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ABSTRACT

Context. Modern sky surveys are producing ever larger amounts of observational data, which makes the application of classical
approaches for the classification and analysis of objects challenging and time-consuming. However, this issue may be significantly
mitigated by the application of automatic machine and deep learning methods.
Aims. We propose ULISSE, a new deep learning tool that, starting from a single prototype object, is capable of identifying objects
sharing the same morphological and photometric properties, and hence of creating a list of candidate sosia. In this work, we focus on
applying our method to the detection of AGN candidates in a Sloan Digital Sky Survey galaxy sample, since the identification and
classification of Active Galactic Nuclei (AGN) in the optical band still remains a challenging task in extragalactic astronomy.
Methods. Intended for the initial exploration of large sky surveys, ULISSE directly uses features extracted from the ImageNet dataset
to perform a similarity search. The method is capable of rapidly identifying a list of candidates, starting from only a single image of
a given prototype, without the need for any time-consuming neural network training.
Results. Our experiments show ULISSE is able to identify AGN candidates based on a combination of host galaxy morphology, color
and the presence of a central nuclear source, with a retrieval efficiency ranging from 21 % to 65 % (including composite sources)
depending on the prototype, where the random guess baseline is 12 %. We find ULISSE to be most effective in retrieving AGN in
early-type host galaxies, as opposed to prototypes with spiral- or late-type properties.
Conclusions. Based on the results described in this work, ULISSE can be a promising tool for selecting different types of astrophysical
objects in current and future wide-field surveys (e.g. Euclid, LSST etc.) that target millions of sources every single night.
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1. Introduction

In the last twenty years numerous digital surveys such as the
Sloan Digital Sky Survey (SDSS, York et al. 2000), Kilo De-
gree Square Survey (KiDS, de Jong et al. 2015), Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS,
Magnier et al. 2020), Dark Energy Survey (DES, Dark Energy
Survey Collaboration et al. 2016), Hyper Suprime-Cam Subaru
Strategic Program (HSC SSP, Aihara et al. 2019) greatly im-
proved our knowledge of the Universe by exploring deep and
wide areas of the sky through multi-wavelength imaging cam-
paigns. In the coming years, new multi-band wide-field survey
projects, such as the Vera C. Rubin Observatory Legacy Sur-
vey of Space and Time (Rubin-LSST, Ivezić et al. 2019), Euclid
(Scaramella et al. 2022), Nancy Roman Telescope (formerly the
Wide-Field Infrared Survey Telescope or WFIRST, Green et al.
2012), James Webb Space Telescope (JWST, Álvarez-Márquez
et al. 2019), will further increase by orders of magnitudes the
amount of observational data. Most of these future surveys will
in fact produce photometric data for several millions of sources
each night. However, since spectroscopic follow-ups for even a
small fraction of the observed sources will be unfeasible, there is

the need for algorithms capable to exploit photometric informa-
tion to classify, or at least identify, interesting candidates to be
further investigated. It comes as no surprise that, in recent years,
much work has been devoted to implement and fine tune fast
and self-adaptive learning methods for prediction, classification,
visualization (in other words, for data understanding) inducing
the exploitation of astroinformatics solutions, for instance the
paradigms of machine and deep learning (Baron 2019; Longo
et al. 2019; Fluke & Jacobs 2020; Lecun et al. 1998; D’Isanto &
Polsterer 2018; Schaefer, C. et al. 2018), replacing more classi-
cal methods, considered inefficient in the big data regime.

We can roughly subdivide the machine learning (ML) algo-
rithms in two broad classes. The first one, which is probably the
most used, is called supervised. Such methods rely on the avail-
ability of a set of data for which we believe to possess some
ground truth (labels) that is used to train the algorithm. The other
possibility is to have an unsupervised model, working on the data
without any or almost any a priori knowledge. In this case, the
labels (if any) are used only a posteriori, to analyze and under-
stand the results. It goes without saying that with a supervised
approach the interpretation of the results is by far easier and
that such methods can be more easily tailored to solve a specific
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problem. This explains why, so far, the number of works dealing
with supervised methods is much larger (see a few examples:
Weir et al. 1995; Kim et al. 2011; Brescia et al. 2013; D’Isanto
et al. 2018; Delli Veneri et al. 2019; Schmidt et al. 2020; Kinson
et al. 2021; Wenzl et al. 2021) than those about unsupervised
approaches. Nonetheless, there are several successful examples
of unsupervised approaches in astrophysical problems (e.g. Mas-
ters et al. 2015; Baron & Poznanski 2017; Frontera-Pons, J. et al.
2017; Mislis et al. 2018; Castro-Ginard, A. et al. 2018; Razim
et al. 2021; Ofman et al. 2022).

Supervised ML methods imply the necessity of a training
set, derived from real data or simulations. However, in the case
of real data, multi-band photometric observations cannot provide
a full understanding of the physical processes at work and even
spectroscopic observations are seldom fully representative of the
complexity of the parameter space describing our universe. Mas-
ters et al. (2015), for instance, have shown that there are always
portions of the parameter space left under-sampled (if not unex-
plored) and this is even more true when dealing with rare objects
for which there are very few labels (if compared with more com-
mon objects).

The vast it of unsupervised solutions can be regarded as clus-
tering or pre-clustering methods, such as those devoted to the re-
duction of dimensionality (Bishop 2006). Under-sampled or rare
objects usually are penalized in these kinds of representation,
because they seldom succeed in creating a cluster on their own.

On the edge between the two approaches, lies the field of
one-shot learning, where only a single labelled sample is avail-
able per class of interest (Wang et al. 2020). We apply this
paradigm here as it has the potential to combine the best of both
worlds: it removes the need for the expensive and often unfea-
sible process of collecting a large labelled dataset, inherent to
supervised methods, while at the same time removing the prob-
lem encountered with unsupervised methods, that have trouble
with rare and under-sampled objects.

In this work we present ULISSE (aUtomatic Lightweight In-
telligent System for Sky Exploration): a one-shot method capa-
ble of retrieving objects closely related to a given input, and
apply it directly to multi-band images1. The idea behind our
method is quite intuitive: we transform the image of a given
source (hereafter prototype) into a set of representative features,
after which we use this information to look for other objects sim-
ilar to the prototype in the feature space, which should translate
to similarity in the astronomical sense. The power of this method
comes from the fact that even if we take a rare object as a pro-
totype, the method allows us to search for similar objects in the
dataset, thus bypassing the need for a large and well sampled
training set, and actually provide a reliable list of candidates for
follow-up observations, thus opening the way to the construction
of reliable training sample for supervised methods.

In order to test the method, we apply it here to the detection
of Active Galactic Nuclei (AGN).

The identification of AGN in the optical band is not trivial
due to the strong contamination from the host galaxy and ob-
scuration by the circumnuclear or galactic dust. This imposes a
whole set of problems, which can be resolved with the usage
of multi-wavelength observations (from radio to X-ray) and the
combination of different selection techniques. A proper AGN se-
lection plays a crucial role in the study of the formation and evo-
lution of supermassive Black Holes (Brandt & Hasinger 2005;
Merloni 2016; Hickox & Alexander 2018) and their feedback on

1 An example notebook is provided at https://github.com/
LarsDoorenbos/ULISSE.

the host galaxies (Fabian 2012; Kormendy & Ho 2013; Heckman
& Best 2014; Thacker et al. 2014). The identification of AGNs
will be an important task for all future surveys such as the Rubin-
LSST, since the new data will allow for the study of the for-
mation and co-evolution of supermassive black holes, their host
galaxies, and their dark matter halos. Furthermore, the classifica-
tion of AGNs is important also for other science cases, since they
need to be handled in an independent way with respect to stan-
dard galaxies when deriving, for example, photometric redshifts
(Brescia et al. 2019; Euclid Collaboration et al. 2020).

The search for candidate AGNs in surveys has been per-
formed already in the past with ML models applied to photo-
metric tabular data (Cavuoti et al. 2013; Fotopoulou & Paltani
2018; Chang et al. 2021; Falocco et al. 2022) or to their variabil-
ity (Palaversa et al. 2013; D’Isanto et al. 2016; Sánchez-Sáez
et al. 2019; Faisst et al. 2019; De Cicco et al. 2021). More re-
cently there was also an attempt to use, for the same task, deep
neural networks (Chen 2021).

A concurrent work in Stein et al. (2022) presents a similar
approach to ours for the detection of astronomical objects by per-
forming similarity search on images, which is applied to the de-
tection of strong gravitational lenses. Contrary to our approach,
rather than pre-trained features, they make use of self-supervised
pre-training.

