
ABSTRACT

Dry matter intake (DMI) is a fundamental compo-
nent of the animal’s feed efficiency, but measuring DMI 
of individual cows is expensive. Mid-infrared reflec-
tance spectroscopy (MIRS) on milk samples could be 
an inexpensive alternative to predict DMI. The objec-
tives of this study were (1) to assess if milk MIRS data 
could improve DMI predictions of Canadian Holstein 
cows using artificial neural networks (ANN); (2) to 
investigate the ability of different ANN architectures 
to predict unobserved DMI; and (3) to validate the 
robustness of developed prediction models. A total of 
7,398 milk samples from 509 dairy cows distributed 
over Canada, Denmark, and the United States were 
analyzed. Data from Denmark and the United States 
were used to increase the training data size and vari-
ability to improve the generalization of the prediction 
models over the lactation. For each milk spectra record, 
the corresponding weekly average DMI (kg/d), test-day 
milk yield (MY, kg/d), fat yield (FY, g/d), and protein 
yield (PY, g/d), metabolic body weight (MBW), age at 
calving, year of calving, season of calving, days in milk, 
lactation number, country, and herd were available. 
The weekly average DMI was predicted with various 
ANN architectures using 7 predictor sets, which were 
created by different combinations MY, FY, PY, MBW, 
and MIRS data. All predictor sets also included age of 
calving and days in milk. In addition, the classifica-
tion effects of season of calving, country, and lacta-
tion number were included in all models. The explored 

ANN architectures consisted of 3 training algorithms 
(Bayesian regularization, Levenberg-Marquardt, and 
scaled conjugate gradient), 2 types of activation func-
tions (hyperbolic tangent and linear), and from 1 to 
10 neurons in hidden layers). In addition, partial least 
squares regression was also applied to predict the DMI. 
Models were compared using cross-validation based on 
leaving out 10% of records (validation A) and leaving 
out 10% of cows (validation B). Superior fitting statis-
tics of models comprising MIRS information compared 
with the models fitting milk, fat and protein yields sug-
gest that other unknown milk components may help 
explain variation in weekly average DMI. For instance, 
using MY, FY, PY, and MBW as predictor variables 
produced a predictive accuracy (r) ranging from 0.510 
to 0.652 across ANN models and validation sets. Using 
MIRS together with MY, FY, PY, and MBW as pre-
dictors resulted in improved fitting (r = 0.679–0.777). 
Including MIRS data improved the weekly average 
DMI prediction of Canadian Holstein cows, but it 
seems that MIRS predicts DMI mostly through its as-
sociation with milk production traits and its utility to 
estimate a measure of feed efficiency that accounts for 
the level of production, such as residual feed intake, 
might be limited and needs further investigation. The 
better predictive ability of nonlinear ANN compared 
with linear ANN and partial least squares regression in-
dicated possible nonlinear relationships between weekly 
average DMI and the predictor variables. In general, 
ANN using Bayesian regularization and scaled conju-
gate gradient training algorithms yielded slightly better 
weekly average DMI predictions compared with ANN 
using the Levenberg-Marquardt training algorithm.
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INTRODUCTION

With a growing world population projected to reach 
9 billion people by 2050 (UN, 2019), it is paramount 
to improve the efficiency of the agricultural industry. 
Improving feed efficiency is an important goal of many 
dairy producers, as feed is the main cost associated 
with dairy production (Hemme et al., 2014). Dry mat-
ter intake is a crucial component influencing animal 
efficiency, and it will be of great use for improving cur-
rent genetic evaluation breeding programs (de Haas et 
al., 2015). However, DMI is an expensive trait to mea-
sure on individual cows in commercial systems (Dórea 
et al., 2018). It is recognized that the genetic evaluation 
of dairy cows needs fairly large data sets; however, due 
to the complexity and cost involved in measuring DMI, 
only small data sets for feed intake are currently avail-
able (Wallén et al., 2017). Consequently, the primary 
factor hampering the genetic evaluation of feed intake 
in dairy cattle breeding programs is regular access to 
phenotypic feed intake data from a large animal popu-
lation recorded on an ongoing basis, ideally at low cost, 
to obtain high selection accuracy (Wallén et al., 2018). 
In Canada, the Efficient Dairy Genome research proj-
ect (https:​/​/​genomedairy​.ualberta​.ca/​) established an 
international collaboration to share DMI phenotypes to 
enlarge the individual national databases.

Mid-infrared reflectance (MIR) spectroscopy 
(MIRS) on milk samples can be an affordable alter-
native to predict DMI at the population level (Shetty 
et al., 2017). Milk MIRS is based on the interaction 
between matter and electromagnetic waves between 
900 and 5,000 cm−1 (De Marchi et al., 2014), and it is 
widely used in commercial dairy recording systems to 
predict milk components. In this context, MIRS has 
been shown to be efficient in predicting phenotypes for 
milk fatty acid composition (Soyeurt et al., 2006, 2011; 
Fleming et al., 2017), milk protein composition (Rutten 
et al., 2011), ketone bodies (van der Drift et al., 2012), 
and mineral composition (Soyeurt et al., 2009).

To the best of our knowledge, the first study on DMI 
prediction using milk MIRS was carried out by Shetty 
et al. (2017). However, in that study, the authors used 
the partial least squares (PLS) method, which may not 
be ideal due to the high dimensionality of the predictor 
variables (n = 1,060 wavelengths, WL), and the fact 
that there may be a nonlinear relationship among some 
WL and DMI (Dórea et al., 2018). Thus, although the 
PLS method has been mainly used in MIRS research 
to develop prediction models (e.g., Soyeurt et al., 2006; 
McParland et al., 2011), artificial neural networks 
(ANN) potentially may yield more accurate predic-
tions (Gianola et al., 2011; Felipe et al., 2015). The 
ANN are inspired by the human nervous system, and 

they are comprised of interconnected neurons arranged 
into layers (Bishop, 2006). In this context, ANN may 
capture more complicated relationships between the 
input variables and the response outcome compared 
with PLS.

The objectives of this study were (1) to assess if 
milk MIRS data could improve prediction of DMI of 
Canadian Holstein cows using data from Canada and 
international partners; (2) to investigate the ability of 
different linear and nonlinear ANN architectures and 
PLS regression to predict DMI; and (3) to validate the 
robustness of developed prediction models.

MATERIALS AND METHODS

Data Collection and Quality Control

A total of 7,398 weekly average DMI from 509 first 
and second lactation dairy cows distributed across 
Canada (4,863 samples from 290 cows), the United 
States (1,563 samples from 127 cows), and Denmark 
(972 samples from 92 cows) were analyzed. Aiming at 
the prediction of DMI of Canadian Holstein cows only, 
data from Canada, and international partners (the 
United States and Denmark) were used to increase the 
data size and variability to improve the model gener-
alization over the lactation. The data were collected 
between 2014 and 2018, and they were obtained from 
the Efficient Dairy Genome Project database (https:​/​/​
genomedairy​.ualberta​.ca/​). All animal procedures were 
approved by the animal care and use committees at 
the universities and research centers that provided data 
for this research (i.e., the Dairy Research and Tech-
nology Center, Edmonton, Canada; the Ontario Dairy 
Research Centre, Elora, Canada; the Danish Cattle 
Research Center, Foulum, Denmark; and the USDA-
Agricultural Research Service, Beltsville, MD) and all 
animals were cared for in accordance with respective 
national guidelines on animal care of each country.

