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Abstract  
Objective: Epilepsy is characterized by spontaneous seizures that recur at unexpected times. Yet, 
using years-long EEG recordings, we previously found that patient-reported seizures consistently 
occur when interictal epileptiform activity (IEA) cyclically builds up over days. This multidien (multi-
day) interictal-ictal relationship, which is shared across patients, may bear phasic information for 
forecasting seizures, even if individual patterns of seizure timing are unknown. To test this rigorously 
in a large retrospective dataset, we pre-trained algorithms on data recorded from a group of patients, 
and forecasted seizures in other, previously unseen patients.  
Methods: We used retrospective long-term data from participants (N=159) in the RNS System clinical 
trials, including intracranial EEG recordings (icEEG), and from two participants in the UNEEG clinical 
trial of a sub-scalp EEG system (sqEEG). Based on IEA detections, we extracted instantaneous 
multidien phases and trained generalized linear models (GLMs) and recurrent neural networks (RNNs) 
to forecast the probability of seizure occurrence at a 24-hour horizon.  
Results: With GLMs and RNNs, seizures could be forecasted above chance in 79% and 81% of 
previously unseen subjects with a median discrimination of AUC=0.70 and 0.69 and median Brier skill 
score of BSS=0.07 and 0.08. In direct comparison, individualized models had similar median 
performance (AUC=0.67, BSS=0.08), but for fewer subjects (60%). Moreover, calibration of pre-trained 
models could be maintained to accommodate different seizure rates across subjects.  
Significance: Our findings suggest that seizure forecasting based on multidien cycles of IEA can 
generalize across patients, and may drastically reduce the amount of data needed to issue forecasts 
for individuals who recently started collecting chronic EEG data. In addition, we show that this 
generalization is independent of the method used to record seizures (patient-reported vs. 
electrographic) or IEA (icEEG vs. sqEEG).  

Key words: Multidien, Seizure forecasting, Intracranial EEG, Subscalp EEG, 
Transfer learning. 

Key Points  
1. Most prior seizure forecasting models were individualized for a given patient, based 

on large amounts of chronologically recorded data.  
2. Pre-trained models that can transfer to previously unseen patients may drastically 

diminish the need for individual data 
3. Models that are data-source agnostic can forecast seizures for individuals using 

intracranial or sub-scalp EEG devices 
4. The generalizability of forecasting at long horizons enables pooling data across 

patients for training more sophisticated models 
5. General forecasting methods may serve as a basis for later individualization, once 

data accumulates longitudinally 

  



Introduction 
The unpredictability of seizures creates stress and disability for many people with pharmacoresistant 
epilepsy, regardless of the seizure rate, focus or symptoms1,2. Patients and families participating in a 
recent survey stated that a reliable method to forecast seizure risk over a 12- to 24-hour horizon could 
help plan the day around seizures3, addressing a central problem in epilepsy4,5 and potentially 
improving psychological well-being for all. Whether such forecasting schemes, akin to those used for 
weather, can one day be deployed in widespread clinical practice hinges upon finding facile ways of 
tracking fluctuations in seizure risk and integrating shared and individual temporal patterns of seizure 
occurrence.   
 
A decade ago, the prospective NeuroVista trial demonstrated in 9 out of 15 included participants that 
a certain degree of predictability minutes ahead of seizures was indeed possible with a warning system 
relying on real-time analysis of intracranial EEG6. Despite this technical feat, it remained unclear 
whether seizure warnings may be useful to users, in part due to the variability in seizure rates, and 
the time required to personalize the algorithms6–8. At the current stage of knowledge, launching much-
needed further prospective seizure forecasting trials can be discouraging, given the scientific risk 
entailed and the amount of data (i.e. months to years) and resources needed (e.g. algorithm 
personalization and optimization). For example, post hoc studies on the NeuroVista dataset showed 
that forecasting performance crucially depended on tuning the right algorithm to individual factors, a 
resource-intensive optimization effort that required crowd-sourcing the problem within an 
international community of machine learning experts9,10. Ideally, a seizure forecasting algorithm 
would leverage fundamental determinants of seizure timing such that training in one group of 
individuals would yield a forecaster applicable to many others. 

 
In the meantime, the accumulation of long calendar and EEG data (over months to years) in hundreds 
to thousands of patients has revealed that people with epilepsy have repeating seizure patterns that 
can be both individual and shared at the group level11–15. Crucially, studies in which central (EEG)13,15–

17 or peripheral (wrist sensor)18 biomarkers were chronically monitored converged to the same 
conclusion: interictal and ictal epileptic activity is modulated cyclically over a range of circadian (about 
24 hours)13,16,17, multidien (many days)13,15,17, and circannual (about yearly) timescales13. Based on 
these novel, but widely-accepted observations19,20, a number of studies have shown that seizure cycles 
can be forecasted with invasive15,21, minimally-invasive22, and non-invasive methods23–25. In fact, 
leveraging the robustness of multidien cycles in epilepsy, we previously showed that models trained 
on one individual’s prior recordings could forecast seizure risk days in advance for the same 
individual21, an unprecedented forecast horizon that may enable a range of seizure mitigation 
strategies. In this probabilistic approach, dichotomy (predicted presence or absence of a seizure) is 
deemphasized to the benefit of forecasting cyclical fluctuations in the likelihood of upcoming seizures 
(forecasted probability between 0% and 100%), reminiscent of the approach taken to weather 
forecasting26. 
 
Because multidien cycles span several days to weeks20, learning their association with relatively low 
and varying seizure rates within individuals necessitates acquiring months to years of longitudinal 
data. Yet, the phasic relationship between seizures and underlying multidien cycles of interictal 
activity is largely shared across patients, with seizure likelihood increasing when IEA rises over days13, 



suggesting the generalizability of a forecasting scheme based on multidien cycles. Thus, we 
hypothesized that models pre-trained on the multidien cycles of a subset of participants could be 
transferred to other, previously unseen subjects, thereby obviating the need for individual months-
long training data21.  
 