This paper is structured as follows: In Sect. 2 we present our
method, while in Sect. 3 we describe our data sample and present
the studied prototypes. Section 4 is devoted to the presentation
of the experiments and their outcome. Section 5 contains the dis-
cussion of the results together with the analysis of the method
limitations and the possible improvements. Finally, in Sect. 6 we
present brief conclusions.

2. Method

For ULISSE we make use of the features extracted from a con-
volutional neural network (CNN), that has been pretrained on a
general large-scale dataset. It then finds relevant objects through
a nearest neighbor search. We describe each of the architecture
components in the following paragraphs.

2.1. Convolutional neural networks

In the context of classification, convolutional neural networks
usually consist of two parts (Schmidhuber 2015): the first part,
transforms the input image into a feature vector through a se-
ries of convolutional layers, pooling layers and activation func-
tions (described below) and, in practice, operates as a feature
extractor. The second part takes these features and uses them to
perform the actual classification task. Usually this second part
consists of a multi layer perceptron (MLP, McCulloch & Pitts
1943; Rosenblatt 1958) neural network.

The convolutional layers shift a number of small windows
(kernels) over the input, computing a weighted average of the
local surroundings, obtaining the so-called feature maps as the
output, which indicate how strongly a given location correlates
with the window. The weights of these windows are learned by
the model itself.

Pooling layers decrease the size of these feature maps, by re-
placing each location in the input with an aggregate statistic de-
rived from its rectangular neighborhood. The size of this neigh-
borhood is set by the user. Commonly used examples are average
pooling, which outputs the average value within the window, and
max pooling, which reduces a region to its maximum value.
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11 41 541 835 1073

Fig. 1. The three objects in our sample which most strongly activate features 11, 41, 541, 835 and 1073 (arbitrarily chosen for visualization),
together with their feature maps. We provide these for all 1280 features at the http://dame.na.astro.it/ulisse.

The activation functions are applied with the goal to intro-
duce non-linearity in the feature representation. A common ex-
ample is the ReLU (Rectified Linear Unit) activation function,
which sets the negative part of its input to zero, f (x) = max(0, x).

The feature extractor part of the algorithm is followed by an
MLP, consisting of one or more fully connected layers, which
performs the actual classification of the input, based on the fea-
tures obtained in the previous part. In an MLP a fully connected
layer connects every input neuron to every output neuron. The
final layer outputs a vector with as many elements as the num-
ber of classes and the neuron with the highest value identifies
the final decision. The model is optimized with respect to a
loss function end-to-end by forward propagation and error back-
propagation (Bishop 2006; Goodfellow et al. 2016).

2.1.1. Pretraining

Training a CNN on a large and varied dataset allows it to learn
a diverse and general set of features, which should be useful
beyond the original task. These features are often used as the
starting point for complex tasks in another domain (the target
domain), with the aim of avoiding labelling the large amounts
of data often needed to train a model from scratch (Pan &
Yang 2009). This concept is known as transfer learning and has
proven very successful in many domains (for instance, astron-
omy, Awang Iskandar et al. 2020; Martinazzo et al. 2021, mal-
ware classification, Prima & Bouhorma 2020, earth science, Zou
& Zhong 2018, and medicine, Ding et al. 2019; Esteva et al.
2017; Kim et al. 2021; Menegola et al. 2017).

The typical large-scale dataset of choice used for training
is ImageNet (Deng et al. 2009) which contains around 1.3 mil-
lion images, where the original task was to classify each image
into one of 1000 classes. In practice, when moving to the tar-
get domain, the second part of the above described architecture,
namely the fully connected layers of the pre-trained network (the
classifier) are discarded, as the new domain does not contain the
same classes. The feature extracting part of the network is then
used to tackle the target task. As an additional benefit of this
approach, no fine-tuning to the target domain is needed, thus re-
ducing the training time to almost zero and making it directly
applicable to any new dataset.

2.1.2. Feature extraction

In order to obtain our features, we first extract the feature maps
(7x7 pixels each) from the final convolutional layer of the pre-
trained neural network. In order to reduce their dimensionality,
we then average over the spatial dimensions. As a result, the fea-
tures represent image-level properties.

In deep learning, it is a common understanding that the
deeper the layers are in the network, the higher is the level of
abstraction of the extracted features (Goodfellow et al. 2016).
Our approach is therefore based on the assumption that objects
whose image share many deep features with the prototype (i.e.
that are close together in this feature space), have also the same
morphological properties. We wish to emphasize that, as it will
be further discussed in the coming sections, since we are work-
ing with multiband images, in this context morphology must be
intended in a broader sense, since we also take implicitly into
account variations in the color distribution.

Throughout this work we use an EfficientNet-b0, a specific
type of CNN architecture (Tan & Le 2019) that was trained for
classification on ImageNet as the CNN from which we obtain the
features. Its penultimate layer consists of 1280 channels, leading
to a 1280-dimensional feature descriptor for each image.

Note that the features are extracted from the model, and were
derived from natural images (i.e. heterogeneous images of ev-
eryday objects or scenes such as cats, cars, rivers and so on),
rather than astronomical ones. Hence, they are not directly in-
terpretable. Nonetheless, we can get an idea of the patterns in-
dividual features are looking for, by looking at the images in
our dataset which most strongly activate them. We show this for
the five cases in Fig. 1, where it becomes clear that different
features are focusing on different aspects of the image. We pro-
vide these visualizations for each of the 1280 features at http:
//dame.na.astro.it/ulisse. With reference to Fig. 1, we
need to stress that even though the similarity of the objects is de-
fined through a complex combination of features, in some cases
it is possible to recognize specific patterns which are associated
to a given feature. For instance, feature 41 seems to be activated
by extended objects with a bright nucleus, while feature 541 re-
sponds most strongly to narrow objects with some sort of bulge.

2.2. ULISSE

These pretrained features are used by ULISSE to identify objects
with similar properties. This is done by performing a similarity
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Fig. 2. Overview of ULISSE.

search in the feature space. Given a prototype object, the closest
objects in this feature space provide a list of candidate lookalikes
for the prototype of interest. A schematic of the proposed method
is shown in Fig. 2.

Formally, given a prototype image xq, we wish to retrieve its
nearest neighbors from a dataset {xi}

N
i=1. For an image xi, we de-

note its pretrained feature representation as f(xi) ≡ fi. We find
the nearest neighbors by their Euclidean distance in this pre-
trained feature space (Hastie et al. 2009). Hence, we find those
objects xi that minimize d(xq, xi) = ||fq − fi||

2. With the use of
acceleration structures such as k-d trees, which allow for the effi-
cient computation of nearest neighbor searches, these lookalikes
are extremely fast to find after their initial construction.

If no validation data is available, ULISSE can be applied by
simply returning the n closest objects in the dataset as a list of
candidates (measured in feature space, not in terms of astronom-
ical distance), where n is set by the user. However, if we do have
access to a validation set (even if it is limited), we can use this
to measure our desired performance metric as a function of the
distance of the lookalike from the prototype, with which we can
determine a threshold on the distance for use on new data. For
instance, if our aim is to retrieve AGN, we can determine until
which distance from our prototype the fraction of AGN among
the retrieved objects from the validation set remains high, and
select all objects that fall within this distance from our target
dataset.

Concretely, one can choose the furthest object x f at which
point the selected sample still gives good performance, with dis-
tance t = ||fq − f f ||

2. Then, on the target dataset, all objects from
{xi}

N
i=1 satisfying d(xq, xi) ≤ t are selected.

3. Dataset

In order to assess the result of this method we need a sample with
well-known object classification. For this purpose, we choose
to retrieve thumbnails for the sample used in Torbaniuk et al.
(2021)

3.1. Dataset details

The sample of Torbaniuk et al. (2021) is based on the galSpec
catalog of galaxy properties2, produced by the MPA-JHU group
as a subsample from the main galaxy catalog of the 8th Data Re-
lease of the Sloan Digital Sky Survey (SDSS DR8, Brinchmann
et al. 2004). This sample has been cleaned by removing dupli-
cates and objects with low-quality photometry using the basic

2 https://www.sdss.org/dr12/spectro/galaxy_mpajhu/

Table 1. The summary of the different datasets studied in this work.