All individual morning and evening milk samples 
were analyzed using MilkoScan FT+ spectrometers 
(Foss), which generated one spectrum for each analyzed 
milk sample. For each cow, the weekly average DMI 
was calculated and then it was merged with the cor-
responding MIRS data (see next section), based on the 
test date. Because some of the cow BW were originally 
partial BW, cow metabolic BW (BW0.75, MBW) were 
standardized to a common mean and variance. To im-
pute missing values of MBW, a linear regression was fit 
using the available MBW records for each animal and 
PROC GLM (version 9.4; SAS Institute Inc.). Cows 
without any available BW were excluded from the DMI 
prediction analyses. Weekly average DMI outside the 
range of Q1 − 1.5(Q3 − Q1) and Q3 + 1.5(Q3 − Q1) 
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were considered outliers and discarded for the first and 
second lactation cows, where Q1 and Q3 represent the 
first and third quartiles, respectively. Descriptive sta-
tistics of the phenotypic records are shown in Table 1. 
The recording of DMI was focused on different stages of 
lactation in the United States (early lactation), Canada 
(post-peak of lactation) and Denmark (middle of lac-
tation), so jointly the data sets from the 3 countries 
covered more of the entire lactation (Table 1).

Mid-Infrared Reflectance Spectroscopy Data  
and Pretreatments

For each milk sample, the milk MIRS data contained 
1,060 WL in the infrared range of 925 to 5,008 cm−1. 
Due to high water absorption, MIRS data from regions 
between 1,600 to 1,700 cm−1 and >3,005 cm−1 were 
removed (Shetty et al., 2017).

Spectral pretreatments are frequently applied 
to MIRS data to achieve robust prediction models 
(Rinnan et al., 2009). In this research, multiplicative 
scatter correction (Martens and Naes, 1989) was ad-
opted to reduce noise in the spectrum. This method of 
preprocessing accounts for variations of light scattering 
in spectral data and removes nonlinearities induced by 
scattering from particulates (Martens and Naes, 1989). 
Savitzky-Golay first derivatives (Savitzky and Golay, 
1964), using filter width 7 and a second order poly-
nomial, were also applied to the spectral data. First-
derivative spectra pretreatments are commonly used to 
enhance resolution and to sharpen bands of absorption 
in spectral samples (Savitzky and Golay, 1964). After 
the pretreatments, a total of 505 WL from each milk 
sample were available for the analysis.

Sets of Predictors

For each milk spectra record, the corresponding 
weekly average DMI (kg/d), test-day milk yield (MY, 

kg/d), fat yield (FY, g/d), and protein yield (PY, 
g/d), MBW, age at calving (AC), year of calving, sea-
son of calving, DIM, lactation number, country, and 
herd information were available. Seven different sets 
of predictors (independent variables) were designed to 
predict weekly average DMI of individual cows using 
ANN. Weekly averages were used in this study because 
they tend to better represent the efficiency of the cows, 
as DMI and other feed efficiency traits have a high 
daily variability (Seymour et al., 2020). Moreover, offi-
cial genetic and genomic evaluations for feed efficiency 
in Canada are also based on weekly averages (Jamrozik 
and Kistemaker, 2020). The predictor sets differed by 
the predictors included the following: set 1 (MY, AC, 
and DIM), set 2 (MY, FY, PY, AC, and DIM), set 3 
(MY, FY, PY, MBW, AC, and DIM), set 4 (505 WL, 
AC, and DIM), set 5 [MY, MBW, AC, DIM, and 36 
principal components (PC) explaining more than 99% 
of MIR WL variance], set 6 (MY, FY, PY, MBW, AC, 
DIM, and 36 PC of MIR WL), set 7 (MY, FY, PY, 
MBW, AC, DIM, and 505 MIR WL). In all analyses, 
the fixed classification effects of country, season of 
calving, and lactation number were always included in 
the prediction models. It is worth mentioning that FY 
and PY were predicted values from the milk spectra. 
In sets 1 to 3, the simplest model (i.e., MY, AC, and 
DIM) was considered first, and then more predictors 
were added one by one but without including MIRS 
data. Set 4 was considered to assess how much of the 
DMI variation could be explained by solely using 505 
MIR wavelengths. In set 5, FY and PY from set 3 were 
replaced by 36 PC of MIRS to evaluate whether or not 
MIRS data could improve DMI prediction compared 
with using nonspecific milk components (i.e., FY and 
PY). Principal components were used because in ANN, 
as the number of neurons increases, the number of 
parameters to be estimated also increases drastically, 
which might lead to an overfitting problem. In set 6, 
36 PC of MIRS were added to the predictors of set 3 
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Table 1. Descriptive statistics of the data, mean and SD of DMI, milk production, metabolic BW, age at calving, DIM of the recorded cows, 
and total number of cows and records

Variable1

Canada

 

United States

 

Denmark

 

All

Mean SD Mean SD Mean SD Mean SD

Weekly average DMI (kg/d) 18.70 3.76 19.36 3.58 19.84 3.49 18.99 3.71
Test-day MY (kg/d) 33.33 6.76 41.39 7.71 34.50 7.37 35.19 7.76
Test-day FY (g/d) 1,329.78 299.71 1,522.19 302.47 1,347.35 270.32 1,372.74 306.55
Test-day PY (g/d) 1,061.79 201.06 1,159.05 200.47 1,204.62 232.34 1,101.10 212.79
MBW 132.02 9.72 123.84 8.74 134.62 10.01 130.63 10.22
AC (mo) 28.01 5.99 27.38 5.71 28.92 6.01 27.99 5.95
DIM (d) 122.25 75.89 85.16 70.66 145.01 81.48 117.41 77.76
Number of records 4,863 1,563 972 7,398
Number of cows 290 127 92 509
1MY = milk yield; FY = fat yield; PY = protein yield; MBW = metabolic BW; AC = age at calving.
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to investigate whether using PC of MIR wavelengths 
would or not improve DMI prediction compared with 
using all 505 wavelengths, as in set 7. Therefore, in set 
7, all available predictors, including the full milk MIRS 
data were used to predict DMI. It is worth mentioning 
that in a study by Dórea et al. (2018), the selected MIR 
wavelengths (i.e., 33 MIR wavelengths), using a Mar-
kov blanket method, improved the DMI prediction by 
ANN compared with using all MIR wavelengths (i.e., 
361 MIR wavelengths).

