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ABSTRACT  

Background: Studies of targeted therapy resistance in lung cancer have primarily focused on 

single gene alterations. Based on prior work implicating APOBEC mutagenesis in histological 

transformation of EGFR-mutant lung cancers, we hypothesized that mutational signature 

analysis may help elucidate acquired resistance to targeted therapies.  

Patients and methods: APOBEC mutational signatures derived from an FDA-cleared 

multigene panel (MSK-IMPACT) using the SigMA algorithm were validated against the gold 

standard of mutational signatures derived from whole exome sequencing. Mutational signatures 

were decomposed in 3,276 unique lung adenocarcinomas, including 93 paired osimertinib-naïve 

and resistant EGFR-mutant tumors. Associations between APOBEC and mechanisms of 

resistance to osimertinib were investigated. Whole-genome sequencing (WGS) was performed 

on available EGFR-mutant lung cancer samples (10 paired, 17 unpaired) to investigate large 

scale genomic alterations potentially contributing to osimertinib resistance. 

Results: APOBEC mutational signatures were more frequent in receptor tyrosine kinase (RTK)-

driven lung cancers (EGFR, ALK, RET and ROS1; 25%) compared to lung adenocarcinomas at 

large (20%, p<0.001); across all subtypes, APOBEC mutational signatures were enriched in 

subclonal mutations (p<0.001). In EGFR-mutant lung cancers, osimertinib-resistant samples 

more frequently displayed an APOBEC dominant mutational signature compared to osimertinib-

naïve samples (28 vs.14% p=0.03). Specifically, mutations detected in osimertinib-resistant 

tumors but not in pre-treatment samples significantly more frequently displayed an APOBEC 

dominant mutational signature  (44% vs 23%, p<0.001). EGFR-mutant samples with APOBEC 

dominant signatures had enrichment of large scale-genomic rearrangements (p=0.01) and 

kataegis (p=0.03) in areas of APOBEC mutagenesis.  
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Conclusions:  

APOBEC mutational signatures are frequent in RTK-driven LUADs and increase under the 

selective pressure of osimertinib in EGFR-mutant lung cancer. APOBEC mutational signature 

enrichment in subclonal mutations, private mutations acquired after osimertinib treatment, and 

areas of large scale genomic rearrangements highlights a potentially fundamental role for 

APOBEC mutagenesis in the development of resistance to targeted therapies, which may be 

potentially exploited to overcome such resistance.  

   

KEYWORDS: EGFR, mutational signatures, APOBEC, tyrosine kinase inhibitor, osimertinib, 

acquired resistance, structural rearrangements  

   

HIGHLIGHTS:  

-Receptor tyrosine kinase-driven lung cancers display higher levels of APOBEC 
mutagenesis as compared to other lung cancers  

-RTK-driven lung adenocarcinoma with evidence of APOBEC mutagenesis are enriched 
in sub-clonal mutations  

-APOBEC is a dominant mutational process in post-osimertinib samples of EGFR 
mutant lung cancers  
-APOBEC mutagenesis might have a relevant role in the development of resistance to 
targeted therapies  
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INTRODUCTION  

Most studies of resistance to targeted therapies have primarily focused on single gene 

mutations or copy number alterations (CNAs) identified by multigene panel sequencing. In 

oncogene-driven lung cancers, a single gene alteration that mediates resistance is rarely 

identified[1], and only a subset of alterations detected are therapeutically actionable, with benefit 

limited by intratumoral heterogeneity and the subclonal nature of many of these acquired 

mutations[2]. Spatial and temporal mapping of therapeutic resistance at individual tumor sites 

suggests that subclonal alterations may be driven by large scale mutational processes occurring 

during tumor evolution.[3-5] The contribution of genome-wide mutational processes in mediating 

tumor evolution and therapeutic resistance under the selective pressure of targeted therapies is 

underexplored. These large-scale patterns of mutagenesis drive genomic diversity and provide 

a substrate for clonal selection.[4] Merging layers of genomic interrogation, from base pair 

substitutions to large scale chromosomal rearrangements, provides an integrated assessment 

of the adaptive processes that propagate resistance to targeted therapies in oncogene-driven 

lung cancers. Furthermore, as microsatellite instability and homologous recombination 

deficiency confer sensitivity to immune checkpoint inhibitors [6, 7] and PARP 

inhibitors respectively, other mutational signatures may provide the basis for the development 

of new therapeutic strategies in drug-resistance tumors. 

