model. 
Therefore, a total of 8 algorithms were considered, using 
appropriate functions from Scikit-learn, and a diagram 
with the modeling pipeline is shown in Figure 3.

Performance Measures. In a classification prob-
lem, a confusion matrix is typically created represent-
ing the summary of the number of correct and incorrect 
prediction results broken down by each class. There has 
been a long discussion around performance measures 
used to evaluate classification problems based on the 
confusion matrix, and no widespread consensus has 
been reached on a single measure yet (Brown, 2018). 
Accuracy is a very popular statistical measure; how-
ever, it can show overoptimistic inflated results, espe-
cially when imbalanced datasets are analyzed (Chicco 
and Jurman, 2020).

Alternatively, the Matthews correlation coefficient 
(MCC) is a more reliable statistical measure for imbal-
anced datasets (Matthews, 1975). The MCC produces 
a high score only if the prediction obtained good results 
in all 4 categories of the confusion matrix and it is pro-
portional to the size of positive and negative elements 
in the dataset, as shown in Equation 1 as follows:

MCC TP TN FP FN

TP FP TP FN TN FP TN FN
=

× − ×

+( ) +( ) +( ) +( )
,

 [1]
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Figure 3. Overview of the modeling pipeline used in this study. Eight machine learning algorithms were used to build classification models, 
and a Bayesian search approach was applied to optimize their hyperparameters according to different training datasets. A total of 9 training 
datasets were used, each increasing the amount of data incrementally every year. To minimize overfitting, optimized models were trained with a 
stratified 10-fold cross-validation approach. Training and validation scores were used to detect overfitting and rank algorithms based on perfor-
mance of their models on validation data across all training datasets. Testing of models were performed on unseen data of the year(s) following 
the range of years used for their respective training datasets.
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where TP, TN, FP, and FN are true positive, true 
negative, false positive, and false negative values, re-
spectively. Although MCC and accuracy include all 4 
result types in their formulations, only MCC includes 
both type-I (FP) error and type-II (FN) error in its 
numerator, and in a multiplicative manner, which pe-
nalizes both types (Brown, 2018).

Therefore, MCC was used as the main statistic to 
measure model performance, and it was calculated using 
the matthews_corrcoef() function from the Scikit-learn 
library in Python. Nonetheless, due to its mathemati-
cal properties, extreme optimization on either positives 
(TP, FP) or negatives (FP, FN) can yield MCC values 
close to zero, thus both positive and negative error rates 
must be low to achieve a high MCC (Brown, 2018). To 
account for extreme optimization scenarios, precision 
and recall were used as complementary measures to 
carefully interpret MCC scores, as well as consideration 
of values from the confusion matrix. The functions 
precision_score(), recall_score(), and f1_score() from 
Scikit-learn were used, respectively, having TAI as the 
positive label. We provide below the formulae for the 2 
considered measures.

Precision (positive predictive value) is the ratio of 
the number of true positive examples out of those that 
were classified as positive (Equation 2).

 Precision TP
TP FP
=

+
. [2]

Recall (sensitivity or true positive rate) is the ratio of 
examples correctly predicted as positive to the number 
of actual positive examples (Equation 3).

 Recall TP
TP FN

=
+

. [3]

The aim of this study was to correctly identify TAI pro-
tocols so that their effects on fertility could be properly 
managed during genetic evaluations for fertility; there-
fore, an algorithm that produces models that maximize 
both precision and recall is more desirable. For this rea-
son, algorithms were ranked based on the average F1-
score (Equation 4) of their respective models. The F1-
score is a weighted (harmonic) average of the precision 
and recall scores, with values ranging from 0 (lowest) to 
1 (highest). Differences in F1 scores across algorithms 
and models were tested via mixed model ANOVA in 
SAS PROC GLM. The ANOVA model included test 
sets nested in models as a categorical random factor, 
and algorithms and models as fixed categorical factors. 
Scheffé adjustment for multiple comparisons was used 
to control type I error rate.

 F Score Precision Recall
Precision Recall

1
2

− =
× ×

+
. [4]

Optimization of Model Hyperparameters. A 
model hyperparameter is an external user-tunned pa-
rameter whose value is used to control various aspects 
of the learning process such as speed and quality, tree 
depth in DT models, or number of neighbors (k) in 
KNN models, and it cannot be inferred when fitting 
the model to the data. In this study, optimization of 
hyperparameters was performed with a cross-validated 
search over various hyperparameter settings using a 
Bayesian approach with the BayesSearchCV() function 
from the Scikit-optimize module, version 0.8.1 (Head et 
al., 2020), implemented in Python 3.8. The full list of 
algorithms and their respective optimized model hyper-
parameters are given in Table 2. The set of hyperpa-
rameters that produced maximum MCC scores in the 
validation (hold-out) data was ultimately selected for 
any given model. All models had their hyperparameters 
optimized based on the training set, except for the ones 
using the STK algorithm because they were built based 
on the models optimized here. Therefore, 63 models 
were optimized in total (7 algorithms × 9 training sets).