In stark contrast to prior seizure prediction competitions, where hundreds of machine-learning models 
were generated for single patients9,10, we here generalize a single explicit probabilistic approach 
(generalized linear models, GLMs) as well as a single recurrent neural network (RNN)27 to hundreds of 
patients from a large retrospective dataset. The primary outcome of this post hoc study is the 
percentage of ‘significant subjects’ for whom forecasts performed above chance at a 24-hour horizon 
using and comparing pre-trained (trained on unrelated datasets from different subjects) and 
individualized models (trained on chronological data within subject). As the secondary study outcome, 
we quantify and compare models’ performance in terms of discrimination, resolution, and calibration 
for subjects with forecasts above chance (see also review by Baud et al. in this issue for a technical 
introduction)26.  
 
 
 

  



Methods 
 
Subjects and data.  
 

Intracranial EEG (icEEG) cohort. As reported previously21, we analyzed data from 159 out of 
the 256 adults with medically-refractory focal epilepsy who participated in the U.S. clinical 
trials of the RNS® System (NeuroPace, Inc., Mountain View, CA), a chronically implanted 
intracranial device that treats seizures with direct brain-responsive neurostimulation28–30. 
Subjects who did not report disabling seizures, who had more than 50% of disabling seizure 
days, or who had less than 6 months of continuous EEG data were excluded (Figure 2). We 
included two distinct types of data in our analysis: (1)  interictal epileptiform activity (IEA), 
defined as hourly counts of detections of typically brief epileptiform discharges, such as 
spikes, sharp waves, and faster oscillations17; (2) diaries of self-reported seizures, recorded as 
counts per calendar day of patient-classified ’complex partial,’ or ’generalized tonic-clonic’ 
seizures. Seizures classified by patients as ‘simple motor’ and ‘simple other’ (auras) are often 
less accurate and clinically less relevant than disabling seizures and were not included 
in the analyses31. Retrospective analysis of the data was approved by the Institutional 
Review Boards of the participating centers. 

 
Subscalp EEG (sqEEG) subjects. We forecasted seizures in two subjects out of the 9 adults 
with medically-refractory temporal lobe epilepsy who participated in the Danish trial of a 
chronically implanted subscalp device (24/7 EEGTM SubQ, UNEEGTM medical, Allerød, 
Denmark) that provides nearly-continuous EEG recordings via two bipolar electrodes inserted 
between the skull and the temporalis muscle32,33. Seven subjects who provided discontinuous 
or short data (headpiece in place <90% of the time for <60 days) and had less than 10 recorded 
electrographic seizures were excluded.  

 
Data pre-processing. The RNS System provides a limited form of icEEG by continuously monitoring 
intracranial EEG signals from the seizure focus/foci and quantifying detections of epileptiform activity 
per hour (IEA) based on embedded algorithms relying on calculations of the line-length, area-under-
the-curve, and band-pass amplitude of the EEG signal. To derive the IEA from continuous subscalp 
EEG, we developed an interictal epileptiform discharge detection algorithm suitable for extracranial 
EEG (see Supplementary materials, Figures S1 and S2). 
 
Data processing.  Extracted IEA data was processed as described previously21. We first calculated daily 
counts of IEA by summing the counts over a calendar day and interpolated gaps of short duration. We 
then computed the broadband Morlet wavelet transform of IEA daily counts for periods between 4 to 
45 days and averaged the resulting complex coefficients over that period range to extract the 
instantaneous phase13. This is unlike our prior approach on the same cohort, where individualized 
forecasts relied on the phases of compound multidien cycles20 (up to three distinct peak-periodicities) 
derived from up to three narrow band filters21. We favored the broadband method after noticing that 
it emphasizes the instantaneous dominant periodicity13, while accommodating different periodicities 
in different patients in the form of a single input feature into period-agnostic models (Figure S3). For 
the sqEEG subjects, we could only evaluate periodicity from 4 to 25 days given the shorter duration of 



recording.  Note that the estimation of the phase using a wavelet transform is a non-causal estimation 
since it uses future information to compute the instantaneous phase at a given point. 
  
Point process generalized linear models (PP-GLMs).   To regress a number of input variables to seizure 
probabilities, we used PP-GLMs that are flexible and highly interpretable statistical models17,27. PP-
GLMs can evaluate the association between a sequence of event (seizure) times, and temporal 
features upon which the event probability may depend. Here we used PP-GLMs with a log-link function 
and a (conditionally) Poisson distribution to forecast the probability of a seizure as a function of 
features extracted from the most recent seizure times, the most recent counts of IEA, and the 
instantaneous phase of the multidien cycle. This probability is related to the ‘instantaneous’ rate or 
conditional intensity function λ (t) of the point process, here modeled as: 
 

 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜆𝜆 | S{t-1,...t-p},I{t-1,...t-p},θ{t-1}= β0+βcoscos(θt-1) + βsinsin(θt-1)+��βi
SSt-i