ANN Models

The 2-layer feed-forward perceptron, also known as 
single hidden layer feed-forward neural network, is a 
commonly applied form of ANN for regression. These 
ANN have an input layer of source nodes and an output 
unit that are fully connected, with only one hidden 
layer between them, as shown in Figure 1. This type of 
network can approximate most mathematical functions 
well, so they are universal approximators of linear and 
nonlinear functions (Alados et al., 2004). Mathemati-
cally, it is possible to view the mapping of these ANN 
as a 2-step regression (Hastie et al., 2009). The main 
idea is to extract linear combinations of the inputs as 
basis functions in the hidden layer, and then model the 
target in the output layer as a function of these basis 
functions (Ehret et al., 2015). In the hidden layer, the 
explanatory variables xij (for j = 1, …, m, where m 
indicates the number of explanatory variables) of an 
individual i (for i = 1, ..., n, where n is the number of 
individuals) are combined linearly with a weight vector 
w j
t
1
[ ] determined in the training phase, plus an intercept 

at (also called “bias” in ANN terminology), with t = 1, 
..., s denoting the number of neurons in the hidden 
layer. The ensuing linear score is then converted to 
generate the output of the single hidden neuron zi

t[ ]( ) 
using an activation function ft (.), as follows:
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t

t t
j

m

j
t
ij

[ ]

=

[ ]= +










∑
1
1 ,	 [1]

where all terms were previously defined.
The hyperbolic tangent activation function 
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 can be used in the hidden neurons 

to model the nonlinear relationship between phenotype 
and input, which allows the ANN to have higher flexi-
bility than conventional linear regression models 
(MacKay and Mac Kay, 2003). The outputs of the basis 
functions, resulting from the hidden layer, are linearly 

combined in the output layer using the w21, w22, ..., w2s 
weights and an intercept b. The resulting linear score is 
converted in the output neuron, this time using a linear 
activation function gt(.) to calculate the predicted phe-
notype of the individual i (for i = 1, ..., n), as follows:

	 y g b w zi t
t

s

t i
t= +









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[ ]∑
1
2 ,	 [2]

where yi is the phenotype of the animal i, and all other 
terms were previously defined.

Training ANN includes minimizing an error function 
that relies upon the synaptic weights of the network 
(w in Figure 1) and biases. These weights and biases 
are iteratively updated to approximate the target vari-
able by a learning algorithm. Back-propagation is a 
supervised learning algorithm based on an appropriate 
error function, the values of which are specified by the 
target (i.e., weekly average DMI) and the network’s 
predicted outputs (i.e., weekly average DMI fitted 
values). A back-propagation algorithm is applied to 
determine weights and biases in a multilayer perceptron 
architecture to minimize the mean squared error using 
gradient descent methods (Okut et al., 2011). Based 
on the input and favored output, weights and biases in 
the ANN are updated continuously during the training 
process. In every iteration of training, an multilayer 
perceptron consists of 2 steps: the feed-forward and the 
back-propagation steps. In the feed-forward step, the 
inputs go through the neural network from the input 
layer toward the output layer and, by passing through 
the neurons of the hidden layer and the output layer, 
based on the weights, biases, and activating functions of 
the neural network, they yield to the neural network’s 
outputs. The back-propagation step back propagates 
the errors in the network and minimizes the error func-
tion by updating weights and biases in the steepest 
descent direction (negative of the gradient) to decrease 
it (Beale et al., 2010). The forward and backward steps 
are carried out recurrently until the ANN solution 
matches the favored value within a prespecified thresh-
old (Haykin, 2009; Hajmeer et al., 2006).

Similar to other parametric and nonparametric meth-
ods, such as kernel regression and smoothing splines, 
ANN may lead to overfitting and the prediction model 
can show low generalization (Guo et al., 2003; Feng et 
al., 2006; Wang et al., 2009). Overfitting results from 
an excessive number of estimated parameters and may 
happen due to an increased number of neurons in the 
hidden layer (Alados et al., 2004).

Bayesian regularization and cross-validated early 
stopping (CVES) are 2 standard methods to avoid 
overfitting in ANN. Unlike standard network training 
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method, where an optimal set of weights and biases is 
selected by minimizing an error function, the Bayesian 
method includes a probability distribution of network 
weights. Consequently, the network predictions also 
come from a probability distribution (Sorich et al., 
2003). The objective function in Bayesian ANN (e.g., 
BRANN) has an additional term that penalizes large 
weights and introduces bias in parameter estimates 
toward values deemed plausible, while decreasing their 
variance. Thus, there is a bias-variance trade-off that 
aims to achieve a smoother mapping (Okut et al., 
2011). Afterward, gradient-based optimization is used 
to minimize the following function (F), which is equiva-
lent to a penalized log-likelihood:

	 F E D w M E w MD w= ( )+ ( )β α| |, ,	 [3]

where E D w MD | ,( ) and E w Mw |( ) are the sum of squared 
prediction errors and weights, respectively, considering 
the calibration data set (D), network weights (w), and 
architecture (M). The α and β are regularization pa-
rameters that must be estimated according to Foresee 
and Hagan, (1997). The second term on the right-hand 
side of Equation [3], known as weight decay, promotes 
low w values and alleviates the model’s tendency to 
over-fit the data. Therefore, training involves a trade-
off between model complexity and goodness of fit (Tit-
terington, 2004).

Shadpour et al.: PREDICTING DMI USING NEURAL NETWORKS

Figure 1. Architecture of a 2-layer feed-forward neural network: xij = network input; w j
t
1
[ ]

 = network weight from the input to hidden layer; 
w2t = network weight from the hidden to the output layer; at = intercept (also called bias), with t = 1, ..., s, denoting the number of neurons in 
the hidden layer; b = the intercept of output layer neuron; yi = network output (e.g., predicted DMI of individual); ft (.) = activation function 
at the hidden neurons; gt (.) = activation function at the output neuron, where the subscript i refers to the individuals (from 1 to n), j refers to 
the explanatory variables (from 1 to m), and t refers to the number of neurons (from 1 to s).
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With the CVES technique, the calibration data are 
divided into training and validation sets. The ANN 
training involves an iterative process. First, the estima-
tion of the ANN weights and biases, using the training 
set, is performed and then, these estimated parameters 
are applied to calculate the prediction errors in the 
validation set. As the procedure iterates, the estimated 
parameters using the training data are applied to make 
predictions in the validation set to determine which es-
timated parameters yield the lowest average prediction 
errors for the validation data. To prevent overfitting, 
training stops when the error in the validation set rises 
in a certain number of successive epochs (iterations). 
The ANN parameter estimates with the best perfor-
mance in the validation set are then used to assess the 
network's predictive ability (Okut et al., 2013).

In this study, Levenberg-Marquardt (LM), scaled 
conjugate gradient (SCG) and Bayesian regularization 
(BR) training algorithms were applied to train the 
ANN. Additional details about LM, SCG, and BR can 
be found in Hagan and Menhaj (1994), Møller (1993), 
and MacKay (1992), respectively. The CVES method 
was applied for LM and SCG to avoid overfitting. Each 
validation set consisted of 10% of all the data chosen 
randomly from the calibration set. Hereafter, ANN with 
BR, LM, and SCG training algorithms are referred to 
as BRANN, LMANN, and SCGANN respectively.

Model Development

To fit the ANN, MATLAB (Beale et al., 2010) was 
used. Each network had 3 layers (i.e., input, hidden, 
and output layers). Two combinations of activation 
functions were applied: (1) a set of linear activation 
functions from the input layer to the hidden layer and 
from the hidden layer to the output layer, and (2) a 
set of hyperbolic tangent sigmoid activation functions 
from the input layer to the hidden layer, plus a linear 
activation function from the hidden layer to the output 
layer. In set 1, the number of neurons in the hidden 
layer was constant and equal to one, but in set 2 the 
number of neurons in the hidden layer varied from 1 
to 10. The first and second sets of ANN were called 
linear and nonlinear ANN, respectively. As stated by 
Gianola et al. (2011) and Pérez-Rodríguez et al. (2013), 
linear BRANN can produce results approximately cor-
responding to BLUP and ridge regression. Before pro-
cessing, MATLAB automatically rescales all input and 
output variables using the “mapminmax” function to 
increase the numerical stability in the range [−1, +1]. 
This feature scaling guarantees that all sources of data 
are handled equally in the training phase, which often 
has a large effect on the final solutions (Hastie et al., 
2009).