Model Training and Testing. Models were trained 
using a stratified 10-fold cross-validation approach re-
peated 3 times, as suggested for classification problems 
(Kohavi, 1995), using the RepeatedStratifiedKFold() 
function implemented in Scikit-learn. Briefly, each 
training set was split in 10 parts with a similar distribu-
tion of records per class (TAI: 70%; NTAI: 30%). One 
part was set aside (hold-out) for validation purposes, 
whereas the other 9 were used to train the model and 
measure its performance. This process was performed 
10 times until all parts had their turn to be used for 
validation. Performances on the validation parts were 
averaged and are reported herein as validation scores, 
whereas the average performances of the model on the 
other parts used to train the model are referred as 
training scores.

All model hyperparameters were optimized based 
on different training sets; therefore, models that used 
the same algorithm did not necessarily have the same 
hyperparameter values. Therefore, we ranked the per-
formance of models on the same training data and aver-
aged such rankings according to the algorithm used. 
The algorithm whose models had the best average 
MCC ranking on the validation data across all training 
sets was considered the best model.

To precisely gauge the ability of the alternative algo-
rithms to produce models able to classify future data, 
models were tested on unseen datasets of the same 
size. Test datasets were constructed with a standard-
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ized number of 87 observations, which were extracted 
from the years following the ones used in their respec-
tive training set. For example, a model optimized and 
trained with data from 2007 to 2012 was tested on 
7 different testing sets (2013, 2014, […], and 2019), 
whereas a model optimized and trained with data from 
2007 to 2018 was only tested on data from 2019.

RESULTS AND DISCUSSION

Model Training

Models were optimized for each training set using 
a cross-validated Bayesian search approach (Head et 
al., 2020). The combination of hyperparameters that 
resulted in maximum MCC in the hold-out data was 
chosen as the best one for each model according to the 
training set used. Optimized models were trained on a 
range of training sets and their respective performances 
with averaged cross-validated training, and validation 
scores are shown in Figure 4.

Six algorithms (DT, LR, SVM, LSVM, RF, and 
STK) produced models that performed extremely well 
on all training sets, with an average training score of 
0.99 ± 0.00 (mean ± SD; Table 3) and a validation 
score of 0.95 ± 0.01 on the hold-out data (Table 4). 
Models using the STK algorithm performed the best 
(highest MCC rank on all held-out data of all training 

sets), with the lowest MCC of 0.96 ± 0.02 (2007–2010) 
and highest of 0.97 ± 0.04 (2007–2015; Table 4). On the 
other hand, LDA models had the lowest performance 
(lowest MCC rank on all held-out data of all training 
sets), with the lowest MCC of 0.73 ± 0.08 (2007–2010) 
and highest of 0.87 ± 0.04 (2007–2017; Table 4).

We also investigated if any of the models were affect-
ed by over- and underfitting. A good machine learning 
model aims to generalize well from the training data 
so it can make accurate predictions on unseen data. 
However, overfitting happens when a model learns or 
“memorizes” the details and noise in the training data 
to the extent that it negatively affects the predictive 
performance of the model on new data. In contrast, 
an underfitted model fails to adequately capture the 
relationships between the variables in the data due to 
its simplicity (e.g., insufficient number of features). 
The results depicted in Figure 4 suggest that LDA 
was overfitted because MCC scores on training data 
were consistently high (0.98 ± 0.01), whereas those for 
validation data were lower (0.82 ± 0.05). The LDA’s 
limitation to generalize new data can also be noticed 
by a plateau in validation scores from 2015 to 2018. In 
contrast, KNN models exhibited a slight underfitting 
because their training scores decreased from 0.93 to 
0.90 with addition of more data over the years until 
2015, whereas validation scores varied slightly in the 
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Table 2. List of classification algorithms and values used for hyper-parameter optimization; hyperparameter 
names and values are shown as available from their respective functions in the Scikit-learn software, version 
0.24.2, implemented in Python 3.8