 +βi
IIt-i
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p

i=1

  (1) 

 
with 𝜃𝜃𝑡𝑡  the instantaneous non-causal phase estimation of the broadband IEA at time t, β0 the 
intercept, βcos and βsin the model coefficients attributed to the broadband multidien phase, and 𝛽𝛽𝑖𝑖𝑆𝑆 
and 𝛽𝛽𝑖𝑖𝐼𝐼 the model coefficients attributed to the most recent seizure timeseries 𝑆𝑆𝑡𝑡 and recent IEA 
timeseries 𝐼𝐼𝑡𝑡 with an identical number of time points 𝑝𝑝 for both. For both the single feature 
individualized and pre-trained models, 𝑝𝑝 = 5 days. Depending on the model used, the model 
coefficients are fitted for each subject separately (individualized models) or across subjects (pre-
trained models, see below). In the results, we used models that included one or several of the features 
described above. Specifically, we build the following models: (i) only recent seizures (𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛽𝛽𝑐𝑐𝑖𝑖𝑠𝑠 =
𝛽𝛽𝑖𝑖
𝐼𝐼 = 0), (ii) only recent IEA (𝛽𝛽𝑐𝑐𝑐𝑐𝑐𝑐 = 𝛽𝛽𝑐𝑐𝑖𝑖𝑠𝑠 = 𝛽𝛽𝑖𝑖

𝑆𝑆 = 0), (iii) only the instantaneous multidien phase (𝛽𝛽𝑖𝑖𝑆𝑆 =
𝛽𝛽𝑗𝑗𝐼𝐼 = 0). 
 
For the multifeature pre-trained models, we additionally included multiple time points of the most 
recent timeseries of the instantaneous phases to match the history of the recurrent neural network 
(see next section), extended to 50 days: 
  
 𝑙𝑙𝑙𝑙𝑙𝑙 (𝜆𝜆 | 𝑆𝑆{𝑡𝑡−1,…,𝑡𝑡−𝑝𝑝}, 𝐼𝐼{𝑡𝑡−1,…,𝑡𝑡−𝑝𝑝},𝜃𝜃{𝑡𝑡−1,…,𝑡𝑡−𝑝𝑝}) = 𝛽𝛽0 + ∑ �𝛽𝛽𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑙𝑙𝑐𝑐(𝜃𝜃𝑡𝑡−𝑖𝑖) + 𝛽𝛽𝑖𝑖𝑐𝑐𝑖𝑖𝑠𝑠𝑐𝑐𝑖𝑖𝑠𝑠(𝜃𝜃𝑡𝑡−𝑖𝑖) +𝛽𝛽𝑖𝑖𝑆𝑆𝑆𝑆𝑡𝑡−𝑖𝑖 + 𝛽𝛽𝑖𝑖𝐼𝐼𝐼𝐼𝑡𝑡−𝑖𝑖 �𝑝𝑝

𝑖𝑖=1    (2) 

 
using 𝑝𝑝 = 50 days.  
  
Recurrent neural network (RNN). RNN is a state-of-the art machine-learning technique for learning 
temporal relationships within time-series. We used gated recurrent units (‘GRU’), a simple design of 
RNN34, which can capture long-term effects such as underlying multidien cycles. We used 60 nodes 
with three layers of GRUs (Figure S4), followed by 2 dense layers of 30 and 15 nodes, respectively. 
Finally we added a dropout layer (dropout rate of 0.2) and an output dense layer of one unit with a 
sigmoid activation. The RNN used binary cross-entropy as a loss function and was trained with enough 
epochs to ensure performance. As in the multifeature pre-trained GLM, input data included seizures, 
IEA and multidien phases over the 50 previous days in order to account for the longest multidien cycles 
considered in this study and for comparison with prior studies27.   
 



 
Training and testing 
We used these models to learn from data in two radically different schemes, using the same 
proportion of training and testing data for better compatibility: 
 

Individualized training. As in our prior study, individualized forecasts were obtained by 
training a PP-GLM for each subject independently21. We used the minimum between 60% of 
the data or 480 days for the training set, and the remaining data for the testing set. 
 
Pre-training. In this study, pre-trained models designate models (GLMs or RNNs) trained on a 
subset of the subjects (60%) and tested on remaining subjects that were not part of the 
training set (40%). For the subjects in the training set, we used all the data available. For the 
subjects in the test set, we used the same test data as would have been used for the 
individualized model to allow for direct comparability (Figure 3). Pre-trained models were thus 
used to output forecasts for unseen subjects, in a transfer learning design. Train and test sets 
were chosen by randomly partitioning the pool of subjects (40 times) such that all subjects 
were at least five times in the test set (cross-validation). For example, subject 10 could be in 
the train set for the first fold of the cross-validation, and in the test set for the second one. 
For each iteration, data across subjects were concatenated separately for the training and test 
sets. Issued forecasts for a given subject were deemed significant only when passing statistical 
testing five times (see below), and their performance was averaged across the five times to 
ensure the robustness of our results to random selection of training sets. For comparison 
between more complex models (i.e. multifeature GLM vs. multifeature RNN in Figure 4) all 
available data from test subjects was used since the direct comparison to single feature 
models was no longer the focus.  

 
Forecasting performance. Performance of the forecast was assessed with three distinct scores, drawn 
from the same total testing data, regardless of the training scheme, ensuring direct 
comparability: 
 

Percentage of significant subjects (% sig). The percentage of subjects for whom forecasts can 
be issued above-chance, i.e. for whom a significant improvement of the AUC is obtained 
compared to the AUC obtained when using randomized surrogate data (see below). As seizure 
forecasting is not expected to work for all patients, performance is further quantified only in 
those with above-chance forecasts. Beyond a simple improvement over chance, which may 
not be clinically meaningful, the AUC and BSS offer complementary insights in order to assess 
the goodness of the forecasting model in subjects with above-chance forecasts.  
 
Area under the sensitivity vs. time in warning curve (AUC):  The AUC is a deterministic score 
that assesses discrimination: how well-separated are the forecasts associated with seizures 
compared to forecasts associated with the absence of seizures. Instead of the classical 
receiver operating characteristic of the sensitivity versus specificity, we computed the 
sensitivity versus (corrected) time in warning at different threshold forecasted probabilities 
(see Supplementary materials), as customary in the field of seizure forecasting35. As a 
deterministic score, we used the AUC under this curve to assess the discrimination 
performance of our forecasting models. The AUC is 1 when perfect discrimination between 



seizure and non-seizure instances is obtained for all thresholds, and close to 0.5 when the 
forecast is no better than a random classification. 
 