Tuning Parameters

In machine learning, algorithms generally have a set 
of tuning parameters that influence how the learning 
algorithm fits the data. For example, the number of 
layers, the number of neurons in each layer, the learn-
ing rate, and other features in a multilayer perceptron 
ANN are tuning parameters, which are also called 
hyperparameters. In this study, the hyperparameters 
were chosen using cross-validation (i.e., goal, epochs, 
max_fail, min_grad, and time), and MATLAB default 
values (i.e., mu, mu_dec, mu_inc, mu_max, sigma, 
and lambda), as they are considered optimal values for 
most regression problems. Detailed information about 
the hyperparameters can be found in Table 2. For all 
predictor sets, the defined hyperparameters were kept 
constant.

Assessment of Prediction Model Robustness

Two types of 10-fold cross-validation were imple-
mented to evaluate the predictive abilities of the ANN. 
The first one consisted of leaving out 10% of all ani-
mal records across Canada, Denmark, and the United 
States (validation A), and the second one consisted of 
leaving out 10% of all cows across Canada, Denmark, 
and the United States (validation B). The data were 
split into 10 subsets. One subset (the testing set) was 
dropped to assess the model's predictive ability of DMI 
of Canadian cows only, whereas the other 9 subsets 
were used as calibration sets to estimate the model pa-
rameters. During the cross-validation runs, each of the 
10 subsets was used once as a testing set. Such a proce-
dure was applied to avoid having the same calibration 
data from the United States and Denmark in all 10-fold 
cross-validations, which would cause dependency in the 
calibration sets. Therefore, out of the total number of 
cows (or records) in the testing set, on average, 29 (486 
records) were Canadian cows (records) and were used 
to evaluate the prediction ability of the models.

The predictive ability of the ANN models in the test 
sets was assessed based on their accuracy [r; i.e., the 
Pearson correlation coefficient between observed and 
predicted weekly average DMI values, the root mean 
squared error (RMSE), and the ratio of performance 
to deviation (RPD), which is the standard deviation 
of DMI divided by RMSE. Before each 10-fold cross-
validation, 10 replicates using different starting values 
for weights and biases were applied to each ANN archi-
tecture. The starting values were chosen randomly to 
avoid the artificial neural network training algorithm 
getting stuck at the local minimum of the error func-
tion. From these 10 replicates, the estimated parameter 
of the replicate with the maximum Pearson correlation 

Shadpour et al.: PREDICTING DMI USING NEURAL NETWORKS



Journal of Dairy Science Vol. 105 No. 10, 2022

coefficient between predicted and observed values in 
the calibration set (for BRANN) or training set (for 
LMANN and SCGANN) was applied to evaluate the 
predictive robustness of ANN in the corresponding test 
set.

Partial Least Squares Regression

For the sake of comparison to previous studies, PLS 
regression was also applied to predict the DMI, using 
the PLS package in R (Mevik et al., 2013). The opti-
mum number of latent variables for the PLS regression 
model for each 10-fold cross-validation was determined 
using the maximum Pearson correlation between ob-
served and predicted DMI in the validation sets (i.e., 
the 10% of all the data chosen randomly from the cali-
bration set) when the number of latent variables was 
changed from 1 to 100 for sets 4 and 7 (to reduce the 
number of latent variables), and from 1 to the number 
of predictors for the other sets. Then the determined 
optimum number of latent variables was used to make 
a prediction model using the corresponding calibration 
data (i.e., both training and validation data) for each 
10-fold cross-validation.

Statistical Tests

Differences in fitting statistics (i.e., r, RMSE and 
RPD) among 7 sets of predictors (i.e., predictor sets), 3 
types of training algorithms (i.e., BR, LM, and SCG), 
linear and nonlinear ANN and PLS regression, and 2 
types of validation methods (i.e., validations A and 
B) were tested via SAS PROC GLM, using Scheffé 

adjustment for multiple comparisons. The ANOVA 
model included 10-fold samples as a random factor (i.e., 
blocking for 10-fold samples) and predictor sets, models 
(i.e., linear and nonlinear ANN and PLS regression), 
training algorithms, validation methods, and predictor 
sets as fixed categorical factors.

RESULTS

The comparisons between predictor sets, models, 
and training algorithms were very similar within 
validation method A or B, but validation B yielded 
consistently lower fitting statistics than validation A 
(P < 0.0001; Supplemental Table S1, https:​/​/​doi​.org/​
10​.5281/​zenodo​.6632059; Shadpour et al., 2022). As 
validation B is more practical, because DMI of new 
animals are predicted, only results from validation B 
are presented and discussed hereafter, with detailed 
statistical analyses provide in Supplemental Table S2 
(https:​/​/​doi​.org/​10​.5281/​zenodo​.6632059; Shadpour et 
al., 2022). Results from validation A are provided in 
the Supplemental Tables S3 and S4 (https:​/​/​doi​.org/​
10​.5281/​zenodo​.6632059; Shadpour et al., 2022). In 
addition, only statistical comparisons for prediction 
accuracy are presented, because results for RMSE and 
RPD followed similar trends.

Data Description

The mean phenotypic values of the different predic-
tor sets for the 509 cows, on days where MIRS data 
were available, are summarized in Table 1. Weekly 
average DMI and its corresponding test-day MY, FY, 
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Table 2. Hyperparameters used in the artificial neural networks (ANN) based on Levenberg-Marquardt 
(LMANN), scaled conjugate gradient (SCGANN), and Bayesian regularization (BRANN) training algorithms

Hyperparameter1

Linear ANN

 

Nonlinear ANN

BRANN LMANN SCGANN BRANN LMANN SCGANN

goal 0 0 0 0 0 0
epochs 70 70 10,000 50 50 1,000
max_fail — 6 3,000 — 6 300
min_grad 1e-100 1e-100 1e-100 1e-100 1e-100 1e-100
time infinite infinite infinite infinite infinite infinite
mu 0.005 0.001 — 0.005 0.001 —
mu_dec 0.1 0.1 — 0.1 0.1 —
mu_inc 10 10 — 10 10 —
mu_max 1e10 1e10 — 1e10 1e10 —
sigma — — 5.0e-5 — — 5.0e-5
lambda — — 5.0e-7 — — 5.0e-7
1goal = performance goal; epochs = maximum number of epochs to train; max_fail = maximum validation 
failures; min_grad = minimum performance gradient; time = maximum time to train in seconds; mu = initial 
momentum; mu_dec = mu decrease factor; mu_inc = mu increase factor; mu_max = maximum mu; sigma 
= determine change in weight for second derivative approximation; lambda = parameter for regulating the 
indefiniteness of the Hessian. The first 5 hyperparameters (i.e., goal, epochs, max_fail, min_grad, and time) 
were chosen using cross-validation. The other hyperparameters (i.e., mu, mu_dec, mu_inc, mu_max, sigma, 
and lambda) were MATLAB default values, which are optimal for most regression problems.

https://doi.org/10.5281/zenodo.6632059
https://doi.org/10.5281/zenodo.6632059
https://doi.org/10.5281/zenodo.6632059
https://doi.org/10.5281/zenodo.6632059
https://doi.org/10.5281/zenodo.6632059
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PY, MBW, AC, and DIM were 18.99 kg, 35.19 kg, 
1,372.7 g, 1,101.1 g, 130.63 kg0.75, 28.0 mo, and 117.4 
d, respectively.