Algorithm1  Hyperparameters  Values

LR  class_weight  balanced, none
 solver  newton-cg, lbfgs, liblinear, sag, saga
 C  Range from 0.1 to 2.0 in increments of 0.1

KNN  n_neighbors  Range from 1 to 11 in increments of 2
 leaf_size  Range from 10 to 50 in increments of 10
 metric  euclidean, manhattan, chebyshev, minkowski, hamming, braycurtis

DT  criterion  gini, entropy
 max_features  auto, sqrt, log2, none
 splitter  best, random
 max_depth  Range from 2 to 26 in increments of 1, none

SVM  C  Range from 0.01 to 2.0 in increments of 0.2
 kernel  poly, rbf, sigmoid
 class_weight  balanced, None
 degree  Range from 1 to 3, in increments of 1

LSVM  C  Range from 0.01 to 2.0 in increments of 0.2
 loss  hinge, squared_hinge
 class_weight  balanced, None

LDA  solver  lsqr, svd
RF  max_samples  Range from 0.1 to 0.9 in increments of 0.1, none

 max_depth  Range from 1 to 26 in increments of 1, none
 criterion  gini, entropy
 max_features  Range from 1 to number of features in increments of 50
 n_estimators  Range from 1 to 1,000 in increments of 100

1LR: logistic regression; KNN: k-nearest neighbors classifier; DT: decision tree classifier; SVM: support vector 
machines classifier; LSVM: linear SVM; LDA: linear discriminant analysis; RF: random forest.
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same period, from 0.88 to 0.89. Even though training 
performance increased with addition of training data 
in 2016, validation scores remained constant and KNN 
was still outperformed by all the other models, except 
LDA.

Model Testing

Over the past decade, at least 87 new codes were used 
by farmers every year to describe breeding protocols for 
Canadian Holsteins (Figure 1). Therefore, we tested the 
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Figure 4. Each box-plot displays the 5-number summary of either the training (blue) or validation (orange) scores (Matthews correlation 
coefficient) from a 3×-repeated stratified 10-fold cross-validation of estimators with hyperparameters optimized for each training set using a 
Bayesian search approach. The 5-number summary is the minimum (lower end of vertical line), first quartile (bottom of the box), median (line 
inside box), third quartile (top of the box), and maximum (upper end of vertical line). Dots on the first 8 plots (left to right, top to bottom) 
represent outliers. Bottom right line plot shows the rate of increase in number of constructed features relative to the first training set.
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ability of the models to predict randomly selected (n = 
87) unseen BPD from 2011 to 2019, according to their 
respective training dataset.

Models using the STK algorithm outperformed all 
the other models when tested on unseen data and had 
similar MCC scores on most testing data (0.94 ± 0.04; 
Table 5). On average, breeding codes used in 2018 were 
the easiest to predict (0.99 ± 0.01) by STK models, 
whereas those from 2013 posed a bigger challenge (0.89 
± 0.02). Among STK models, the model trained with 
BPD used from 2007 to 2010 had the lowest average 
performance on the testing datasets (MCC = 0.92 ± 
0.05), whereas the one trained with data from 2007 to 
2018 that predicted BPD used in 2019 had an MCC 
performance of 0.98.

For this learning problem, a precision equal to 1 means 
that all TAI observations were correctly classified as 
TAI. On the extreme opposite, if all TAI observations 
were wrongly classified as NTAI, precision would be 
equal to zero. If all observations classified as TAI were 
truly TAI, recall would be equal to 1, regardless of how 
many NTAI labels were misclassified as TAI. However, 
if none of the true TAI were classified as TAI, recall 

would be equal to zero, no matter how many BPD were 
correctly classified as NTAI.

An algorithm that produces a model that maximizes 
both precision and recall is more desirable; therefore, 
algorithms were ranked based on the average F1-score 
of their respective models. On average, models using 
the STK algorithm had the highest F1-score (0.96 ± 
0.03), followed by DT (0.95 ± 0.04), RF (0.95 ± 0.05), 
LSVM (0.94 ± 0.04), SVM (0.94 ± 0.04), LR (0.93 ± 
0.05), KNN (0.89 ± 0.04), and LDA (0.82 ± 0.08; Table 
6).

Analysis of variance results (Supplemental Data 
S1, https: / / data .mendeley .com/ datasets/ ptmgr4vcz7/ 
1; Alacantra, 2022) indicated that there were no sig-
nificant differences (P-value > 0.15) between F1-scores 
from all the models, except for KNN and LDA models, 
which performed significantly worse than all the other 
models (P-value <0.0001). Therefore, DT, LR, SVM, 
LSVM, RF, and STK algorithms seemed to produce 
models that can predict new BPD with very similar 
performance.