Brier skill score (BSS).  As a complement to the AUC, the BSS36–38 is a probabilistic score that 
assesses resolution and calibration: how well do different forecasted probabilities (a priori) 
correspond to different observed probabilities (a posteriori) of having a seizure. We refer the 
reader to a review by Baud et al. in this issue for an in-depth discussion on this technical 
topic26. The Brier Score (BS) is defined as the mean squared distance between a forecasted 
probability (fi) and an observation oi, (1 for a seizure and 0 for no seizure): 
 

   𝐵𝐵𝑆𝑆 = 
1
𝑠𝑠
�(𝑓𝑓𝑖𝑖  − 𝑙𝑙𝑖𝑖)2
𝑠𝑠

𝑖𝑖=1

 

 
where n is the number of forecasted time points.  The Brier Skill Score (BSS) calculates the 
improvement of the Brier score (BS) over a reference forecast as: 

 

𝐵𝐵𝑆𝑆𝑆𝑆 =  1 −  
𝐵𝐵𝑆𝑆
𝐵𝐵𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

 

 
where BSref is an uninformative reference forecast. In our case, we generated 1000 randomly 
shuffled versions of the forecasted probabilities on which we calculated a mean reference BS. 
The BSS tends to 1 when issued forecasts are sharp and perfectly represent the true 
probability of a seizure to occur (i.e. they tend to be deterministic), and to 0 when there is no 
improvement over the reference (negative values are possible for forecasts worse than the 
reference). The BSS is a compound score that captures a range of probabilistic performance 
between 0 and 1 and can be decomposed in terms of resolution and calibration for in-depth 
diagnostics (see Baud et al., Epilepsia, 2022).37  
 
Calibration  
Calibration measures how well observed probability and forecasted probabilities agree with 
each others and is defined as a calibration loss (distance to the diagonal line in the reliability 
diagram): 

Cal =  
1
𝑠𝑠�𝑠𝑠𝑘𝑘(𝑓𝑓𝑘𝑘− 𝑙𝑙𝑘𝑘)

𝑚𝑚

𝑘𝑘=1

 

where 𝑓𝑓𝑘𝑘�  and 𝑙𝑙𝑘𝑘���  are respectively the forecasted probabilities and the observed probabilities 
averaged over k bins (here 10 bins equally spaced, 0-10%, 10-20%, etc.). A lower calibration 
loss indicates better performance. 
 
Resolution 
As a complement, resolution measures how much the forecasted probabilities depart from 
the long-term prevalence of events (distance to the horizontal ‘no resolution’ line in the 
reliability diagram): 

    



Res =  
1
𝑠𝑠�𝑠𝑠𝑘𝑘(𝑙𝑙𝑘𝑘 − 𝑙𝑙)

𝑚𝑚

𝑘𝑘=1

 

 
Where 𝑙𝑙𝑘𝑘��� is the observed probabilities averaged in k bins and 𝑙𝑙̅ is the long-term average event 
rate.  A higher resolution indicates better performance. 

 
 
Surrogates and statistical analysis. Surrogate time series39 for models relying on occurrence times of 
recent seizures were obtained by randomly shuffling the seizure test time series, under the null 
hypothesis that the seizure process is memoryless (i.e., events are independent of one another). To 
obtain surrogates for models relying on IEA or the underlying multidien phase, the daily IEA test time 
series were shuffled, under the null hypothesis that seizure timing does not depend on specific values 
or trends in IEA31. Just like for individualized models, the surrogates were also obtained for each 
subject independently to test the performance of the pre-trained models. This computationally-
effective design allowed for testing all temporal features in all models, using 200 chance-level 
surrogate datasets. Additionally, we also performed the computationally-intense surrogate design 
used in Proix et al., 202021 for training and testing a number of models proposed here, which led to 
very similar statistical results (Table S1). For each tested subject, we assessed the significance by 
correcting the p-values for multiple comparisons across subjects and models (one for the 
individualized model, five for the pre-trained model) by using the false discovery rate (FDR) with a 
target α=0.05. 
 

      

Results  
 
We retrospectively analyzed data collected from 159 (74 females) out of 256 participants in the RNS 
System clinical trials with median (range) age 35 (25-43) and mesiotemporal epilepsy for the majority 
(67%, the rest neocortical, see21 for full description). Intracranial EEG was monitored over a median of 
1722 (321-3509) days and continuous records of hourly IEA detections were stored by the device, with 
a median loss of data of 21 days due to infrequent downloads. Over this duration, subjects reported 
a median of 143 (13-1233) days with at least one disabling seizure. Additionally, we included two 
female patients aged 33 and 38 with temporal lobe epilepsy who participated in the trial of a sub-
scalp EEG system during 75 and 95 days and met our preset criterion of >10 recorded seizures. 
 
To illustrate the main concept of this study, we show how a model pre-trained on data from one 
person with epilepsy due to periventricular temporo-occipital heterotopias (Figure 1A) can be 
transferred to forecast seizures for another, previously unseen individual with bitemporal epilepsy 
(Figure 1B). Even when two subjects exhibit different periodicities of IEA cycles (around 11 and 26 days 
in Figure 1C), their seizures tend to occur at similar phases of these cycles (Figure 1D). Knowing the 
instantaneous multidien phase allowed for transferring a GLM pre-trained to forecast seizures in one 
subject to another subject with good performance (Figure 1E-F; AUC = 0.73), illustrating the 
generalizability of seizure forecasting at the timescale of days.  