Common Categorical Environmental Effects  
Across Sets

In all the analyzed sets (sets 1–7), country, season 
of calving, and lactation number were always included 
as categorical fixed environmental effects. Their con-
tributions to the prediction accuracy were small. For 
instance, when using BRANN and Validation A, their 
joint contribution varied from 0.014 to 0.075. The same 
features for validation B were from −0.012 to 0.014.

Comparison Between Predictor Sets, Models,  
and Training Algorithms Using Validation B

The fitting statistics of BRANN, LMANN, and CS-
GANN for Canadian Holstein dairy cattle using the 
validation B are presented in Tables 3 to 5, respec-
tively. Predicting weekly average DMI using MY as 
the only production trait (set 1) resulted in the worst 
fitting statistics compared with the other predictor 
sets (P < 0.0001, Supplemental Table S2). The pre-
dictive accuracy for set 1 ranged from 0.471 to 0.546 

for BRANN, 0.472 to 0.55 for LMANN, and 0.473 to 
0.546 for SCGANN. The addition of FY and PY (set 
2) improved the prediction performance (P < 0.0001). 
The predictive accuracy ranged from 0.488 to 0.581 for 
BRANN, 0.489 to 0.567 for LMANN, and 0.484 to 0.58 
for SCGANN.

When MBW was included in the prediction model 
(set 3), the fitting statistics improved (P < 0.0001). 
The predictive accuracy ranged from 0.51 to 0.593 for 
BRANN, 0.512 to 0.591 for LMANN, and 0.511 to 
0.591 for SCGANN.

When milk production traits were replaced by milk 
spectra (505 WL) in set 4, predictive accuracy consid-
erably increased (P < 0.0001) and ranged from 0.634 
to 0.656 for BRANN, 0.603 to 0.645 for LMANN, and 
0.635 to 0.652 for SCGANN.

Replacing FY and PY by the PC of WL (set 5) re-
sulted in a larger improvement in the fitting statistics 
(P < 0.0001). The predictive accuracy ranged from 
0.652 to 0.714 for BRANN, 0.653 to 0.703 for LMANN, 
and 0.652 to 0.709 for SCGANN. Conversely, combin-
ing FY and PY with MY, SMBY and the PC of WL 
(set 6) did not have a major effect on the DMI predic-
tion compared with set 5 (P = 0.57). The predictive 
accuracy ranged from 0.658 to 0.725 for BRANN, 0.659 
to 0.713 for LMANN, and 0.658 to 0.707 for SCGANN. 
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Table 3. Fitting statistics of the artificial neural networks (ANN) using Bayesian regularization training algorithm (BRANN) for predicting 
weekly average DMI in Canadian Holstein dairy cattle using the validation B (based on individual cows) in the test sets1

Set2   Predictive ability L NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8 NN9 NN10

1   r 0.471 0.526 0.529 0.546 0.533 0.537 0.537 0.530 0.539 0.534 0.532
  RMSE 3.332 3.230 3.212 3.165 3.203 3.195 3.205 3.217 3.201 3.217 3.227
  RPD 1.114 1.149 1.156 1.172 1.159 1.162 1.158 1.154 1.160 1.153 1.150

2   r 0.488 0.531 0.556 0.554 0.554 0.563 0.572 0.581 0.576 0.575 0.569
  RMSE 3.314 3.220 3.145 3.142 3.144 3.123 3.101 3.087 3.091 3.105 3.120
  RPD 1.120 1.154 1.181 1.181 1.181 1.188 1.197 1.202 1.200 1.194 1.189

3   r 0.510 0.543 0.576 0.577 0.572 0.575 0.593 0.577 0.591 0.588 0.577
  RMSE 3.267 3.194 3.104 3.095 3.104 3.099 3.047 3.097 3.065 3.077 3.121
  RPD 1.136 1.162 1.196 1.198 1.196 1.199 1.218 1.197 1.210 1.206 1.190

4   r 0.636 0.637 0.641 0.653 0.65 0.654 0.654 0.651 0.634 0.656 0.635
  RMSE 2.915 2.909 2.905 2.863 2.893 2.895 2.875 2.924 2.964 2.909 2.983
  RPD 1.273 1.275 1.276 1.296 1.282 1.283 1.292 1.268 1.253 1.275 1.244

5   r 0.652 0.655 0.663 0.682 0.691 0.714 0.710 0.706 0.711 0.714 0.698
  RMSE 2.866 2.860 2.833 2.770 2.732 2.643 2.674 2.696 2.665 2.649 2.724
  RPD 1.293 1.297 1.309 1.340 1.357 1.404 1.388 1.377 1.391 1.402 1.364

6   r 0.658 0.662 0.672 0.693 0.692 0.725 0.716 0.713 0.705 0.707 0.705
  RMSE 2.845 2.832 2.805 2.719 2.723 2.600 2.640 2.655 2.685 2.683 2.708
  RPD 1.304 1.310 1.322 1.365 1.363 1.427 1.407 1.400 1.384 1.386 1.372

7   r 0.689 0.691 0.692 0.705 0.719 0.729 0.721 0.720 0.708 0.728 0.725
  RMSE 2.740 2.728 2.734 2.699 2.650 2.601 2.625 2.630 2.688 2.616 2.625
  RPD 1.354 1.361 1.357 1.374 1.400 1.426 1.414 1.411 1.383 1.421 1.415

1L = linear neural network; NN = number of neurons in the hidden layer of nonlinear neural networks. The results shown in this table are aver-
ages based on a 10-fold cross-validation.
2Sets of explanatory variables used are defined as follows: (1) MY, AC, and DIM; (2) MY, FY, PY, AC, and DIM; (3) MY, FY, PY, MBW, AC, 
and DIM; (4) AC, DIM, and 505 WL; (5) MY, MBW, AC, DIM, and 36 principal components of WL; (6) MY, FY, PY, MBW, AC, DIM, and 
36 principal components of WL; and (7) MY, FY, PY, MBW, AC, DIM, and 505 WL, where MY = milk yield, AC = age at calving, FY = fat 
yield, PY = protein yield, MBW = metabolic BW, and WL = wavelength. All sets also included country, season of calving, and lactation num-
ber as categorical fixed effects. The predictive ability of the BRANN was assessed using the Pearson correlation coefficient calculated between 
observed and predicted DMI values (r), the root mean squared error (RMSE) and the ratio of performance to deviation (RPD). 
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Table 4. Fitting statistics of the artificial neural networks (ANN) using Levenberg-Marquardt training algorithm (LMANN) for predicting 
weekly average DMI in Canadian Holstein dairy cattle using the validation B (based on individual cows) in the test sets1

Set2   Predictive ability L NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8 NN9 NN10

1   r 0.472 0.525 0.531 0.542 0.550 0.529 0.529 0.532 0.527 0.540 0.517
  RMSE 3.333 3.230 3.208 3.176 3.157 3.209 3.217 3.212 3.225 3.203 3.265
  RPD 1.114 1.149 1.157 1.168 1.175 1.157 1.154 1.155 1.151 1.160 1.138

2   r 0.489 0.532 0.556 0.558 0.552 0.558 0.567 0.555 0.553 0.553 0.560
  RMSE 3.305 3.217 3.141 3.131 3.157 3.125 3.107 3.144 3.159 3.162 3.137
  RPD 1.123 1.155 1.183 1.185 1.176 1.189 1.195 1.181 1.174 1.172 1.184