Sample Fraction
Entire X-ray MOC Random

C
ri

te
ri

a B
PT

AGN 12.0 % 11.8 % 12.0 %
Composite 5.8 % 5.5 % 5.8 %
SFG 44.0 % 41.5 % 44.1 %
Unclassified 38.2 % 41.2 % 38.1 %

X
-r

ay

AGN 0.2 % 4.0 % 0.2 %
non-AGN 5.6 % 96.0 % 5.6 %
Unknown 94.2 % — 94.2 %

Number of objects 703 422 40 889 99 991

Notes. The fractions represent the percentage of objects in each dataset
classified as AGN, SFG or composite according to the optical BPT-
diagram or X-ray AGN/non-AGN by X-ray selection criteria (see details
in the text). Unknown class indicates the fraction of objects which have
not been observed by XMM-Newton.

photometry processing flags recommended by SDSS3. The ob-
jects were classified using the so-called BPT-diagrams (from the
names of the proposers: Baldwin, Phillips & Terlevich, Baldwin
et al. 1981) as: star-forming galaxies ‘SFG’, ‘AGN’ and ‘Com-
posite’ according to the ratios of four specific emission lines
in their optical spectra (Kauffmann et al. 2003; Kewley et al.
2006). Brinchmann et al. (2004) expanded this selection crite-
ria and add two additional classes of objects with low signal-
to-noise lines (low S/N SFG and AGN). In our work, we used
the naming ‘SFG’ for both low S/N SFG and SFG, and ‘AGN’
for both AGN and low S/N AGN. At the same time, our sample
also contains a significant fraction of objects with weak or no
emission lines, which remain unclassified due to limitations of
the BPT-diagram (see Table 1). Moreover, some SFGs may con-
tain a low-luminosity AGN, which may not be classified by the
BPT-diagram since the emission of the star-forming processes in
the host galaxy will dominate the optical spectrum. To address
these problems and improve the selection, we added X-ray de-
tections from the XMM-Newton Serendipitous Source Catalog
(3XMM-DR8, Rosen et al. 2016). The total number of objects in
our optical sample observed by XMM-Newton and their fraction
in each class are presented in Table 1 (X-ray MOC subsample).
X-ray AGN were classified according to the X-ray selection cri-
teria described in detail in Torbaniuk et al. (2021), that is large
X-ray luminosity or X-ray/optical ratio.

For each object in our sample, we extracted thumbnails from
the Sloan Digital Sky Survey Data Release 16 (SDSS DR16,
Eisenstein et al. 2011; Blanton et al. 2017; Ahumada et al. 2020;
York et al. 2000) using the Image Cutout service4. This service
allows the retrieval of JPEG images composed of the three inner
SDSS bands (g, r and i) for any portion of the sky observed by
SDSS just based on its coordinates. In this work, we decided to
retrieve 64× 64 pixel thumbnails. This is based on initial experi-
ments with 48×48, 55×55, 64×64 and 73×73 pixel thumbnails,
where we found that 64×64 gave the best results. As the images
are reduced to 56 × 56 pixels after center cropping, they corre-
spond to a size of ∼ 22.2 × 22.2 arcseconds (the SDSS pixel
scale is 0.396 arcseconds per pixel). The choice of the thumbnail
size is important because a small size may lead to cutting the

3 https://www.sdss.org/dr16/algorithms/photo_flags_
recommend/
4 http://skyserver.sdss.org/dr16/en/help/docs/api.aspx
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edges of an extended object, while a uselessly large thumbnail
could contain more than one object, thus affecting the charac-
teristic extracted by our method. Recall that as we average our
features over the spatial dimensions, they describe image-wide
properties.

There is no proper way to completely eliminate both effects,
but considering our preliminary experiments and the reference
objects themselves (see Sect. 3.2) we decided on 22.2×22.2 arc-
seconds as a good compromise. Although the spectroscopic in-
formation comes from an earlier data release (DR8) we decided
to retrieve the images from the latest version of SDSS in order to
benefit from any possible improvements or bug removals of the
pipeline. Considering the redshift range covered by our sample,
these thumbnails correspond to physical sizes ranging from ∼ 50
pc up to ∼ 110 kpc on a side.

As our goal is to show the validity of our method, rather than
to obtain results for the whole sample, we create a smaller sub-
set of the data for efficient computation. To this end, we ran-
domly shuffle the coordinates, and take the first 100 000 objects.
In some cases, the Image Cutout service fails to retrieve a thumb-
nail, hence we are left with 99 991 images as our dataset. This
is denoted with Random in Table 1, where it can be seen its pro-
portions are practically equal to that of the whole sample. The
percentage of sources classified as AGN according to the BPT
selection in the Random sample ia 12 % (see Table 1) and will
be used as the random guess baseline to test our method.

3.2. Prototypes

In order to detect candidate AGN we need to select a set of
prototypes that contains ‘true’ AGN and non-AGN confirmed
by some reliable criteria. Since X-ray emission is a good (and
least contaminated) tracer of accretion processes, we selected
the two groups of prototypes (AGN and non-AGN) within the
X-ray MOC subsample in Table 1, based on X-ray criteria.
Furthermore, numerous studies show that AGN may be de-
tected in galaxies of different morphological types, however they
show some preference for star-forming galaxies (probably due
to larger reservoir of cold gas available for SMBH accretion
in star-forming galaxies compared to quiescent ones, see Lutz
et al. 2010; Mendez et al. 2013; Rosario et al. 2013; Stemo
et al. 2020). We thus selected prototypes that represent a vari-
ety of morphological types. The list of eight AGN prototypes
according to the X-ray criteria is presented in Table 2, while
five non-AGN prototypes are presented in Table 3. For the AGN
prototypes we selected a couple of blue spiral galaxies (i.e.
with younger stellar population and ongoing star-formation pro-
cesses, #2, 8), elliptical galaxies with red color (i.e. older stel-
lar population and quenched star-formation, #3, 5), a transition
galaxy (#4) with red color and spiral structures, a peculiar galaxy
with possible arms or shell-like features which may be caused by
past galaxy interactions (#1), ring (#7) and bar (#6) galaxies. In
addition to X-ray AGN identification, these prototypes have also
been classified using the BPT-diagram. Prototypes #1, 3, 5, 7 are
identified as AGN (i.e the AGN signatures dominate the opti-
cal spectrum, #2, 4, 6 are SFGs according to the BPT-diagram
(i.e the star-forming signatures dominate the optical spectrum).
At the same time, the prototype #8 is marked as a ‘composite’
displaying the contribution from both an AGN and star-forming
processes. Since the ULISSE performance may depend on the
morphology of the host galaxy rather than the presence of an
AGN, we also added non-AGN prototypes to our study. The se-
lection of non-AGN prototypes was performed by a similar ap-
proach applied to AGN-prototypes selection: we chose ellipti-

cal (#9, 10) and spiral galaxies with blue (#11, 13) and red color
(#12). In this case, three spiral galaxies are classified as SFG
according to the BPT-diagram, while the ellipticals remain un-
classified due to the absence or weakness of emission lines in
their optical spectra.

It should be noticed that in Table 2 and 3 we used the
100 × 100 explorer images, while our experiments were per-
formed based on 64 × 64 thumbnails.

4. Experiments and results

In this section, we present our results for the one-shot AGN de-
tection, along with an analysis of the morphology and color of
each prototype object and their contribution to the overall AGN
fraction (Sect. 4.2). In addition, in Sect. 4.3 we introduce a re-
cursive application of our method as a promising technique to
retrieve a purer sample with a larger number of candidates.

4.1. AGN detection results

As it was mentioned in the previous section, for each object in
our sample we have labels according to the BPT diagram (see Ta-
ble 1), while the labels from the X-ray classification are available
only for the X-ray MOC subsample. To begin our experiment
we used the g, r, i color-composite thumbnails. The results cor-
responding to each prototype are visualized as the number of ob-
jects of different classes (AGN, SFG etc.) selected by our method
versus the distance from our prototype (see Table A.1, A.2 for
AGN prototypes and Table A.3 for non-AGN prototypes). As
no validation set is available, we set the number of objects n
retrieved by ULISSE to 300 nearest neighbors. We chose this
number in order to study the variation of AGN fraction with the
distance. However, in practice, the choice of n depends on the
purpose of the user and goals of the study.