 
Following the process outlined in Figure 1, we systematically pre-trained single-feature GLMs with a 
subset of the subjects (60%, median of 167,363 training days across subjects) and tested them on the 
remaining, unseen subjects (40%, median of 86,086 test days across subjects), repeating this 
operation to test each subject with five different pre-trained models (cross-validation, see Methods, 
Figure 2). For comparison, we repeated our previously published individualized forecasting scheme17, 
by chronologically training GLMs on early data (median of 475 training days per subject) and testing 
on the remaining later data (≥ 40% of data, median of 1242 testing days per subject). As a primary 
outcome, we found that the proportion of significant subjects with forecasts above chance was 62% 
vs. 60% for pre-trained and individualized models, respectively, when relying on multidien phase as 
the sole input feature (Figure 3A, % Sig in Table 1).  Models trained on recent IEA or recent seizure 
timeseries alone had lower performance (Table 1 and S1, Figure S5).  
 
As a secondary outcome, we quantified forecast performance only for the significant subjects for 
whom forecasts were above chance. For a complete interpretation of Table 1 and Figure 3, it is useful 
to clarify the difference between deterministic and probabilistic scores. The AUC is deterministic, as it 
evaluates the ability of the forecast to discriminate two categorical observations: seizure versus no-
seizure. The BSS is probabilistic, as it evaluates the correspondence between forecasted seizure 
probabilities (a priori), and observed seizure frequencies (a posteriori) within probability strata (here: 
0-10%, 11-20%, etc.) in terms of calibration and resolution26. For completeness and to facilitate 
comparability with other studies, we report in Table 1 both (1) individual scores per subject that are 
solely sensitive to time-varying probabilities6,8–10,21,25,40, and (2) aggregate scores across subjects27 
obtained by pooling daily forecasts and observations from all subjects, which are strongly influenced 
by the large difference in seizure rates across included subjects (here, from <1% to 49% seizure days).  
 First, we evaluated discrimination per subject of our pre-trained models using the multidien phase 
and found a median AUC = 0.68 (interquartile range (IQR): 0.65-0.76, Table 1, Figure 3A), comparable 
to the individualized models with a median AUC = 0.67 (IQR 0.63-0.72) per subject. Sensitivity and 
time-in-warning at a chosen threshold was also similar (Figure S6). Second, the per-subject distribution 
of probabilistic scores for the pre-trained models was below that of individualized models, resulting 
in a lower median BSS37,41 of 0.05 (IQR 0.03-0.07) versus 0.08 (IQR 0.03-0.14, Table 1, Figure S5B). This 
shows that despite a similar degree of discrimination, simple pre-trained models lack probabilistic 
performance.  
 
To characterize the mechanisms by which our models issued time-varying forecasts with above-
chance AUCs, we inspected the coefficients (β0, βcos, and βsin

 in equation 1) learned by each model pre-
trained with the multidien phase as a feature. On one hand, pretrained models had stable parameters 
regardless of the sub-sample of subjects used for training, capturing the central tendency in the 
included population (white dots in Figure 3C). On the other hand, the coefficients of the individualized 
models had a wider range of values (half-violin in Figure 3C), but the median of those distributions 
(black horizontal lines in Figure 3C) coincided with the stable parameters found in the pre-trained 
models (white dots in Figure 3C). Additionally, in individualized models based on the multidien phase, 
the intercept (coefficient β0) learned from the data was almost perfectly correlated with the individual 
observed seizure rates across subjects (Figure 3D ⍴ = 0.99, p < 10-120, Pearson’s correlation), whereas, 
by design, the phase was captured by βcos and βsin. Based on this observation, we recalibrated pre-
trained models for each test subject by individualizing the intercept β0 using the average number of 



seizures per day of the corresponding test subject (i.e. introducing a random-effect), while βcos
 and βsin

 

retained their values (i.e. a fixed-effect). This post-training reparameterization that simply requires 
estimation of an individual’s long-term expected seizure rate (e.g. one seizure per week) improved 
aggregate resolution of the model across subjects nearly to the level of individualized forecasts 
(overlap of dashed-red and gray curves in Figure 3B), resulting in a BSS across subjects of 0.21. This 
reparameterization did not improve the BSS per subject (median 0.04 (IQR 0.03-0.07), Table 1) but 
resulted in an increase in calibration per subject (Table S2).  To summarize, single-feature pre-trained 
multidien GLMs were able to learn the shared tendency of seizures to cluster within rising multidien 
phases across subjects (Figure 3F). This learning can be transferred to forecast seizures for new 
subjects yielding similar discrimination independently of their individual seizure rate (Figure 3E), with 
the possibility to re-calibrate the output probabilities (Figure 3B).  
 
Using pre-trained models across subjects increases the amount of data available for training, thus 
allowing the use of more complex models with more trainable parameters while avoiding overfitting. 
We first developed a multifeature GLM that combined all features previously used in isolation:  recent 
seizures and IEA counts, as well as multidien phases over the past 50 days. These additional temporal 
features (or ‘covariates’), may yield information about seizure risk that is not entirely captured by 
multidien cycles alone. Indeed, compared to the pre-trained multidien GLM (Figure 3A), the pre-
trained multifeature GLM (Figure 4A) increased the proportion of subjects with forecasts above 
chance from 62% to 79% and discrimination from AUC = 0.68 to AUC = 0.70 (Table 1). Additionally, 
records of past seizures could inform the model about the long-term expected seizure rates, resulting 
in more calibrated forecasts without the need for re-calibration. Indeed, using seizure occurrence over 
50 previous days as an initialization, the pre-trained multifeature GLM yielded better calibrated 
outputs (Figure 4B) than the pre-trained multidien GLM (Figure 3B), as shown by a median BSS of 0.07 
(IQR 0.05 – 0.1,  Table 1). This result indicates that discriminative and calibrative information is present 
in the recent IEA and seizure counts, that is independent of the multidien phase (Figure S7). Using all 
available information, we showed that pre-trained GLMs could forecast risk above chance two to five 
days in advance in some subjects (Figure S8).  
 