Such additional interrogation may be particularly germane to lung cancers driven by 

epidermal growth factor receptor (EGFR) alterations. Patients with EGFR-mutant lung cancer 

are effectively treated with EGFR tyrosine kinase inhibitors (TKIs)[11], yet long-term disease 

control remains elusive. Acquired single-gene mutations and CNAs have been identified in only 

~20% of first-line osimertinib-resistance cases.[1] Lineage plasticity[1] and acquired structural 

rearrangements such as kinase gene fusions[12] are observed in about 25% of osimertinib-

resistant tumors; these events are rarely seen in other oncogene-driven lung cancers. The 

mechanistic basis of the enrichment for these events in post-therapy EGFR-mutant lung 
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cancers has yet to be defined. Prior work elucidating mechanisms of acquired resistance has 

focused on single gene alterations; Catalogue of Somatic Mutations in Cancer ( COSMIC) mutational 

signatures define larger genome-wide trends that may contribute to a better understanding of 

tumor initiation and evolution. We and others identified enrichment of large scale genomic 

alterations such as apolipoprotein b mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) 

mutational signatures in EGFR-mutant lung cancers destined for small cell histologic 

transformation.[13, 14] APOBEC signatures are one of the most prevalent mutational signatures 

in human cancers, derive from the activity of APOBEC cytosine deaminases, and have been 

implicated in tumorigenesis and potentially in therapeutic resistance.[15, 16] APOBEC 

mutational signatures are also the dominant mutational signatures in lung adenocarcinomas 

(LUADs) with late-evolving subclonal driver alterations.[17]  

Given these data, we hypothesized that APOBEC may have a causative role in 

mediating mechanisms of acquired resistance such as structural rearrangements and lineage 

plasticity seen in EGFR-mutant lung cancer. Validation of such a role would provide rationale for 

assessing APOBEC enzymatic inhibition in EGFR-mutant lung cancers. In the current study, we 

utilized an algorithm benchmarked for mutational signature detection in multigene sequencing 

panels[18] to examine the progression of APOBEC mutational signature levels in LUADs 

derived from clinically obtained multigene panel sequencing and whole-genome sequencing 

(WGS) to survey tumor evolution under the selective pressure of treatment.  

   

METHODS  

Study cohort  

We identified all patients with LUAD with targeted hybrid capture, next-generation tumor 

sequencing (NGS) performed at Memorial Sloan Kettering Cancer Center (MSK) from March 

2014 to March 2021 using the FDA-approved MSK Integrated Mutation Profiling of Actionable 

Cancer Targets (MSK-IMPACT) assay NGS platform.[19, 20] Clinical data collection, including 
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patient demographics and treatments, was approved by the MSK Institutional Review 

Board/Privacy Board, and all patients provided written consent. Tumor samples were de-

identified for further analyses. Of all patients with LUAD sequenced by MSK-IMPACT, 93 

patients with EGFR-mutant lung cancer treated with osimertinib had available paired pre- and 

post-treatment tumor samples. For this subgroup, we collected demographic information, clinical 

characteristics and detailed treatment histories, including line of treatment, time to treatment 

discontinuation (TTD) on osimertinib, and overall survival (OS) from time of MSK-IMPACT, with 

left truncation adjustment.  

Multi-gene panel sequencing, whole genome sequencing (WGS), and mutational 

signature analysis  

Somatic alterations were detected as described previously[19, 20] utilizing the FDA-cleared 

New York State Department of Health-approved MSK-IMPACT, with median sequencing 

coverage depth of 675x (range, 60x-1284x).  CNAs and estimated tumor purity were identified 

using FACETS.[21] The cancer cell fraction (CCF) of each mutation was inferred using 