The experiments for the 8 “AGN” prototypes retrieve on av-
erage 34.0 % objects also labelled as AGN over all 300 near-
est neighbors. However, this fraction varies from object to ob-
ject. For instance, for prototypes #1, 3 and 5 our method re-
trieved ∼ 40 % of AGN (on average) within the 300 nearest
neighbors. Taking into account also composite objects (i.e. with
spectral signatures both from the AGN and star-formation) the
resulting fraction of AGN+Composite reaches ∼ 55 %. The
rest of the sources belong to the SFG and Unclassified classes
(see details in Table 4). In the case of prototype #4 the frac-
tion of AGN reached 53 % (up to 65 % for AGN+Composite).
On the other hand, ULISSE retrieved a relatively lower frac-
tion of AGN (21-28 %) for prototypes #2, 6, 8 (close to 40 %
for AGN+Composite, see Table 4). In general, however, the re-
trieved AGN fraction for all AGN prototypes significantly ex-
ceeded the value expected by the random guess baseline, which
is 12 % according to the BPT selection presented in Table 1.

In the case of non-AGN prototypes (objects #9-13 in Table 3)
we expect a smaller number of AGN to be retrieved. For in-
stance, for prototypes #9, 10 labeled as ‘unclassified’ accord-
ing to BPT-diagram, ULISSE found only 21 % of AGN, while
the rest of resulting objects is labelled as ‘unclassified’. Simi-
lar result were obtained for prototypes #11, 13 labeled as ‘SFG’,
where ULISSE retrieved only 14.3 % and 1.7 % of AGN. In
the case of prototype #12 (SFGs according to BPT-diagram) the
method retrieved relatively large fraction of AGN compared to
other non-AGN prototypes mentioned above, which is also com-
parable to the resulting percentage of SFGs.

The BPT classification is not always able to detect the pres-
ence of an AGN and disentangle nuclear from star-formation ac-
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Table 2. Summary of the thumbnails used as AGN prototypes in our work.

# 1 2 3 4

SDSS J032525.36-060837.8 J164607.00+422737.4 J153621.30+222913.6 J133548.24+025956.1

RA 51.35569 251.52917 234.08879 203.95103

DEC −6.14386 42.46041 22.48712 2.99892

Redshift 0.034 0.049 0.089 0.022

Thumbnails

SDSS class Galaxy Galaxy QSO Galaxy

SDSS subclass AGN Starforming AGN Broadline AGN

BPT class AGN SFG AGN SFG

X-ray class AGN AGN AGN AGN

# 5 6 7 8

SDSS J084002.36+294902.6 J125754.36+272926.2 J075219.80+174210.3 J110511.08+382129.3

RA 130.00986 194.47651 118.08252 166.29618

DEC 29.81740 27.49063 17.70287 38.35815

Redshift 0.065 0.017 0.097 0.046

Thumbnails

SDSS class Galaxy Galaxy Galaxy Galaxy

SDSS subclass AGN Broadline Starforming — Starforming

BPT class AGN SFG AGN Composite

X-ray class AGN AGN AGN AGN

Notes. The BPT class for each prototype was taken from the galSpec catalog (see details in Brinchmann et al. 2004). X-ray classification is from
Torbaniuk et al. (2021) based on 3XMM-DR8 data (Rosen et al. 2016).

tivity, especially for low S/N spectra. For this reason, we de-
cided to repeat our experiments using the X-ray MOC subsam-
ple of sources observed by XMM-Newton (Table 1) and the X-
ray classification criteria. The resulting AGN/non-AGN fraction
as a function of distance are presented in Table A.1, A.2 (for
AGN prototypes #1-8) and Table A.3 (non-AGN prototypes #9-
13). The percentage of AGN/non-AGN obtained by ULISSE for
all studied prototypes are presented in Table 4. The average re-
trieved AGN fraction ranges between 8 % and 12 %, which again
exceed the percentage of AGN expected by the random guess
baseline for X-ray MOC sample (4 %; see Table 1). The same
test with the X-ray MOC sample, again yields lower AGN frac-
tions for non-AGN prototypes (see Table 4).

In Appendix B we present the closest 25 neighbors returned
by ULISSE for each AGN/non-AGN prototypes (see Fig. B.1-
B.12).

4.2. Disentangling morphology and color

Traditionally, AGN identification relies on different selection
criteria based on their photometric and spectroscopic informa-
tion (such as color-color diagrams, (Richards et al. 2002, 2005;
Schneider et al. 2007, 2010; Chung et al. 2014), spectral lines ra-
tios, Heckman 1980; Kauffmann et al. 2003; Kewley et al. 2006.
As explained above, our experiments used color-composite g, r, i
thumbnails to recognize the different classes of sources. To as-
sess whether ULISSE’s results are mainly based on the morpho-
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Table 3. Overview of the thumbnails used as non-AGN prototypes in our work.

# 9 10 11 12 13

SDSS J115928.62+423542.8 J151121.53+072250.6 J134059.80+302058.0 J083114.54+524224.8 J151105.13+053112.7

RA 179.86926 227.83972 205.24919 127.81060 227.77139

DEC 42.59522 7.38073 30.34947 52.70690 5.52020

Redshift 0.114 0.044 0.040 0.064 0.035

Thumbnails

SDSS class Galaxy Galaxy Galaxy Galaxy Galaxy

SDSS subclass — — Starforming Starforming Starforming

BPT class Unclassified Unclassified SFG SFG SFG

X-ray class non-AGN non-AGN non-AGN non-AGN non-AGN

Notes. BPT and X-ray classification are the same as in Table 3.

logical features of the prototypes or on their colors, we per-
formed an additional set of tests using only single optical bands.

In Table 5 we present the fractions of AGN, SFG, composite
and unclassified objects based on single (g, r or i-band) band.
Considering the fraction averaged over the 8 AGN-prototypes,
we found that ULISSE returned a smaller fraction of AGN and
composite using only single-band images. Obviously, the lower
efficiency implies an average increase in the fraction of SFG and
unclassified classes among the sources retrieved with the use of
a single band. In particular, the g-band showed the lowest AGN
retrieval efficiency (23.9 %) among the three bands (30.3 % and
29.4 % for r and i bands, respectively). For non-AGN prototypes
we observed similar trends (see Table 5).

In Table A.4 we present fractions of AGN, SFG, composite
and unclassified objects as a function of the distance for proto-
types #2, 3, 6 obtained based on a single band or on their combi-
nation.

4.3. Recursive application

While ULISSE can return hundreds of candidates for a single
prototype, the success rate typically drops with the number of
returned objects, that is with the distance from the prototype in
the feature space. Due to this effect, in Sect. 4.1, we find that
retrieval of AGN is most effective using the closest neighbors,
typically the nearest 20-30 objects returned by our method. One
possible way to keep the purity high while increasing the number
of sources is to apply ULISSE in a recursive way. We do this by
using one of the resulting candidates as a prototype for the next
step of the selection, and in this section verify if this recursive
technique returns a sample with equal or higher success rate,
compared to our initial approach described in Sect. 4.1.

Concretely, we select the closest object in feature space to
our reference prototype and apply it as the prototype for the next
step. As this closest object likely shares the most morphologi-
cal and photometric properties with our reference prototype, it
should also be the most likely to be an AGN. Then, at each next

step we repeat the same procedure choosing the closest object
to the reference object used in the previous step, but excluding
objects considered in earlier steps. We set n = 25. Results can be
found in Table 6, where find the recursive version has a slightly
higher purity, and a lower standard deviation compared to the
normal version, suggesting it might be more robust to the choice
of prototype.

Using this set-up, for the relatively unsuccessful proto-
type #2, we obtained a total of 89 objects excluding duplicates
in five iterations, of which 38 are AGN (42.7 %, see Table A.5).
In contrast, the resulting AGN fraction setting n = 89 directly
for prototype #2 would only result in 25.8 % AGN.

We found this mostly beneficial when the chosen prototype
did not score exceptionally well. For example, in the case of pro-
totype #4, we obtain 87 objects of which 47.1 % are AGN with 5
iterations of our recursive method, yet this is 63.2 % if we simply
set n = 87.

5. Discussion

In Sect. 4 we presented the AGN fraction retrieved by ULISSE
for AGN and non-AGN prototypes, and its correlation with the
color and the morphological type of studied prototypes. Further-
more, we analyzed the possibility to improve our results with
usage of a recursive technique. In this section, we discuss and
interpret our results, ULISSE limitations and possible future im-
provements.

5.1. The correlation between prototype properties and AGN
fraction retrieved by ULISSE

The traditional optical AGN selection criteria are based on pho-
tometric and spectroscopic properties such as magnitudes, col-
ors, the ratios of high- and low-excitation emission lines etc.
(Kauffmann et al. 2003; Hickox & Alexander 2018; Zhang &
Hao 2018). However, AGN identification in the UV/optical band
is non-trivial and faces several limitations. For instance, the so-
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Table 4. Fractions of SFG, Composite, AGN and Unclassified objects for each of the 13 prototypes over their 300 nearest neighbors.