Asking whether more complex models may better capture seizure risk, we then trained a multifeature 
recurrent neural network (RNN) across subjects with the same input features and training-testing 
design as before. Compared to the multifeature GLMs, multifeature RNNs pre-trained on 50 days of 
past seizures, IEA, and multidien phases increased the proportion of significant subjects slightly to 81% 
and improved the BSS per subject to a median of 0.08 (IQR 0.06-0.11, Table 1, Figure 4). However, the 
AUC per subject did not increase (Figure 4A, Table 1), indicating that simpler models can have good 
discrimination, but adding trainable parameters can further improve calibration. As a side note, the 
AUC and BSS across subjects seemed to mostly be influenced by varying observed seizure rates across 
subjects, as these scores did not improve with increasing model complexity as opposed to the per-
subject scores (Table 1, see also Figure S9).    
 
To characterize the relationship between electrographic and self-reported seizures, an important 
clinical issue, we evaluated the transferability of pre-trained models across seizure types. To that end, 
we used a cohort of N=18 subjects with focal epilepsy in which electrographic seizures were identified 
(see Supplementary materials and Proix et al., 2020)21. We found that training on electrographic 
seizures and comparing forecasted risk to seizures documented in diaries held by other subjects 



yielded above-chance discrimination with a median AUC per subject 0.68 (IQR 0.64-0.74, Figure S9). 
Conversely, training with seizures taken from subject-held diaries and comparing forecasted risk to 
electrographic seizures recorded from other subjects resulted in a median AUC per subject of 0.68 
(IQR 0.66-0.77, Figure S10).  
 
Finally, given the growing use of less invasive technology such as sub-scalp EEG, we asked whether 
pre-trained models could transfer across recording modalities. First, we showed that multidien cycles 
of IEA can be detected with subscalp EEG, reflected in fluctuations in epileptic spike rates40 and, to a 
lesser extent, in the variance of sqEEG (Figure 5A-C), although the discontinuity of data in many 
patients represents a technical challenge32. Second, using sqEEG only for testing, we showed that a 
pre-trained model relying on multidien phases of IEA fluctuations recorded with icEEG (Figure 5D) was 
able to forecast seizures based on multidien phases from IEA or variance fluctuations recorded with 
sqEEG in one subject (Figure 5A) with a discrimination of AUC = 0.69 (p-value <0.05 for both, Figure 
5E).  A second subject also had multidien cycles recorded with sqEEG (Figure S11) but pre-trained 
models could not forecast seizures that occurred at a different (falling) phase in this particular case, 
as seen in a few subjects in Figure 3.  
 
 

Discussion 
      
Aiming at transfer learning to forecast seizures, we used statistical (GLMs) and deep learning models 

(RNNs) to show a number of novel and robust results, drawn from the longest existing dataset of 

combined chronic EEG recordings and self-reported seizure diaries. In the framework of generalized 

linear models, we characterized the transferability of shared and individual ictal and interictal 

temporal patterns across patients. First, we showed that models pre-trained on the phase of 

underlying multidien cycles from a subset of subjects can be transferred to other, previously unseen 

subjects to discriminate periods of relatively high and low risk. We then turned to multifeature models 

that could forecast time-varying risk while maintaining the calibration of output probabilities, by 

capturing the individual long-term expected seizure rate. Finally, in a limited proof-of-principle 

analysis, we showed that our models depend neither on the seizure counting methodology 

(electrographic vs. self-reported) nor on EEG acquisition modality, including a minimally-invasive 

device33,40. In essence, learning from shared ictal-interictal phasic relationship across subjects and 

individual seizure rates, our models forecasted varying seizure risk over days, highlighting the 

generalizability of extrapolating seizure cycles in a large majority of people (here ～80%) with different 

focal epilepsies and seizure periodicities13.  

 
This study has limitations. Participants in the RNS System clinical trials may not be representative of 
all people with epilepsy, though inclusion of two patients with sqEEG may help address this concern. 
To emphasize the clinical relevance of our approach, we used self-reported seizures to construct most 
of our models, knowing that seizure diaries themselves can be inaccurate42. Future studies based on 
electrographic seizures will likely surpass model performances presented here. On the other hand, 



our estimations of multidien phases were accurate but non-causal. In a prospective trial, a causal filter 
will be necessary, which may reduce the accuracy of the forecasts. Finally, we focused on the horizon 
of one to a few days, and have not included circadian cyclicity in this study8,21, as it is known that the 
circadian time at which seizures tend to occur is variable across individuals13,16,17,43. In contrast, the 
phasic relationship at the multidien timescale is more generalizable20, unless an outlier individual has 
seizures on a different phase (e.g. cycle trough, as shown for a few in Fig. 3), in which case a 
personalized model would be necessary.  
 
In direct comparison to individualized models, and when combining all available input features (here, 

recent seizures and IEA, and multidien phase), our best pre-trained models generalized to ～80% vs. 

～60% of the cohort while maintaining deterministic (AUC～0.7) and probabilistic (BSS～0.08) 

performance, but requiring only 50 vs. 480 days for training (i.e. ～10 times less). More sophisticated 

RNNs, which typically require larger datasets for training, further improved calibration while 
maintaining discrimination, illustrating how distributing learning across subjects enables state-of-the-
art machine learning approaches in epilepsy. Thus, pre-trained models have key advantages over 
individualized models: (i) they are trained on varied data from different patients, thus avoiding 
overfitting; (ii) by pooling larger amounts of data, models of increasing sophistication can be used; and 
(iii) they allow for drawing general conclusions about seizure forecasting across patients, highlighting 
interpretability and the robustness of the results.  
 