ABSOLUTE (v1.0.6) with the ABSOLUTE solutions manually reviewed[22] . Mutations were 

classified as clonal if the probability of the mutation being clonal was greater than 0.5 or if the 

lower confidence interval was greater than 0.9 as calculated by ABSOLUTE. To validate 

findings on MSK-IMPACT and provide further information regarding large-scale genomic 

rearrangements, WGS was performed on pre- and/or post-osimertinib and matched normal 

tissue samples for 27 patients by MSK’s Integrated Genomics Operations using validated 

protocols[23, 24], with median sequencing coverage depth of 57x (range 48x-62x). WGS was 

completed on six pre-treatment, 11 post-treatment, and 10 paired samples derived from 

formalin-fixed, paraffin-embedded tissue samples or recaptured genomic DNA. Twenty of these 

patients also had either or both pre-/post-treatment samples analyzed by MSK-IMPACT. To 

evaluate the number and context type of somatic single-nucleotide variants (SNVs) acquired 

after osimertinib treatment between paired pre/post samples from the same patient, we 
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calculated the fraction of substitutions that were private to the pre-osimertinib sample or private 

to the post-osimertinib sample. For each pair, all somatic SNVs that were detected in one 

sample were annotated to be either present (shared SNVs) or absent (private SNVs) in the 

other. To determine if the potential contribution of artifacts stemming from formalin fixation and 

paraffin embedding (i.e. primarily C>T SNVs), the frequency of SNV nucleotide changes was 

compared between pre- and post-treatment samples (Supplementary Table 1), as well as 

across all mutations, mutations with less than 10% variant allele fraction and mutations with less 

than 5% variant allele fraction (Supplementary Table 2). Further description of methods is 

reported in the Supplementary Methods. In addition, given that recent studies have 

demonstrated that formalin fixation can leave predictable and identifiable mutational 

signatures across the genome (i.e., COSMIC SBS 30[25]), we inspected the mutational profile 

of the formalin-fixed paraffin-embedded samples that were subjected to sequencing. No 

detectable levels of these specific signatures were identified (data not shown). Further 

description of methods is reported in the Supplementary Methods.  

For MSK-IMPACT samples with at least five somatic SNVs, mutational signatures were 

computed using Signature Multivariate Analysis (SigMA)[18], a tool extensively benchmarked 

for the analysis of formalin-fixed paraffin-embedded samples subjected to multi-gene panel 

sequencing, as previously described.[26, 27] A dominant signature for each sample was 

determined based on the proposed category assigned by SigMA, as previously reported.[18] 

The decomposed exposures (i.e. the fraction of mutations associated with a given mutational 

process) were converted into percentages to allow a meaningful comparison among samples 

with different numbers of mutations. Based on the decomposed exposure values, additional 

categories (i.e. APOBEC < or ≥20%) were computed and utilized in the downstream analyses 

performed. The decision to adopt the cut-off of 20% was based on the lowest possible 

mutational signature exposure that can be detected with sufficient confidence in samples with 

≥5 SNVs. In addition, SigMA was used to classify conventional codon-context mutation types for 
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each variant. Classifications are based on the six substitution subtypes: C>A, C>G, C>T, T>A, 

T>C, and T>G, and the nucleotides immediately 5’ and 3’ to the mutation. Twelve APOBEC-

context mutations were identified using the peaks present on the spectra of COSMIC Signature 

2 and Signature 13 (4 and 8 codon context mutations, respectively).  

Evaluation of SigMA performance on MSK-IMPACT data  

SigMA performance was evaluated using a simulation strategy to reproduce MSK-IMPACT 

samples from available whole-exome sequencing (WES) data from The Cancer Genome Atlas 

(TCGA; version mc3.v0.2.8) LUAD cohort. We considered the APOBEC exposures obtained 

from TCGA samples as ground truth. MSK-IMPACT sample simulation was performed by 

filtering TCGA data for only those mutations occurring on regions covered by MSK-IMPACT. 

COSMIC mutational signatures were computed using SigMA and applying “lung cancer” as 

reference tumor for both the simulated MSK-IMPACT samples and original TCGA WES 

samples. Performance was assessed using Pearson’s coefficient, sensitivity, specificity, and 

accuracy. Cohen's kappa coefficient was used to assess the agreement between SigMA-

proposed mutational signature categories, such as APOBEC <20% vs ≥20% and APOBEC 

dominant vs non-dominant.  

Statistical analysis  

Statistical analyses were conducted using R (version 3.1.2). Comparisons of categorical and 

continuous variables were performed by Fisher’s exact and Mann-Whitney U tests, respectively. 