In general, incremental addition of new data to the 
training dataset every year did not help the maximiza-
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Table 3. Average training scores (Matthews correlation coefficient) for optimized models1 obtained from a 
stratified 10-fold cross-validation using different training datasets; SD varied from 0 to 0.01

Training dataset DT KNN LDA LR LSVM RF SVM STK

2007–2010 1.00 0.93 0.99 1.00 1.00 1.00 1.00 1.00
2007–2011 1.00 0.92 0.99 1.00 1.00 1.00 0.99 1.00
2007–2012 1.00 0.92 0.99 0.99 0.99 0.99 0.98 0.99
2007–2013 1.00 0.91 0.98 0.99 1.00 1.00 1.00 1.00
2007–2014 1.00 0.91 0.98 0.99 0.98 1.00 1.00 1.00
2007–2015 1.00 0.90 0.98 0.99 0.99 1.00 1.00 1.00
2007–2016 0.99 0.94 0.98 0.99 0.99 0.99 1.00 1.00
2007–2017 0.98 0.92 0.97 0.99 0.99 0.99 0.99 1.00
2007–2018 1.00 0.93 0.97 0.99 0.99 1.00 0.98 1.00
1LR: logistic regression; KNN: k-nearest neighbors classifier; DT: decision tree classifier; SVM: support vector 
machines classifier; LSVM: linear SVM; LDA: linear discriminant analysis; RF: random forest; STK: stacking 
classifier.

Table 4. Average validation scores (Matthews correlation coefficient) for optimized models1 obtained from a 
stratified 10-fold cross-validation using different training datasets; SD varied from 0.02 to 0.09

Validation dataset DT KNN LDA LR LSVM RF SVM STK

2007–2010 0.93 0.88 0.73 0.95 0.95 0.96 0.95 0.96
2007–2011 0.95 0.89 0.77 0.95 0.95 0.96 0.95 0.96
2007–2012 0.95 0.90 0.78 0.94 0.95 0.96 0.96 0.96
2007–2013 0.95 0.89 0.80 0.94 0.95 0.96 0.96 0.97
2007–2014 0.95 0.88 0.83 0.94 0.94 0.96 0.95 0.97
2007–2015 0.94 0.89 0.85 0.94 0.95 0.96 0.96 0.97
2007–2016 0.95 0.89 0.86 0.94 0.95 0.96 0.96 0.97
2007–2017 0.95 0.89 0.87 0.94 0.95 0.95 0.96 0.97
2007–2018 0.95 0.89 0.86 0.94 0.95 0.95 0.95 0.96
1LR: logistic regression; KNN: k-nearest neighbors classifier; DT: decision tree classifier; SVM: support vector 
machines classifier; LSVM: linear SVM; LDA: linear discriminant analysis; RF: random forest; STK: stacking 
classifier.

https://data.mendeley.com/datasets/ptmgr4vcz7/1
https://data.mendeley.com/datasets/ptmgr4vcz7/1
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tion of F1-scores for all models (Figure 5). Analysis of 
variance results (Supplemental Data S1) showed no sig-
nificant differences in the F1-scores from all the models 
by adding data to the training set every year (P-value 
= 0.43). Such results showed that the ML algorithms 
used in this study were robust and could be used to 
produce models with consistently high performance 
regardless of the amount of data used for training. In 
practice, this means that models produced with such 
algorithms would not need to be optimized and trained 
before every genetic evaluation.

Applications

Breeding data are recorded differently by farmers, 
thus there is no “one-fits-all” type of model that can 
take a text-based description of a breeding protocol 

and classify it as either TAI or not TAI. Therefore, in 
this study we provided the dairy industry with a meth-
odology that is flexible enough to vectorize any text-
based BPD and develop classification models aiming to 
identify TAI protocols among NTAI breeding protocols 
using machine learning algorithms. Our main concern 
was to provide algorithms that were robust enough to 
produce models that provide high performance on test 
data regardless of the amount of data used for training. 
This is especially important because it reduces the need 
of frequent retraining, otherwise required due to newly 
created BPD by farmers yearly. Such methodology can 
be used by researchers to further understand the effects 
of TAI on fertility evaluations and for improvements 
on genetic evaluations to account for the effects of TAI 
within existing automated systems.
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Table 6. Average F1-score of models1 on test sets from 2011 to 2019 according to their machine learning 
algorithm2