Prototype
BPT X-ray

AGN Composite SFG Unclassified AGN non-AGN
(12 %) (5.8 %) (44.1 %) (38.1 %) (4.0 %) (96.0%)

A
G

N
1 41.2 % 14.3 % 16.9 % 27.6 % 16.0 % 84.0 %
2 28.3 % 18.6 % 48.8 % 4.3 % 12.3 % 87.7 %
3 36.5 % 19.3 % 29.6 % 14.6 % 7.7 % 92.3 %
4 53.0 % 12.4 % 23.3 % 11.3 % 17.3 % 82.7 %
5 42.9 % 9.0 % 12.9 % 35.2 % 16.3 % 83.7 %
6 21.3 % 17.6 % 57.5 % 3.6 % 9.3 % 90.7 %
7 24.3 % 14.9 % 26.2 % 34.6 % 9.7 % 90.3 %
8 24.9 % 16.6 % 48.5 % 10.0 % 6.0 % 94.0 %

Average 34.1 % 15.3 % 32.9 % 17.7 % 11.8 % 88.2 %

no
n-

A
G

N

9 21.9 % 4.3 % 8.7 % 65.1 % 8.3 % 91.7 %
10 21.3 % 7.3 % 11.7 % 59.7 % 7.7 % 92.3 %
11 14.3 % 14.0 % 69.4 % 2.3 % 10.7 % 89.3 %
12 36.7 % 16.3 % 37.3 % 9.7 % 11.0 % 89.0 %
13 1.7 % 1.3 % 95.3 % 1.7 % 2.7 % 97.3 %

Average 19.2 % 8.6 % 44.5 % 27.7 % 8.1 % 91.9 %

Notes. The random guess baselines of our method for each class of objects are presented in parentheses (see details also in Table 1).

Table 5. Fractions of SFG, Composite, AGN and Unclassified objects for each of the 13 prototypes over their 300 closest neighbors obtained based
on a single band SDSS image (g, r or i band).

Prototype AGN Composite SFG Unclassified
g r i g r i g r i g r i

A
G

N

1 ↓ 10.3 % ↓ 35.2 % ↓ 35.5 % ↓ 9.6 % ↓ 6.6 % ↓ 6.0 % ↑ 63.1 % ↓ 8.6 % ↓ 8.6 % ↓ 16.9 % ↑ 49.5 % ↑ 49.8 %
2 ↓ 12.6 % ↓ 25.6 % ↓ 24.6 % ↓ 10.6 % ↓ 15.0 % ↓ 13.6 % ↑ 73.1 % ↑ 52.2 % ↑ 54.2 % ↓ 3.7 % ↑ 7.3 % ↑ 7.6 %
3 ↓ 28.2 % ↓ 16.3 % ↓ 26.6 % ↓ 8.6 % ↓ 8.3 % ↓ 14.0 % ↓ 21.3 % ↑ 68.1 % ↑ 31.2 % ↑ 41.9 % ↓ 7.3 % ↑ 28.2 %
4 ↓ 31.0 % ↓ 49.0 % ↓ 45.7 % ↓ 10.0 % ↑ 12.7 % ↓ 9.0 % ↑ 36.3 % ↑ 24.3 % ↓ 16.0 % ↑ 22.7 % ↑ 14.0 % ↑ 29.3 %
5 ↓ 36.2 % ↓ 40.2 % ↓ 34.9 % ↑ 9.3 % ↑ 11.3 % ↓ 8.6 % ↑ 15.6 % ↑ 16.6 % ↓ 9.6 % ↑ 38.9 % ↓ 31.9 % ↑ 46.8 %
6 ↑ 32.9 % ↑ 23.3 % ↓ 20.6 % ↓ 11.6 % ↓ 14.0 % ↓ 12.0 % ↓ 23.9 % ↑ 59.5 % ↑ 62.2 % ↑ 31.6 % ↓ 3.3 % ↑ 5.3 %
7 ↓ 21.6 % ↑ 27.9 % ↓ 23.3 % ↓ 9.6 % ↑ 15.9 % ↓ 8.6 % ↓ 20.3 % ↓ 21.3 % ↓ 20.6 % ↑ 48.5 % ↑ 34.9 % ↑ 47.5 %
8 ↓ 18.6 % ↓ 24.6 % ↓ 24.3 % ↓ 17.3 % ↑ 17.9 % ↓ 12.6 % ↑ 61.5 % ↓ 39.2 % ↓ 25.2 % ↓ 2.7 % ↑ 18.3 % ↑ 37.9 %

Average ↓ 23.9 % ↓ 30.3 % ↓ 29.4 % ↓ 10.9 % ↓ 12.7 % ↓ 10.6 % ↑ 39.4 % ↑ 36.2 % ↓ 28.5 % ↑ 25.9 % ↑ 20.8 % ↑ 31.6 %

no
n-

A
G

N

9 ↓ 17.9 % ↓ 20.9 % ↓ 21.6 % ↓ 3.7 % ↓ 3.3 % ↑ 6.3 % ↑ 9.0 % ↑ 11.3 % ↑ 12.6 % ↑ 69.4 % ↓ 64.5 % ↓ 59.5 %
10 ↑ 22.3 % ↑ 23.3 % ↑ 28.0 % ↑ 8.7 % ↓ 6.7 % ↑ 8.0 % ↑ 13.0 % ↓ 10.3 % ↓ 11.0 % ↓ 56.0 % = 59.7 % ↓ 53.0 %
11 ↓ 3.0 % ↓ 10.6 % ↑ 17.3 % ↓ 4.7 % ↓ 10.3 % ↓ 12.3 % ↑ 91.7 % ↑ 77.4 % ↓ 67.8 % ↓ 0.7 % ↓ 1.7 % ↑ 2.7 %
12 ↑ 39.7 % ↓ 29.3 % ↓ 31.7 % ↓ 12.0 % ↑ 16.7 % ↓ 14.0 % ↓ 32.7 % ↑ 39.0 % ↑ 43.7 % ↑ 15.7 % ↑ 15.0 % ↑ 10.7 %
13 ↑ 21.9 % ↑ 5.6 % ↑ 4.3 % ↑ 11.0 % ↑ 2.0 % ↑ 1.7 % ↓ 62.1 % ↓ 85.7 % ↓ 88.7 % ↑ 5.0 % ↑ 6.6 % ↑ 5.3 %

Average ↑ 21.0 % ↓ 17.9 % ↑ 20.6 % ↓ 8.0 % ↓ 7.8 % ↓ 8.5 % ↓ 41.7 % ↑ 44.7 % ↑ 44.8 % ↑ 29.4 % ↑ 29.5 % ↑ 26.2 %

Notes. Arrows show the decrease (↓), increase (↑) or no change (=) of the fraction obtained by our method based on one single band relative to
the corresponding fraction obtained in three bands together (see Table 4).

called color-color diagrams can be used to distinguish distant
bright quasars from stars in our Galaxy, because of the bluer
color of quasars compared to stars (i.e. the peak of emission from
AGN accretion disk is located in UV range; Shakura & Sunyaev
1973). At the same time, such color-color criteria do not work
well for nearby, low-luminosity AGN, because the stellar emis-
sion of the host galaxy begins to dominate on the AGN emission
in the optical range. This issue may be partially resolved by a
spectroscopic approach, for instance by the BPT-diagram, where
the AGN identification relies on the ratios of emission lines in the
optical spectrum (Kauffmann et al. 2003; Kewley et al. 2006),
but even in this case we lose a large fraction of AGN due to the

fact that the star formation processes also contribute to the opti-
cal emission lines. In addition, all UV/optical selection criteria
are inefficient to identify AGN obscured by circumnuclear and
galactic dust (Hickox & Alexander 2018; Zhang & Hao 2018; Ji
et al. 2022). Therefore, a more efficient AGN identification usu-
ally requires use of multi-wavelength observations including ra-
dio, IR and X-ray bands (Mateos et al. 2012; Trump et al. 2013;
Heinis et al. 2016; Agostino & Salim 2019).

In Sect. 4 we mentioned that the total fraction of AGNs in
our sample according to the BPT diagram is only 12 % (i.e. the
random guess baseline of our method), while ULISSE appears
to be more effective than random selection in identifying AGN,
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Table 6. Results obtained after five iterations of the recursive applica-
tion of ULISSE with n = 25.