Differences in mutational signature exposures across multiple groups were analyzed using the 

Mann-Whitney U test.  Pearson’s correlation was used to compare mutational signature 

exposures. Oncoplots for mutational landscape visualization and heatmaps were created using 

the R packages, maftools[28], and ComplexHeatmap[29], respectively. Comparisons of 

frequencies of genes altered by somatic genetic alterations (including non-synonymous 
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mutations, gene amplifications and/or homozygous deletions) between either pre- and post-

osimertinib samples or different APOBEC exposure cut-offs (<20% vs ≥20%) were performed 

using Fisher’s exact test. Comparative analysis in paired samples was performed by the 

Wilcoxon signed-rank test. Mutation frequencies related to APOBEC mutagenesis in the 

kataegis and non-kataegis areas were compared using Fisher’s exact test. Multiple testing 

correction using the Benjamini-Hochberg method was applied to control for the false discovery 

rate whenever appropriate. P < 0.05 was considered statistically significant. All tests were two-

tailed.  

RESULTS  

Mutational signatures can be accurately derived from targeted sequencing data  

Since only a small fraction of patient samples undergoes WES or WGS, we first sought to 

validate the performance of the SigMA algorithm in calling APOBEC mutational exposures from 

the MSK-IMPACT targeted gene panel, which is ordered routinely for clinical purposes as an 

integral element of patient care at MSKCC. WES data from the TCGA LUAD cohort (n=511) 

served as a benchmark. MSK-IMPACT simulation was performed by the inclusion of SNVs 

encompassed by the genomic footprint of MSK-IMPACT; only samples with ≥5 SNVs were 

included, as required by the SigMA algorithm (n=390) (Fig. 1A). We evaluated two methods for 

identifying APOBEC-enriched samples in the MSK-simulated cohort: those with POBEC 

identified as dominant mutational signature by SigMA mutational analysis (i.e. the mutational 

process with the highest level of exposure) and those with high levels of APOBEC exposure, 

arbitrarily defined as ≥20% exposure. The concordance between each of these designations 

was tested by signature analysis of the TCGA WES cohort (ground-truth). SigMA detected 

APOBEC as dominant signature in MSK-IMPACT-simulated samples with 74% sensitivity and 

97% specificity (Fig. 1A). Sensitivity increased to 86% and 85%, respectively, when ≥10 and 

≥15 mutations were included with 97% specificity in both groups.  Using the Cohen’s kappa 

Jo
urn

al 
Pre-

pro
of



correlation test, we observed a substantial agreement (K scores 0.72-0.81) in detecting 

APOBEC as dominant mutational signature between WES and MSK-IMPACT-simulated panel 

(Supplementary Table 3). Detection of APOBEC exposure ≥20% yielded comparable metrics 

(Supplementary Fig. 1A). When considered as a continuous variable, APOBEC exposure was 

highly correlated between TCGA WES and MSK-IMPACT-simulated samples (Pearson's r = 

0.77, p<0.0001; Supplementary Fig. 1B). As additional validation, mutational signatures were 

computed by SigMA in 18 samples for which both WGS and MSK-IMPACT data were available. 

A significant positive correlation between APOBEC mutational signature exposures detected by 

MSK-IMPACT and WGS was observed (Pearson's r = 0.91, p<0.0001; Supplementary Fig. 

1C). These results show the consistency and reliability of SigMA in detecting APOBEC 

mutational signatures in LUAD samples sequenced by the MSK-IMPACT gene panel. Given the 

higher concordance observed between APOBEC dominant signature calling between TCGA WES and 

MSK-IMPACT-simulated cohort (K=0.72), this designation was selected for subsequent 

analysis.  

APOBEC mutational signature is enriched in RTK-driven LUADs  

We next sought to analyze the frequency of APOBEC mutational signatures in a large cohort of 

LUADs. We identified 6,034 LUAD samples which had undergone targeted gene sequencing 

with MSK-IMPACT; 3,276 samples contained the requisite ≥5 SNVs required for SigMA 

signature analysis. Tumors were first sorted according to known oncogenic drivers. We created 

a RTK driver subgroup encompassing four well-characterized receptor tyrosine kinase (RTK) 

driver alterations in EGFR, ALK, RET, and ROS1, all of which have approved targeted therapies 

and are enriched in patients with little or no smoking history (Fig. 1B). KRAS-mutant lung 

cancers were selected as a molecularly-defined comparator that occur more commonly in 

patients with smoking histories. The remaining LUADs were classified into the “Other” category.  
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Mutational signature analysis revealed that APOBEC mutational signatures were more 

frequently identified as the dominant signature in the RTK Driver group (23%) compared to both 

the KRAS (8%, p<0.001) and Other subgroups (17%, p<0.001) (Fig. 1C). Conversely, smoking 

signature was more frequently the dominant signature in the KRAS subgroup (57%) compared 

to both the RTK Driver (14%, p<0.001) and Other (43%, p<0.001) subgroups. The RTK Driver 

subgroup also displayed the highest mean APOBEC mutational signature exposure (25% vs. 