With few exceptions27, previous seizure forecasting models were patient-specific and sought to 
maximize discrimination of minutes-long epochs preceding seizures6–10,25, a classification problem 
which is blind to the model calibration. Using this approach, crowd-sourced seizure prediction 

competitions9,10 benchmarked achievable AUC at ～ 0.8. In contrast, our study presents seizure 

forecasting as a generalizable regression problem involving capture of different degrees of time-
varying seizure risk. Median discrimination obtained here at a time horizon of one to a few days was 

lower with AUCs of ～ 0.7. In addition to the obvious difference in forecasting horizon, we here 

emphasize the importance of assessing forecasts both deterministically and probabilistically for an in-
depth understanding of their true value26,37.  Forecasted probabilities, in our case, were calibrated 
(Figure 4B) and evolved smoothly over time, avoiding flickering predictions at short horizons, which 
can lead to alarm fatigue and defy the intended purpose of risk management. In the framework of 
temporal fluctuations in latent seizure risk44, the BSS8,21,38,40 score calculated per subject complements 
the AUC because it accounts for the fact that a true transient heightened seizure risk does not always 
result in the occurrence of a seizure, while a deterministic assessment would consider this case a ‘false 

positive’. Whether a BSS of ～0.1 can be clinically useful is a question for prospective trials, but 

resolution of risk in time will undoubtedly increase further with incorporation of additional covariates 
(i.e. temporal risk factors). Related to this issue, aggregate scores across subjects (as presented here 
and elsewhere27) can be misleadingly high as they are largely influenced by variable seizure rates 
across subjects. Although they help the forecaster obtain reliable statistics, for example by pooling a 
sufficient number of observations in the reliability diagram (as done here), scores per subject are of 
the essence from a user’s standpoint in a clinical context, as they are solely influenced by time-varying 
risk.  



 
Increasing interpretability, inspection of our model's coefficients enabled insight into how GLMs are 
fit to statistically model seizure timing with different rates in different patients. First, including 
broadband multidien phases allowed for capturing time-varying risk within subjects, on a range of 
timescales (here 4-45 days) and defining periods of high and low relative risk, agnostic to the individual 
long-term expected seizure rate. In the framework of GLMs, this covariate leverages the generalizable 
ictal-interictal phasic relationship and can be seen as a fixed effect that provides discrimination. 
Second, given that seizure rates are highly variable across individuals with epilepsy (including in this 
cohort), forecasts had to be (re-)calibrated to take on a true probabilistic meaning as an absolute risk 
(a probability between 0 and 1 of having a seizure). This was achieved either via a simple re-calibration 
of the model output or by initializing pre-trained models with the timing of recent seizure occurrences. 
In the framework of GLMs, this represents a random effect, providing calibration specific to each 
individual by capturing their long-term expected seizure rate. The generalizability of seizure 
forecasting over days can be interpreted from a theoretical viewpoint. Seizure occurrences can be 
modeled as an inhomogeneous Poisson process, wherein each individual has a set expected seizure 
rate with superimposed multidien cycles and other factors governing relative fluctuations around this 
rate44. In this view, seizures remain stochastic events drawn from a conditional Poisson distribution, 
while seizure risk evolves according to latent (potentially stochastic) dynamics44. 
 
Once a fanciful goal, the ability to anticipate seizures in people with epilepsy is now a near-term reality. 
Patient-specific forecasting algorithms that leverage cyclical patterns of brain activity have shown 
much promise8,15,21,24, but collecting training data and tailoring models on an individual basis limits 
scalability. Results presented here highlight the generalizability of seizure forecasting models across 
individuals, including those with minimally invasive devices for chronic recording of brain activity. One-
size-fits-all approaches are scarce in epilepsy, but our findings indicate that knowledge of fundamental 
temporal relationships between ictal and interictal activity powerfully enables transfer learning and 
may yield economies of scale in seizure forecasting. While gradual personalization will likely bring 
further increases in performance as data accumulate, readily available generalized models will 
facilitate imminent prospective seizure forecasting trials.   
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96 
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Table 1. Performance of the individualized and pre-trained models.  Number and proportion of significant 
subjects (% Sig.) with forecasts above chance (i.e. tested against 200 surrogates) out of 159 included subjects. 
Median (IQR) area under the sensitivity versus time-in-warning curve (AUC) and Brier skil l score (BSS) for 
significant subjects. Scores per subject are calculated for each significant subject and then averaged. Scores 
across subjects are calculated by aggregating the forecasts and the observations across all significant subjects. 
See also Table S1 for similar results obtained with a different surrogate design. See Table S2 for corresponding 
calibration loss and resolution.  
  