Prototype Ntotal
Fraction of AGN

Recursive Normal

A
G

N

1 84 38.1 % 45.2 %
2 89 42.7 % 25.8 %
3 93 43.0 % 43.0 %
4 87 47.1 % 63.2 %
5 71 47.9 % 40.8 %
6 88 44.3 % 30.7 %
7 84 34.5 % 25.0 %
8 91 23.1 % 25.3 %

Average 40.1 % 37.4 %
Std deviation 8.2 13.4

Notes. Ntotal is the total number of found objects without duplicates.

yielding on average 34 % of confirmed AGN for the 8 prototypes
studied here (see Table 4). At the same time, a detailed analysis
of each separate prototype showed that this AGN fraction varies
depending on the prototypes properties: in general, the AGN se-
lection efficiency for prototypes which visually belong to late-
type galaxies (spiral morphology) is lower than for early-type
galaxies (elliptical morphology).

For instance, for prototypes #2, 6, 8 ULISSE found on aver-
age only ∼ 25 % of AGN (see Table 4). Such relatively low effi-
ciency in selecting AGN can be due to several causes. Firstly, as
we mentioned in Sect. 3 the BPT diagram separates AGN from
star-forming galaxies based on the ratio of emission lines and
therefore the source identification depends on whose process
(AGN or star formation) dominates the spectrum. The major-
ity of spiral galaxies have strong ongoing star-formation whose
emission can outshine less powerful AGN, which would then be
classified as SFGs according to the BPT-diagram.

A low retrieval fraction is observed instead for #7 at small
distances from the prototype; this could be due to the peculiar
nature of this source both for its ring-like morphology and for
the presence of a bright nearby star. However, overall the av-
erage efficiency settles on ∼ 24 %, not far from other late-type
galaxies.

At the same time, our sample contains a sizeable fraction of
so-called composite objects, where AGN and star-forming emis-
sion contribute equally to the optical spectrum and can not be
easily separated (Kewley et al. 2006; Kauffmann et al. 2003).
This fact allows us to combine the fraction of AGN and compos-
ite objects obtained by ULISSE, which gives us an average AGN
content of ∼ 42 % for prototypes #2, 6-8.

For prototypes #3, 5 with early-type morphology ULISSE
identified on average ∼ 40 % of confirmed AGN (54 % in the
case of AGN+Composite, see Table 4). The larger AGN retrieval
efficiency obtained for prototypes with early-type morphology
can be explained by the properties of passive galaxies, which
typically have partially or completely quenched star-formation
Thomas et al. 2002; Thom et al. 2012; this allows more easily
detect the AGN emission with negligible contamination from the
host galaxy.

The highest AGN fraction among 8 AGN prototypes was
obtained by ULISSE for prototype #4 (53.0 %, and 65.4 % of
AGN+Composite). This prototype shows the presence of bright
red nucleus, which means that ULISSE tends to select sources
with a high nuclear luminosity and possibly, due to the known

correlation between bulge and BH mass, suggests a stronger
AGN activity (Häring & Rix 2004; Kormendy & Ho 2013; Mc-
Connell & Ma 2013).

As it was mentioned above, an additional issue that may
explain the differences in our AGN identification efficiency is
the partial or complete obscuration of the nucleus, in the opti-
cal band, by circumnuclear and/or galactic dust. This effect is
more significant for star-forming galaxies, because they usually
show the presence of strong dust component in the disk, which
plays important role in star forming processes helping to cool the
cold gas (Byrne et al. 2019; Lianou et al. 2019). However, AGN
obscuration can be also true for some elliptical galaxies, which
show peculiar morphology and unusual dust lanes (Goudfrooij
1995; Hirashita et al. 2015). In such cases, AGN detection is
possible only at less affected wavelengths, such as IR or X-rays.

In discussing the results obtained for different prototypes, we
may wonder whether the ULISSE performance depends mainly
on the morphology of host galaxy more than on the presence
of an AGN. To understand if this is the case, we performed
additional test with non-AGN prototypes. As we explained in
Sect. 3.2, we chose several galaxies with different morphology
(prototypes #9-13 in Table 3). Table 4 shows that the resulting
AGN fraction obtained by our method is smaller on average
(19.2 %) compared to the results for AGN-prototypes and there
is a similar correlation with the properties of the host galaxy (see
Table A.3). At the same time, ULISSE was very effective in re-
trieving objects with a BPT class similar to the studied proto-
types, specifically ‘unclassified’ and ‘SFG’ for early-type and
late-type systems, respectively.

Overall, the lower AGN fraction for non-AGN prototypes in-
dicates that ULISSE is able to retrieve not only galaxies with a
similar morphology and color to the studied prototype, but also
to detect AGN with some level of reliability. However, we should
also mention that prototype #12 (see Table A.3) produced a rela-
tively large AGN fraction (36.7 %) compared to other non-AGN
prototypes, and comparable to some of the AGN prototypes. In
this case, the ULISSE performance could be driven by the red
color and bright central bulge of the spiral galaxy, similar to the
AGN-prototype #4 (see Table A.2 and the discussion above).

Using X-ray MOC sample (i.e. the sample of SDSS galaxies
fall within XMM-Newton footprint, see Torbaniuk et al. 2021)
we performed several additional tests aimed at avoiding the lim-
itations in the BPT classification method described above. In
Table 4 we present AGN fraction obtained by ULISSE based
on X-ray MOC sample. The average AGN fraction for AGN-
prototypes #1-8 is ∼ 12 % while for non-AGN prototypes #9-13
it is ∼ 8 %; on the other hand the random guess baseline is 4 %.

For the individual prototypes we observe similar trends as for
the BPT validation, that is prototypes with early-type morphol-
ogy (#3, 5) produce in general higher AGN percentages (12 %)
compared to prototypes #2, 6-8 with spiral morphology (9.3 %).
While this result may seem to contradict recent studies which
found that X-ray selected AGN prefer to reside in gas-rich galax-
ies with active star formation (Lutz et al. 2010; Mullaney et al.
2012; Mendez et al. 2013; Rosario et al. 2013; Shimizu et al.
2015; Birchall et al. 2020; Stemo et al. 2020; Torbaniuk et al.
2021), in fact there is no disagreement here since we are select-
ing based on combined optical and X-ray data. The tests for non-
AGN prototypes, using the X-ray MOC sample show again an
average lower percentage of retrieved AGN; specifically for pro-
totypes #9, 10 with elliptical morphology we obtain ∼ 7 − 8 %,
while for prototypes #11-13 with spiral morphology varies from
2.7 % to 11 %.
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In Sect. 3 we mentioned that ULISSE uses SDSS images in
three bands (g, r and i). To assess if the color information actu-
ally improves the ULISSE efficiency or the results are only driven
by the source morphology, we performed a further set of tests
based on a single band images (see Sect. 4.2). Using single g, r
or i-band we found a decrease in the retrieved AGN and compos-
ite fractions for almost all AGN prototypes compared to those
obtained using the color information as well (the only exception
is the peculiar ring-like galaxy, see Table 5).

Based on this set of experiments with single bands, we can
say that despite the presence of peculiar cases, ULISSE actually
exploits the available information from the different bands to im-
prove the efficiency in detecting objects with similar physical
properties, although the morphology has a dominant role.

5.2. Possible ways to increase AGN fraction

There are several possible ways to increase the fraction of AGN
identified by ULISSE. We have already mentioned that the ab-
solute number of sources n retrieved by ULISSE depends on the
goal of the study. In our work, we set n = 300 to explore the
dependence of the AGN fraction on the ‘distance’ from the tem-
plate, but as we saw in Sect. 4.1 the success rate is usually larger
using the closest neighbors (see Table A.1, A.2). In the case of
prototypes #3, 5 with elliptical morphology AGN fraction can
reach 80 % for the nearest 10 objects (i.e. 8 of 10 objects re-
trieved by ULISSE are AGN). At the same time, for prototype #4
ULISSE was able to retrieved AGN with 100 % efficiency for the
nearest 10 objects. A similar performance at low distances is also
visible for prototypes #2, 6, 8 with spiral morphology; however,
comparing to prototypes with elliptical morphology, we see a
relatively smaller efficiency (near 40-60 % for the nearest 10 ob-
jects). Furthermore, ‘spiral’ prototypes seem to suggest a sharper
decrease of AGN fraction with increasing distance to the ref-
erence prototype than prototypes with elliptical morphology. A
different result was obtained only for the peculiar ring-like pro-
totype #7, which showed no AGN in the nearest 10 objects (the
number of AGN reached 20 % only in the next 10-15 objects,
see Table A.2). Therefore, on average, reducing the number of
sources n would result in an increase in the AGN identification
efficiency, but as a result we would obtain a smaller number of
objects in the returned sample.