3   r 0.512 0.542 0.575 0.577 0.567 0.578 0.591 0.581 0.574 0.565 0.558
  RMSE 3.262 3.195 3.103 3.097 3.115 3.098 3.058 3.116 3.115 3.157 3.159
  RPD 1.137 1.162 1.196 1.198 1.192 1.197 1.214 1.191 1.191 1.175 1.175

4   r 0.643 0.645 0.633 0.635 0.631 0.625 0.617 0.625 0.634 0.603 0.619
  RMSE 2.897 2.889 2.934 2.95 2.978 2.989 3.044 3.038 3.02 3.14 3.097
  RPD 1.281 1.284 1.265 1.258 1.246 1.243 1.223 1.221 1.227 1.183 1.199

5   r 0.653 0.656 0.665 0.672 0.697 0.700 0.703 0.695 0.696 0.694 0.694
  RMSE 2.864 2.854 2.827 2.798 2.714 2.714 2.694 2.729 2.709 2.724 2.765
  RPD 1.295 1.300 1.313 1.326 1.367 1.366 1.377 1.361 1.370 1.362 1.341

6   r 0.659 0.663 0.675 0.686 0.698 0.713 0.704 0.702 0.699 0.703 0.703
  RMSE 2.843 2.831 2.793 2.748 2.706 2.661 2.697 2.695 2.724 2.696 2.716
  RPD 1.305 1.311 1.328 1.350 1.372 1.395 1.377 1.379 1.361 1.377 1.368

7   r 0.695 0.703 0.690 0.702 0.703 0.699 0.679 0.680 0.679 0.691 0.682
  RMSE 2.719 2.685 2.754 2.709 2.706 2.753 2.827 2.848 2.824 2.806 2.832
  RPD 1.365 1.382 1.349 1.370 1.369 1.350 1.312 1.308 1.315 1.324 1.313

1L = linear neural network; NN = number of neurons in the hidden layer of nonlinear neural networks. The results shown in this table are aver-
ages based on a 10-fold cross-validation.
2Sets of explanatory variables used are defined as follows: (1) MY, AC, and DIM; (2) MY, FY, PY, AC, and DIM; (3) MY, FY, PY, MBW, AC, 
and DIM; (4) AC, DIM, and 505 WL; (5) MY, MBW, AC, DIM, and 36 principal components of WL; (6) MY, FY, PY, MBW, AC, DIM, and 
36 principal components of WL; and (7) MY, FY, PY, MBW, AC, DIM, and 505 WL; where MY = milk yield, AC = age at calving, FY = fat 
yield, PY = protein yield, MBW = metabolic BW, and WL = wavelength. All sets also included country, season of calving, and lactation num-
ber as categorical fixed effects. The predictive ability of the LMANN was assessed using the Pearson correlation coefficient calculated between 
observed and predicted DMI values (r), the root mean squared error (RMSE), and the ratio of performance to deviation (RPD).

Table 5. Fitting statistics of the artificial neural networks (ANN) using conjugate gradient training algorithm (SCGANN) for predicting weekly 
average DMI in Canadian Holstein dairy cattle using the validation B (based on individual cows) in the test sets1

Set2   Predictive ability L NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8 NN9 NN10

1   r 0.473 0.525 0.527 0.546 0.545 0.532 0.536 0.539 0.530 0.526 0.539
  RMSE 3.331 3.230 3.216 3.165 3.176 3.200 3.201 3.193 3.219 3.246 3.197
  RPD 1.114 1.149 1.155 1.172 1.169 1.159 1.160 1.162 1.154 1.143 1.160

2   r 0.484 0.532 0.557 0.554 0.563 0.565 0.580 0.566 0.580 0.561 0.562
  RMSE 3.315 3.217 3.141 3.140 3.125 3.117 3.090 3.126 3.088 3.142 3.145
  RPD 1.120 1.155 1.183 1.182 1.188 1.191 1.201 1.188 1.202 1.181 1.181

3   r 0.511 0.543 0.575 0.577 0.577 0.584 0.591 0.578 0.574 0.584 0.584
  RMSE 3.261 3.193 3.102 3.091 3.083 3.072 3.050 3.097 3.097 3.092 3.084
  RPD 1.137 1.163 1.197 1.200 1.204 1.208 1.218 1.198 1.198 1.200 1.204

4   r 0.640 0.635 0.642 0.645 0.652 0.652 0.641 0.65 0.646 0.643 0.635
  RMSE 2.906 2.917 2.903 2.914 2.891 2.898 2.945 2.922 2.94 2.98 3.005
  RPD 1.277 1.272 1.277 1.272 1.284 1.279 1.258 1.269 1.261 1.246 1.235

5   r 0.652 0.655 0.661 0.686 0.695 0.701 0.694 0.709 0.693 0.690 0.700
  RMSE 2.865 2.856 2.844 2.751 2.715 2.692 2.735 2.682 2.731 2.757 2.703
  RPD 1.294 1.298 1.305 1.348 1.367 1.381 1.357 1.384 1.360 1.346 1.374

6   r 0.658 0.661 0.675 0.689 0.697 0.701 0.702 0.706 0.692 0.707 0.703
  RMSE 2.847 2.834 2.782 2.743 2.723 2.712 2.705 2.682 2.743 2.693 2.695
  RPD 1.303 1.309 1.332 1.352 1.363 1.369 1.374 1.383 1.352 1.379 1.377

7   r 0.692 0.692 0.695 0.700 0.711 0.717 0.717 0.705 0.726 0.720 0.710
  RMSE 2.730 2.727 2.726 2.703 2.673 2.655 2.650 2.697 2.626 2.655 2.692
  RPD 1.359 1.361 1.361 1.374 1.387 1.395 1.399 1.375 1.415 1.395 1.380

1L = linear neural network; NN = number of neurons in the hidden layer of nonlinear neural networks. The results shown in this table are aver-
ages based on a 10-fold cross-validation.
2Sets of explanatory variables used are defined as follows: (1) MY, AC, and DIM; (2) MY, FY, PY, AC, and DIM; (3) MY, FY, PY, MBW, AC, 
and DIM; (4) AC, DIM, and 505 WL; (5) MY, MBW, AC, DIM, and 36 principal components of WL; (6) MY, FY, PY, MBW, AC, DIM, and 
36 principal components of WL; and (7) MY, FY, PY, MBW, AC, DIM, and 505 WL; where MY = milk yield, AC = age at calving, FY = fat 
yield, PY = protein yield, MBW = metabolic BW, and WL = wavelength. All sets also included country, season of calving, and lactation num-
ber as categorical fixed effects. The predictive ability of the SCGANN was assessed using the Pearson correlation coefficient calculated between 
observed and predicted DMI values (r), the root mean squared error (RMSE), and the ratio of performance to deviation (RPD). 
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Using all WL combined with MY, FY, PY, and MBW 
(i.e., set 7) resulted in the best fitting statistics com-
pared with the other sets (P < 0.0001). The predictive 
accuracy ranged from 0.689 to 0.729 for BRANN, 0.679 
to 0.703 for LMANN, and 0.692 to 0.726 for SCGANN.

For all predictor sets, nonlinear ANN provided bet-
ter prediction ability compared with linear ANN. PLS 
regression yielded very similar results compared with 
linear ANN (P = 0.99, Table 6 and Supplementary 
Table S2). For all sets, the predictive abilities of the 
3 neural network training algorithms were similar, but 
the BRANN and SCGANN performed slightly better 
than LMANN (P < 0.0001).