Figure 1. Illustrative example of pre-trained models. (A) Example of a six-month recording from a 30 year-old 
male with seizures stemming in clusters from right temporo-occipital heterotopias at a rate of once per week 
on long-term average (expected rate, e = 15% seizure days). From these recordings, three temporal features 
used as inputs for training the model included: (1) daily z-scored IEA over months recorded with one latero-
temporal and one occipital electrode (black trace) along with (2) the cosine of the broadband (4-45 d) wavelet-
derived phase (blue trace), and (3) self-reported seizures (red dots). (B) Same as (A) but from a 40 year-old 
female with bi-temporal epilepsy and seizures stemming from both hippocampi at a somewhat regular weekly 
to bi-weekly rate (e = 10% seizure days). IEA recorded from bi-hippocampal electrodes and self-reported seizures 
(red dots) were used for testing the pre-trained model. (C) Corresponding periodogram derived from the IEA in 
the training (A, blue) and test datasets (B, magenta). Note that the subjects used for training and testing the 
model have distinct peak-periodicities at 26 and 11 days, respectively. (D) Corresponding circular distribution 
and resultant vector showing that, in both subjects, seizures preferentially occur at similar rising phases of the 
underlying IEA cycle, regardless of its period-length. (E) Seizure probabilities forecasted for subject 2 (B), by the 
model pre-trained in subject 1 (A) showing that most observed seizures (red dots) fall  in times of increased 
probability. (F) Receiver operating characteristic curve of the forecast in (E) with AUC = 0.73. Complementary 
probabilistic assessment of the forecast is captured under the notions of resolution, i .e. how much the forecast 
separates observed probabilities from the long-term expected seizure rate (dotted double arrow), and 
calibration, i .e. how well the forecasted probability agrees with the observed probability (dotted rectangles for 
low and high probabilities). 
 
  



 
Figure 2: Forecasting schemes and performance. (A) Subjects included had more than 6 months of continuous 
data and fewer than 50% seizure days. (B) Each subject’s seizures were forecasted according to radically different 
schemes: 1) using individualized models on chronological training and testing datasets within each subject; 2) 
transferring models trained on some subjects to test them on other unseen subjects in a five-fold (x5) cross-
validation design. For better comparabil ity between 1 and 2, we used the same testing data from each patient 
(40% of later recordings, black rectangles). (C) Output forecast with daily probability [0-1] for two individuals 
with low (purple) and high (orange) long-term expected seizure rate, respectively. The assessment of these 
forecasts can be done for each individual and then averaged, or aggregated by pooling all  forecasts and 
observations together (vertical double arrows on the right). (D) Three characteristic metrics of forecast 
performance were calculated: First, using within-subject surrogate testing, we calculated the percentage of 
subjects with forecasts showing improvement-over-chance. Second, for significant subjects with above-chance 
forecasts, we evaluated the probabilistic performance of individual forecasts by the Brier Skil l  Score (BSS; 
forecast calibration and resolution. Third, by thresholding output probabilities, we evaluated the deterministic 
performance of individual forecasts by the area under the sensitivity versus time-in-warning curve (AUC).  
 
  



 
Figure 3. Performance of the individualized and pre-trained GLMs. (A) Violin plots comparing the distributions 
of per subject AUCs obtained with the individualized or the pre-trained models that incorporate the multidien 
phase as single input temporal features into GLMs. Fil led dots denote significant subjects with forecasts above 
chance; empty dots denote subjects for whom forecasts were not significantly different from chance (not 
included in the violin plots). White horizontal l ines are the distribution’s median. (B) Corresponding reliability 
diagram showing observed (a posteriori) seizure probabilities versus forecasted (a priori) probabilities for 
individualized (grey) and pre-trained (red) models aggregating all  significant forecasts across subjects. Note how 
post-hoc recalibration of forecasts issued by pre-trained models markedly improves resolution across subjects 
(full  red to dashed red l ine). Shaded histograms show for each model the proportion of datapoints in each 
probability bin. Error bars are the 95% confidence interval based on the binomial fit at the median observed 
probability. (C) Coefficients of the GLMs trained with instantaneous multidien phases as input features (see Eq. 
1, β0 intercept, βSin and βcos coefficients on the sine and the cosine of the phase, respectively). Half-violins (left) 
represents the distribution of coefficients obtained with individualized models, whereas white dots represent 
the different realizations of the pre-trained models across the cross-validation folds. (D) Tight relationship 
between the intercepts of the individualized models and the observed seizure rate of each subject. (E) Lack of 
relationship between the AUC and the observed seizure rate for the individualized (grey) and pre-trained (red) 
models. Fil led dots represent significant subjects. (F) Tight relationship between the AUC and the preferential 
multidien phase for seizure occurrence (as shown in Fig. 1D). Seizures from subjects with seizure clustering 
between the rising and peak-phase can be forecasted with individualized or generalized models (fi l led dots: 
significant subjects). Arrowheads point to the few outlier subjects, whose seizures can only be forecasted with 
individualized and not generalized models.  
 
 
Figure 4. Performance of multifeature models. (A) Distribution of per-subject AUCs using pre-trained 
multifeature GLM (red) or RNN (blue). Fil led dots denote significant subjects with forecasts above chance; empty 
dots denote subjects for whom forecasts were not significantly different from chance (not included in the violin 
plots). (B) Corresponding reliability diagram as in Fig 3B. Forecasts issued by the RNN are closer to the perfect 
calibration l ine (dotted).  
 
Figure 5. Forecasting seizures recorded with sub-scalp EEG, using pre-trained models. (A) Example of three 
parallel time-series derived from sub-scalp EEG data in one subject, consisting of detected IEA, EEG variance, 
and EEG autocorrelation (from top to bottom), along with cosine of the underlying multidien phase and seizure 
instances (red points) as in Fig. 1A. Grayed-out trace indicate periods where data was interpolated as described 
in17. (B) Corresponding periodogram derived from the detected IEA (black), EEG variance (blue), and EEG 
autocorrelation (purple). (C) Corresponding mean resultant vector indicating moderate-to-strong seizure 
clustering within cycles of IEA and variance, but not autocorrelation. (D) Transfer learning scheme where the 
model was learned from the cohort with icEEG and applied to this subject with sqEEG. (E) Receiver-operator 
curves for forecasts generated by models pre-trained on the RNS cohort applied to phases extracted from cycles 
of IEA, variance, or autocorrelation in sqEEG. 
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