Moreover, the purity of the returned sample can be increased
by applying our method in a recursive way. This makes use of
the higher efficiency found among the closest neighbors, by it-
eratively choosing the next prototype as the closest new object,
instead of simply enlarging the number of returned objects us-
ing one reference-prototype, therefore producing more robust re-
sults. In our work, we made a test with the application of this
recursive technique (see details in Sect. 4.3), which resulted in
a higher AGN fraction together with a lower variance compared
to our general method. In this way, the application of a recursive
technique may be the preferential path to explore to increase the
total number of objects while preserving a high AGN retrieval
efficiency.

On the other end, as we discussed in the previous section,
our results are constrained by the usage of optical images and
optical BPT selection criteria. Thus, the resulting AGN fraction
obtained by ULISSE could be underestimated due to, e.g, dust
obscuration and/or contamination from star-forming processes
in the host galaxy. To avoid or reduce this effect, we could try to
extend our method using images at additional wavelengths such
as IR or UV.

5.3. Computational time

Our method is based on two main steps. In the first step, all im-
ages are run through the pretrained neural network to extract the
features. This step has to be done only once per dataset. The local
run on a single NVIDIA GeForce™ RTX 20605 processes 100k
images in 3-4 minutes. In the second step, we search for similar-
ities to the chosen prototype within the entire dataset, comparing
the features extracted in the previous stage. Using a k-d tree algo-
rithm with k = 300, we can pre-compute a structure that signif-
icantly speeds up later searches. Building the tree takes around
25-30 seconds on the same machine, results for any given proto-
type are then retrieved within one second.

Hence, starting from scratch, the closest 300 objects to a
given prototype are retrieved, from a dataset of 100k images, in
approximately 5 minutes; afterwards the process speeds up sig-
nificantly due to the availability of the features and k-d tree, and
300 objects for any subsequent prototype are returned within a
matter of seconds.

In addition, we should mention that SDSS thumbnails used
in this work are of size 64 × 64 pixels, while our method had
to rescale them to the size expected by the pretrained network
(224×224 pixel). Therefore, using images with higher resolution
can be a natural way to improve ULISSE performance without
loss of computational speed.

6. Conclusions

In this work, we present a new deep learning tool called ULISSE
(aUtomatic Lightweight Intelligent System for Sky Exploration)
for the exploration of sky surveys. The core of our method is to
extract a set of representative features for each object in the sam-
ple under investigation, thus creating a common ‘feature space’
where to search for objects with properties similar to a chosen
prototype.

Our method relies on only a single image of the requested
object-prototype, making use of the first portion of a pretrained
convolutional neural network, which transforms images into a
set of representative features without requiring any specific as-
trophysical information. ULISSE sorts all objects in the studied
dataset according to the distance in this feature space (i.e. from
the most similar to the least similar to the reference prototype).
To verify ULISSE’s efficiency, we applied it to an extremely chal-
lenging task: the selection of AGN candidates using SDSS im-
ages of the galSpec catalogue. Based on the results obtained run-
ning ULISSE on 8 AGN and 5 non-AGN prototypes with differ-
ent host galaxy morphology and spectral properties, we arrived
at the following conclusions:

– Our method is effective in identifying AGN candidates, be-
ing able to retrieve galaxy samples with an AGN content that
varies from 21 % to 53 % for different prototypes, signifi-
cantly larger than the average AGN content of 12 % in our
full sample (according to the BPT classification). Including
‘composite’ sources (which also host an AGN by definition)
the retrieved AGN fraction raises to 65 %;

– Our tests show that the ULISSE performance is based on a
combination of on host galaxy morphology, color and the
presence of a central nuclear source. In fact, the retrieved

5 The NVIDIA GeForce™ RTX 2060 is powered by the Turing archi-
tecture and has 1920 Cuda Cores, 6GB of RAM, and it is capable of 7.2
TFLOPS, for further details see: https://www.nvidia.com/en-me/
geforce/graphics-cards/rtx-2060/
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AGN fraction for AGN prototypes is significantly higher on
average than for non-AGN prototypes;

– Despite being capable of obtaining reliable results even us-
ing one single band, ULISSE is capable of combining the
information coming from different bands, thereby increasing
its efficiency in identifying objects sharing similar physical
properties;

– We find ULISSE is more effective in retrieving AGN in early-
type host galaxies compared to prototypes with spiral/late-
type properties;

– The AGN retrieval efficiency is generally larger for closer
neighbors to the prototype (i.e. the first 20-30). Thus, de-
pending on the purpose of the study, ULISSE can be used
to retrieve either a higher percentage of AGN in a smaller
sample, or a larger sample with lower AGN content. This
dichotomy can be reduced using the recursive approach.

Based on the results described in this work and the high com-
putational performance of the method, ULISSE can be a promis-
ing tool for selecting various types of objects in current and fu-
ture wide-field surveys (e.g. Euclid, LSST etc.) that target mil-
lions of sources every single night. For future work, the applica-
tion of explainable artificial intelligence algorithms Goebel et al.
(2018) might provide new insights into which of the features are
most relevant for AGN detection, as well as to gain new insight
on which observables better trace the physical properties of the
sources under investigation.

We participated in the LSST AGN Data Challenge6 (Yu &
Richards 2021) which is part of the LSST Enabling Science Pro-
gram Awards7. The dataset included sources coming from two
main survey regions: SDSS Stripe 82 (S82) and XMM-LSS8.
The challenge did not provide a single specific task (although
all are specifically tuned to AGNs selection and characteriza-
tion) and the participants were free to address any possible AGN-
related problem. We decided to apply ULISSE for the detection
of AGN also to this specific dataset and were awarded the sec-
ond place9. Although most experiments in the Data Challenge
focused on Machine Learning applications, since each team was
free to address any AGN-related problem, it is difficult to per-
form a fair comparison between the different results. For in-
stance, Savić et al. (in preparation) used support vector ma-
chines, random forests, and extreme gradient boosting, reach-
ing classifying accuracies > 98%, which are far higher than
ours. On the other hand, when using deep artificial neural net-
works that utilize pixel-level information, Savić and collabora-
tors did not observe any improvement. However, there are two
main differences in these approaches: first, all these methods
used tabulated (astrometric, photometric, color, morphological
and variability) features, thus requiring a preliminary feature ex-
traction (and thus optimization) phase, while ULISSE works di-
rectly on images without any pre-processing steps. Second, the
data challenge dataset was different from the one discussed here,
and heavily skewed toward quasar-like sources and bright AGNs
while in this work we extended the method to a more general
dataset of low-luminosity AGNs with well resolved host-galaxy

6 https://community.lsst.org/t/
lsst-agn-science-collaboration-2021-data-challenge/
5627
7 https://www.lsstcorporation.org/enabling-science
8 https://github.com/RichardsGroup/AGN_DataChallenge
9 https://www.lsstcorporation.org/enabling-science/
AGN-Data-Challenge

features. Thus, these approaches should be considered comple-
mentary, and their usage tailored to the specific scientific goal in
mind.
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Appendix A: Fractions of different object classes
by distance for AGN and non-AGN prototypes
obtained by ULISSE
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Table A.1. The obtained results for AGN prototypes #1-4 presented in Table 2.

# Thumbnail Random X-ray MOC

1

2

3

4
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Table A.2. The obtained results for AGN prototypes #5-8 presented in Table 2.

# Thumbnail Random X-ray MOC

5

6

7

8
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Table A.3. The obtained results for non-AGN prototypes #9-13 presented in Table 3.

# Thumbnail Random X-ray MOC

9

10

11

12

13

Article number, page 15 of 26



A&A proofs: manuscript no. output

Table A.4. The results for AGN prototype #2, 3, 6 obtained by our method based on one single g, r or i-band in comparison with the results
obtained based on three bands.

# 2 3 6

T
hu

m
bn

ai
l

g
-b

an
d

r-
ba

nd
i-

ba
nd

T
hr

ee
ba

nd
s
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Table A.5. The application of the recursive technique to our method on the example of prototype #2.

Step SDSS Position Prototype 4 Nearest Fractions NnewID neighbours

1

SD
SS

J1
64

60
7.