In this study, data from Canada, Denmark and the 
United States were combined to increase the training 
data size and variability, and improve the generaliza-
tion of the prediction models over the lactation. As 
recording of DMI was focused on different stages of 
lactation in the United States, Canada, and Denmark 
(average DIM of 85 d, 122 d, and 145 d, respectively, 
with standard deviations ranging from 71 to 81 d; Table 

1), jointly the data sets from the 3 countries covered 
more of the entire lactation.

The prediction ability of Canadian cows’ DMI using 
data from Canada, Denmark, and the United States or 
only data from Canada was very similar, but it was, on 
average, slightly better when all 3 countries were used. 
As an illustration, Table 7 shows the average fitting 
statistics over all the 11 tested ANN using BRANN for 
predicting the weekly average DMI of Canadian cows 
using predictor set 7, validation B and data of either 
Canada only or Canada, Denmark, and the United 
States combined in the test sets for the whole lacta-
tion or different lactation periods. The results show a 
slightly better overall fitting of the models when using 
the combined data sets and a slightly improved fitting 
in early and later lactation when compared with us-
ing Canadian data only. These results supported the 
use of combined data from Canada, the United States, 
and Denmark to develop DMI predictions of Canadian 
cows.

DISCUSSION

The objective of the present study was to assess the 
prediction of weekly average DMI in Canadian Holstein 
dairy cattle using milk MIRS data in addition to other 
commonly available predictors, including MY, milk 
components and MBW, using ANN and PLS, and com-
bined data from Canada and 2 international partners, 
Denmark and the United States. Accurate prediction of 
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Table 6. Fitting statistics of the partial least squares (PLS) regression 
model for predicting weekly average DMI in Canadian Holstein dairy 
cattle using the validation B (based on individual cows) in the test sets

Set1   Predictive ability2 PLS

1   r 0.467
  RMSE 3.342
  RPD 1.111

2   r 0.486
  RMSE 3.313
  RPD 1.120

3   r 0.506
  RMSE 3.274
  RPD 1.133

4   r 0.637
  RMSE 2.916
  RPD 1.273

5   r 0.652
  RMSE 2.867
  RPD 1.293

6   r 0.658
  RMSE 2.845
  RPD 1.304

7   r 0.665
  RMSE 2.821
  RPD 1.315

1Sets of explanatory variables used are defined as follows: (1) MY, 
AC, and DIM; (2) MY, FY, PY, AC, and DIM; (3) MY, FY, PY, 
MBW, AC, and DIM; (4) AC, DIM, and 505 WL; (5) MY, MBW, AC, 
DIM, and 36 principal components of WL; (6) MY, FY, PY, MBW, 
AC, DIM, and 36 principal components of WL; and (7) MY, FY, PY, 
MBW, AC, DIM, and 505 WL; where MY = milk yield, AC = age at 
calving, FY = fat yield, PY = protein yield, MBW = metabolic BW, 
and WL = wavelength. All sets also included country, season of calv-
ing, and lactation number as categorical fixed effects. 
2The predictive ability of the PLS regression was assessed using the 
Pearson correlation coefficient calculated between observed and pre-
dicted DMI values (r), the root mean squared error (RMSE), and the 
ratio of performance to deviation (RPD). The results shown in this 
table are averages based on a 10-fold cross-validation.

Table 7. Average fitting statistics over all 11 tested artificial neural 
networks (ANN) using the Bayesian regularization (BRANN) training 
algorithm for predicting weekly average DMI in Canadian Holstein 
dairy cattle in different lactation periods using predictor set 7, 
validation B (based on individual cows)1

Statistic2 DIM

Test set

CA All

r 5–305 0.708 0.712
5–90 0.702 0.712

  91–180 0.604 0.593
  181–305 0.503 0.506
RMSE 5–305 2.702 2.667

5–90 2.727 2.665
  91–180 2.607 2.626
  181–305 2.758 2.696
RDP 5–305 1.376 1.392

5–90 1.356 1.389
  91–180 1.228 1.217
  181–305 1.089 1.110
1Test sets included data from either Canada only (CA) or Canada, 
Denmark, and the United States together (All).
2The predictive ability of the BRANN was assessed using the Pearson 
correlation coefficient calculated between observed and predicted DMI 
values (r), the root mean squared error (RMSE), and the ratio of per-
formance to deviation (RPD).
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weekly average DMI of individual cows can assist feed 
cost management and allow the genetic improvement 
for feed performance by providing large-scale data for 
prediction of breeding values. As stated by Wallén et 
al. (2018), at least 4,000 genotyped and phenotyped 
heifers need to be added annually to the reference 
population to genetically improve feed efficiency using 
genomic selection. Providing such large number of ani-
mals with feed intake measures at low cost is challeng-
ing. One possible solution to overcome this conundrum 
is the indirect measurement of feed intake from other 
available data, such as MIRS. Therefore, it is of par-
ticular interest to evaluate the predictive ability of the 
different combinations of currently available predictor 
sets, as well as the usefulness of ANN models and PLS.

Cross-Validation to Assess Model Robustness

Cross-validation was used to identify the optimal 
predictor set and ANN architecture, and to evaluate 
the robustness of the prediction models. The prediction 
models for weekly average DMI were evaluated using 2 
types of 10-fold cross-validation: validation on individu-
al records (A) and animals (B). In validation A, records 
of the same cow were presented in both the calibration 
and test sets, which likely led to an inflation in the 
model predictions. In this context, a more realistic situ-
ation was considered in validation B, where 10% of the 
cows were removed from the calibration data in each of 
the 10-folds. Therefore, validation B assessed how the 
model would perform when predicting weekly average 
DMI for new cows. Data dependencies between calibra-
tion and test sets, which were reported when animals 
from the same herds are included in both calibration 
and test data sets, may inflate prediction performance 
(e.g., Wang and Bovenhuis, 2019; Coelho Ribeiro et al., 
2021). However, this is not always the case, as in study 
by Lahart et al. (2019), where the average accuracy of 
DMI prediction in test sets using only MIRS and MIRS 
combined with MY, F%, P%, BW, stage of lactation 
and parity, using within herd and across-herd cross-
validations, were 0.69, 0.87, 0.55, and 0.80, respectively. 
There are some aspects in the current study that might 
suggest that the results were not noticeably affected by 
data dependencies between calibration and test sets. 
None of the 7 sets of predictive variables included the 
herd effect. Predicting DMI using only the herd effect 
resulted in very poor prediction performance (results 
not shown). This suggests that the herd effect does 
not have a major contribution to the DMI prediction. 
In addition, the adapted BRANN used regularization 
to handle overfitting. Regularization penalizes large 
weights and delivers a smoother fit. Consequently, in 
the regularized models, all features contribute to mak-

ing a prediction, which almost guarantees that the final 
prediction does not come from dependencies between 
calibration and test sets (i.e., all features cannot have 
major dependencies between calibration and test sets 
at the same time).