Test dataset DT KNN LDA LR LSVM RF SVM STK

20113 0.98 0.97 0.78 0.97 0.97 0.98 0.97 0.97
2012 0.94 0.93 0.80 0.92 0.93 0.95 0.95 0.95
2013 0.87 0.84 0.71 0.87 0.86 0.87 0.89 0.92
2014 0.97 0.90 0.71 0.90 0.94 0.97 0.91 0.94
2015 0.95 0.92 0.85 0.98 0.97 0.97 0.95 0.98
2016 0.92 0.82 0.79 0.85 0.89 0.89 0.93 0.93
2017 0.90 0.86 0.83 0.95 0.96 0.90 0.90 0.94
2018 1.00 0.91 0.86 0.98 0.96 1.00 0.99 0.99
2019 0.99 0.91 0.91 0.95 0.96 0.97 0.96 0.97
1LR: logistic regression; KNN: k-nearest neighbors classifier; DT: decision tree classifier; SVM: support vector 
machines classifier; LSVM: linear SVM; LDA: linear discriminant analysis; RF: random forest; STK: stacking 
classifier.
2Models predicted unseen breeding protocol descriptions used in each year that followed the date range (2007–
2010 to 2007–2019) used in their respective training dataset. All test sets had the same number (n = 87) of 
random observations. SD varied from 0 to 0.08.
3Not an average; results from models trained only with data from 2007 to 2010.

Table 5. Average Matthews correlation coefficient of models1 on test sets from 2011 to 2019 according to their 
machine learning algorithm; models predicted unseen breeding protocol descriptions used in each year that 
followed the date range (2007–2010 to 2007–2019) used in their respective training dataset2

Test dataset DT KNN LDA LR LSVM RF SVM STK

20113 0.98 0.95 0.66 0.95 0.95 0.98 0.95 0.95
2012 0.91 0.90 0.70 0.87 0.90 0.92 0.92 0.92
2013 0.83 0.78 0.60 0.82 0.80 0.82 0.85 0.89
2014 0.96 0.88 0.65 0.88 0.93 0.96 0.90 0.93
2015 0.93 0.90 0.79 0.97 0.96 0.96 0.94 0.97
2016 0.90 0.79 0.73 0.82 0.86 0.87 0.92 0.92
2017 0.87 0.82 0.78 0.94 0.95 0.88 0.87 0.92
2018 0.99 0.88 0.80 0.97 0.94 0.99 0.98 0.99
2019 0.98 0.86 0.85 0.92 0.93 0.96 0.93 0.96
1LR: logistic regression; KNN: k-nearest neighbors classifier; DT: decision tree classifier; SVM: support vector 
machines classifier; LSVM: linear SVM; LDA: linear discriminant analysis; RF: random forest; STK: stacking 
classifier.
2All test sets had the same number (n = 87) of random observations. SD varied from 0 to 0.1.
3Not an average; results from models trained only with data from 2007 to 2010.
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CONCLUSIONS

In this study, we used 8 supervised machine learning 
algorithms to classify BPD with constructed features 
representing the combination of 2 consecutive ASCII 

characters. Our results showed that models that used 
the STK algorithm (i.e., a stacking classifier that in-
cluded DT, LDA, KNN, SVM, LSVM, LR, and RF) 
showed higher performance in the prediction of unseen 
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Figure 5. Distribution of F1-scores of models on test sets according to their machine learning algorithm and training set. Models predicted 
unseen breeding protocol descriptions used in each year that followed the date range used in their respective training dataset (e.g., the first box-
plot of each graph contains the distribution of results from test sets from 2011–2019 from a model trained with data from 2007–2010, whereas the 
last boxplot is the result from the test set from 2019 from a model trained with data from 2007–2018). All test sets had the same number (n = 
87) of randomly selected observations. Each box plot displays the 5-number summary of the F1-scores of each test set, which are the minimum 
(lower end of vertical line), first quartile (bottom of the box), median (line inside box), third quartile (top of the box), and maximum (upper 
end of vertical line); dots represent outliers.
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BPD used in each year that followed the years used 
in their respective training datasets (2007–2010 to 
2007–2019). We also showed precision and recall were 
maximized by STK models, but their F1-scores on test 
data were not different from DT, SVM, LSVM, LR, 
and RF. Altogether, results presented herein suggest 
machine learning algorithms can be used to produce 
robust models that correctly identify TAI protocols 
from dairy cattle breeding records, thus opening the 
possibility for unbiased genetic evaluation of animals 
based on their natural fertility.
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