00
+

42
27

37
.4

ra
:2

51
.5

29
17

de
c:

42
.4

60
41

25

2

SD
SS

J1
11

85
9.

64
+

61
35

38
.1

ra
:1

69
.7

48
51

84
07

de
c:

61
.5

93
94

07
20

14

3

SD
SS

J1
61

52
5.

19
+

26
06

37
.2

ra
:2

43
.8

54
96

90
01

de
c:

26
.1

10
33

70
75

20

4

SD
SS

J1
25

34
8.

60
+

29
35

18
.1

ra
:1

93
.4

52
50

99
78

de
c:

29
.5

88
38

36
85

15

5

SD
SS

J0
94

45
8.

29
+

38
57

11
.3

ra
:1

46
.2

42
88

09
14

de
c:

38
.9

53
13

88
97

15

Notes. The reference object for each next step is selected as the closest object to the reference prototype of the current step (see description in the
main text). Nnew is the number of objects among the 25 nearest neighbours not selected in the previous step.
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Appendix B: Neighbours

In this section we show the 25 nearest neighbours for the 13
prototypes used in this work.
Acknowledgements. We acknowledge support from the European Union Hori-
zon 2020 research and innovation programme under the Marie Skłodowska-
Curie grant agreement no. 721463 to the SUNDIAL Innovative Training
Networks. L.D., R.S. and P.M.-N. acknowledge support from research grant
200021_192285 ‘Image data validation for AI systems’ funded by the Swiss
National Science Foundation (SNSF). The work of O.T. was supported by the
research grant number 2017W4HA7S ‘NAT-NET: Neutrino and Astroparticle
Theory Network’ under the program PRIN 2017 funded by the Italian Ministero
dell’Università e della Ricerca (MUR). M.P. and O.T. also acknowledge financial
support from the agreement ASI-INAF n.2017-14-H.O. M.B. acknowledges fi-
nancial contributions from the agreement ASI/INAF 2018-23-HH.0, Euclid ESA
mission - Phase D. The authors would like to thank the anonymous referee for
the comments and suggestions which helped us to improve the paper.

References
Agostino, C. J. & Salim, S. 2019, ApJ, 876, 12
Ahumada, R., Prieto, C. A., Almeida, A., et al. 2020, ApJS, 249, 3
Aihara, H., AlSayyad, Y., Ando, M., et al. 2019, PASJ, 71, 114
Álvarez-Márquez, J., Colina, L., Marques-Chaves, R., et al. 2019, A&A, 629,

A9
Awang Iskandar, D. N. F., Zijlstra, A. A., McDonald, I., et al. 2020, Galaxies, 8,

88
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, Publications of the Astro-

nomical Society of the Pacific, 93, 5
Baron, D. 2019, arXiv e-prints, arXiv:1904.07248
Baron, D. & Poznanski, D. 2017, MNRAS, 465, 4530
Birchall, K. L., Watson, M. G., & Aird, J. 2020, MNRAS, 492, 2268
Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Springer)
Blanton, M. R., Bershady, M. A., Abolfathi, B., et al. 2017, AJ, 154, 28
Brandt, W. & Hasinger, G. 2005, Annual Review of Astronomy and Astro-

physics, 43, 827
Brescia, M., Cavuoti, S., D’Abrusco, R., Longo, G., & Mercurio, A. 2013, ApJ,

772, 140
Brescia, M., Salvato, M., Cavuoti, S., et al. 2019, MNRAS, 489, 663
Brinchmann, J., Charlot, S., White, S., et al. 2004, Monthly Notices of the Royal

Astronomical Society, 351, 1151
Byrne, L., Christensen, C., Tsekitsidis, M., Brooks, A., & Quinn, T. 2019, ApJ,

871, 213
Castro-Ginard, A., Jordi, C., Luri, X., et al. 2018, A&A, 618, A59
Cavuoti, S., Brescia, M., D’Abrusco, R., Longo, G., & Paolillo, M. 2013,

Monthly Notices of the Royal Astronomical Society, 437, 968
Chang, Y.-Y., Hsieh, B.-C., Wang, W.-H., et al. 2021, ApJ, 920, 68
Chen, Y. C. 2021, ApJS, 256, 34
Chung, S. M., Kochanek, C. S., Assef, R., et al. 2014, The Astrophysical Journal,

790, 54
Dark Energy Survey Collaboration, Abbott, T., Abdalla, F. B., et al. 2016, MN-

RAS, 460, 1270
De Cicco, D., Bauer, F., Paolillo, M., et al. 2021, Astronomy and Astrophysics,

645
de Jong, J. T. A., Verdoes Kleijn, G. A., Boxhoorn, D. R., et al. 2015, A&A, 582,

A62
Delli Veneri, M., Cavuoti, S., Brescia, M., Longo, G., & Riccio, G. 2019, MN-

RAS, 486, 1377
Deng, J., Dong, W., Socher, R., et al. 2009, in 2009 IEEE conference on computer

vision and pattern recognition, Ieee, 248–255
Ding, Y., Sohn, J. H., Kawczynski, M. G., et al. 2019, Radiology, 290, 456
D’Isanto, A., Cavuoti, S., Brescia, M., et al. 2016, MNRAS, 457, 3119
D’Isanto, A., Cavuoti, S., Gieseke, F., & Polsterer, K. L. 2018, A&A, 616, A97
D’Isanto, A. & Polsterer, K. L. 2018, A&A, 609, A111
Eisenstein, D. J., Weinberg, D. H., Agol, E., et al. 2011, AJ, 142, 72
Esteva, A., Kuprel, B., Novoa, R. A., et al. 2017, nature, 542, 115
Euclid Collaboration, Desprez, G., Paltani, S., et al. 2020, A&A, 644, A31
Fabian, A. C. 2012, ARA&A, 50, 455
Faisst, A., Prakash, A., Capak, P., & Lee, B. 2019, Astrophysical Journal Letters,

881
Falocco, S., Carrera, F. J., & Larsson, J. 2022, MNRAS, 510, 161
Fluke, C. J. & Jacobs, C. 2020, WIREs Data Mining and Knowledge Discovery,

10, e1349
Fotopoulou, S. & Paltani, S. 2018, A&A, 619, A14
Frontera-Pons, J., Sureau, F., Bobin, J., & Le Floc´h, E. 2017, A&A, 603, A60

Goebel, R., Chander, A., Holzinger, K., et al. 2018, in Machine Learning
and Knowledge Extraction, ed. A. Holzinger, P. Kieseberg, A. M. Tjoa, &
E. Weippl (Cham: Springer International Publishing), 295–303

Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press),
http://www.deeplearningbook.org

Goudfrooij, P. 1995, PASP, 107, 502
Green, J., Schechter, P., Baltay, C., et al. 2012, arXiv e-prints, arXiv:1208.4012
Häring, N. & Rix, H.-W. 2004, ApJ, 604, L89
Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. 2009, The ele-

ments of statistical learning: data mining, inference, and prediction, Vol. 2
(Springer)

Heckman, T. M. 1980, A&A, 500, 187
Heckman, T. M. & Best, P. N. 2014, ARA&A, 52, 589
Heinis, S., Gezari, S., Kumar, S., et al. 2016, ApJ, 826, 62
Hickox, R. C. & Alexander, D. M. 2018, ARA&A, 56, 625
Hirashita, H., Nozawa, T., Villaume, A., & Srinivasan, S. 2015, MNRAS, 454,

1620
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Fig. B.1. The closest 25 neighbours for AGN prototype #1.

Fig. B.2. The closest 25 neighbours for AGN prototype #2.
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Fig. B.3. The closest 25 neighbours for AGN prototype #3.

Fig. B.4. The closest 25 neighbours for AGN prototype #4.
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Fig. B.5. The closest 25 neighbours for AGN prototype #5.

Fig. B.6. The closest 25 neighbours for AGN prototype #6.

Article number, page 22 of 26



L. Doorenbos et al. 2022: ULISSE: A Tool for One-shot Sky Exploration

Fig. B.7. The closest 25 neighbours for AGN prototype #7.

Fig. B.8. The closest 25 neighbours for AGN prototype #8.
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Fig. B.9. The closest 25 neighbours for non-AGN prototype #9.

Fig. B.10. The closest 25 neighbours for non-AGN prototype #10.
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Fig. B.11. The closest 25 neighbours for non-AGN prototype #11.

Fig. B.12. The closest 25 neighbours for non-AGN prototype #12.
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Fig. B.13. The closest 25 neighbours for non-AGN prototype #13.
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