Predictor Sets

The predictive performance of 7 different combina-
tions of predictor sets was investigated in this study. 
Wallén et al. (2018) evaluated DMI prediction in lac-
tating Norwegian Red dairy cows using PLS and MIRS 
data and reported lower prediction accuracy compared 
with the present study when using MIRS data to predict 
weekly average DMI. Adding milk components (i.e., 
FY and PY) to MY enhanced the weekly average DMI 
predictions, which agreed with the results of Shetty et 
al. (2017) and Wallén et al. (2017). Our results support 
the hypothesis that MBW contributes to explaining 
DMI variation in dairy cattle, because the prediction 
ability improved when MBW was added to the model. 
These findings are in line with the results of previous 
studies in dairy cattle (e.g., Shetty et al., 2017; Dórea 
et al., 2018; Wallén et al., 2018). The improvement in 
fitting statistics when MIRS information was combined 
with the other predictors (i.e., sets 4–7) indicates that 
MIRS provides some additional information to predict 
weekly average DMI. In this context, it should be high-
lighted that including all MIRS WL (i.e., set 7) resulted 
in better prediction of weekly average DMI compared 
with the predictors sets that included the PC of WL 
(i.e., sets 5 and 6). However, when only MIRS WL were 
included in the model (set 4) the best prediction ac-
curacy was slightly higher than when all production 
traits were included in the model (set 2), showing that 
some of the information from MIRS may be captured 
through its association with production traits.

As previously mentioned, the inclusion of FY, PY, 
and MBW in the predictor set including MY led to a 
substantial improvement in the weekly average DMI 
prediction (set 1 vs. set 3). In addition, there was a 
further improvement in the fitting statistics when PC 
of WL were included in the model (set 6). However, re-
moving FY and PY when PC of WL were included (set 
5) did not have a major effect on the fitting statistics. 
These findings might be related to the fact that WL 
can fairly describe milk fatty acid and protein profiles, 
as it contains more detailed information on fatty acids 
(Soyeurt et al., 2011) and proteins (McDermott et al., 
2016) compared with nonspecific fat and protein con-
tents used in set 3. Similar findings on DMI prediction 
using MIRS data have been reported by Lahart et al. 
(2019) for grazing dairy cows. Significant improvement 
in the DMI prediction of TMR-fed cows have also been 
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reported by Dórea et al. (2018) when ANN and milk 
MIRS data were used. Nonetheless, Shetty et al. (2017) 
did not report any superior DMI predictive ability for 
models that included MIRS instead of FY and PY, on 
cows under a TMR diet. Additionally, Wallén et al. 
(2018) reported that including only MY and BW in 
the prediction model resulted in similar accuracy as 
including MIRS data.

The prediction accuracies of weekly average DMI us-
ing MIRS data in this study were lower than those of 
Shetty et al. (2017), Dórea et al. (2018), and Lahart et 
al. (2019), but higher than the ones reported by Wallén 
et al. (2018). Differences in accuracies across studies 
may be due to the differences in sample sizes used to 
develop the prediction models, frequency of recording, 
breeds, diets, and prediction methods, as well as using 
different WL, training, and validation data sets. Using 
daily or weekly average milk MIRS data as predic-
tors can also affect the prediction accuracy (Shetty et 
al.,2017).

Comparison Between Linear and Nonlinear  
ANN and PLS

The ANN are powerful and flexible tools to model 
potentially nonlinear relationships between input and 
output variables. In this study and others (e.g., Pe-
rai et al., 2010; Lin et al., 2012; Dórea et al., 2018), 
ANN provided better predictions than linear models. 
Nonlinear ANN yielded superior prediction than linear 
ANN and PLS. Moreover, the superiority of nonlinear 
ANN was more evident in predictor sets that did not 
include MIRS information (i.e., sets 1–3). This agrees 
with Dórea et al. (2018), who applied ANN and PLS 
for the DMI prediction using MIRS data. These results 
suggest that some nonlinear interactions exist between 
the weekly average DMI and the predictors used.

Comparison Between BRANN, LMANN, and SCGANN

In the present study, 3 types of training algorithms, 
including BR, LM, and SCG, were applied to train 
the ANN. Furthermore, to attenuate overfitting and 
obtain models that generalize well, 2 strategies were 
used: regularization (for BRANN), and CVES (for 
both LMANN and SCGANN). In general, BRANN and 
SCGANN yielded better weekly average DMI predic-
tions compared with LMANN. Bayesian regularization 
showed nonsignificant, slightly better predictions than 
SCGANN, but significantly better predictions in vali-
dation A (data not shown) compared with validation 
B. Okut et al. (2013) also reported that BRANN over 
performed SCGANN when predicting the expected 

progeny difference for marbling score in Angus cattle 
using ANN and 2 sets of SNP panels.

Usefulness in Practical Applications

Predictors for weekly average DMI prediction, which 
include MY, milk components (i.e., FY and PY), and 
to a lesser extent MBW, are available for many cows. 
Therefore, the question of interest is whether MIRS 
information can add additional information that is not 
currently available. The results from the current study 
showed that the best predictor set for weekly average 
DMI prediction consisted of MY, FY, PY, MBW, and 
full MIRS data (predictor set 7). Thus, MIRS infor-
mation increased the prediction accuracy for weekly 
average DMI. For linear ANN, the prediction accuracy 
of predictor set 7 was on average 0.19 points higher 
than set 3 over all prediction methods and validation 
data sets, whereas the same feature for the best nonlin-
ear ANN was 0.12. This means that if MIRS data are 
stored, it is possible to achieve more accurate predic-
tion of weekly average DMI. However, it is worth recall-
ing that the best prediction accuracies were obtained 
using nonlinear ANN, regardless of the fact that MIRS 
contributed less to the overall accuracy of these models.

A further consideration is the practical application of 
the predictor set, because weekly average DMI predic-
tion methods must be easily applicable to commercial 
dairy farms. Most variables in the predictor sets used 
in this study are readily available, with the possible 
exception of BW. Although BW is not accessible on 
many commercial dairy farms, it can be estimated us-
ing, for example, chest width (Veerkamp and Broth-
erstone, 1997). Milk MIRS data are ideally suited to 
predict DMI without additional cost, because it has 
been currently used to measure milk components of 
milk-recorded animals (McParland et al., 2014; Shetty 
et al., 2017).

As noted before, when only MIR WL were included 
in the model (set 4) the best prediction accuracy was 
slightly higher than that when all production traits 
were included in the model (set 2). It should be men-
tion that a part of the DMI variation explained by MIR 
may be captured through its association with produc-
tion traits. This might limit the application of MIR to 
estimating feed efficiency measurements that accounts 
for the level of production, such as residual feed intake. 
Development in sensors technology could provide the 
opportunity to include more informative predictors in 
the prediction models, such as weather data, cow’s body 
temperature, feeding behavior (Dolecheck et al., 2016; 
Borchers et al., 2017), herbage mass and allowance in 
grazing dairy cows (van Knegsel et al., 2010; Muñoz et 
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al., 2016). Therefore, further improvements in weekly 
average DMI prediction may be achieved when accu-
rate data on such predictors become available.

CONCLUSIONS

The model including known animal energy sinks 
(production traits and MBW), MIRS, and environ-
mental predictors showed the best prediction of weekly 
average DMI in Canadian Holstein cows, especially 
when nonlinear ANN were applied. The superior fit-
ting statistics of models including MIRS compared with 
models without MIRS suggest that other unknown 
milk components may help explain variation in weekly 
average DMI. Nevertheless, only a marginal gain in ac-
curacy was observed when production traits and MBW 
were included in the model after MIRS. However, it 
seems that MIRS predicts DMI mostly through its as-
sociation with milk production traits and its utility in 
estimating a measure of feed efficiency that accounts 
for the level of production, such as residual feed intake, 
might be limited and would need further investigation.
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