20% in Other, p < 0.001, and 12% in KRAS, p < 0.001, Fig. 1D). To take into account potential 

biases related to the threshold of ≥5 SNVs for SigMA signature analysis, a sensitivity analysis 

using higher cut-offs was performed. A numeric increment in the proportion of cases with 

APOBEC as dominant mutational signature was found in the RTK Driver group when the ≥10 

and ≥15 SNVs thresholds were adopted (43% and 54%, respectively; Supplementary Fig. 2A-

C). This trend, however, was not observed in the KRAS (11% and 15% using ≥10 and ≥15 

SNVs, respectively) and Other (20% and 20% using ≥10 and ≥15 SNVs, respectively) groups 

where the proportions of APOBEC dominant cases remained constant even if different SNV cut-

offs were applied. Conversely, we observed an increment in the proportion of Smoking 

signature in the KRAS (57%, 71% and 75% using ≥5, ≥10 and ≥15 SNVs, respectively) and 

Other (43%, 57% and 64% using ≥5, ≥10 and ≥15 SNVs, respectively) groups when higher 

SNVs thresholds were applied (Supplementary Fig. 2A-C). These findings remained consistent 

when the proportions of the mutational exposures were tested rather than dominant signatures 

(Supplementary Fig. 2D-F). The smoking signature was inversely correlated with APOBEC 

signature (Pearson's r = -0.36, p <0.001; Supplementary Fig. 3A), which was observed 

consistently across all subgroups. In a univariable model, RTK Driver tumors were significantly 

more likely to have APOBEC as a dominant signature compared to KRAS-mutant tumors (odds 

ratio [OR] 0.30 for KRAS compared to RTK, 95% confidence interval [CI] 0.23-0.39, p<0.001) 

and Other (OR 0.72 for Other Compared to RTK, 95% CI 0.57-0.91, p<0.001, Supplementary 

Table 4), although results in a multivariate analysis accounting for age, gender, smoking status, 
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and sample type (primary vs. metastatic) did not reach statistical significance (Supplementary 

Table 5). These findings support the notion that APOBEC mutational signatures are significantly 

enriched in RTK-driven LUADs.  

We further evaluated the proportion of APOBEC-site mutations by clonal status in cases 

with APOBEC as dominant mutational signature compared to non-dominant. APOBEC-site 

mutations were detected more frequently at the subclonal rather than clonal level in LUADs 

displaying dominant APOBEC signature in all considered subgroups (p <0.001; Supplementary 

Fig. 3B), consistent with previous findings that have associated APOBEC mutagenesis with the 

acquisition of subclonal mutations.[3, 30]  

We also assessed spatial and temporal evolution of mutational signatures in LUAD 

samples from primary (from lung tissue) or metastatic (from tissue other than lung) sites; site of 

tumor was available for 3,248/3,276 samples (Supplemental Fig. 3C). Metastatic tumors 

(n=1,364) exhibited a significantly higher mean APOBEC exposure compared to lung primaries 

(n=1,884, 21% vs. 15%, p<0.001, Supplemental Fig. 3D, a pattern conserved across all three 

molecular subgroups (Supplemental Fig. 3E). These data support a modest yet statistically 

significant enrichment in APOBEC signatures in metastatic tumors, suggesting that APOBEC 

may constitute a relatively late event in the development and progression of LUADs.[31]    

Evolution of mutational signatures with osimertinib treatment in EGFR-mutant lung 

cancers  

To evaluate the evolution of APOBEC mutational signature with the selective pressure of 

targeted therapy, we identified 93 patients with paired osimertinib-naïve and osimertinib-

resistant tumor samples that underwent MSK-IMPACT sequencing. Fifty-two received 

osimertinib as first-line treatment and 41 as later-line treatment. Sixty osimertinib-naïve and 81 

osimertinib-resistant tumors had the requisite  ≥5 SNVs; 54 patients had both samples meet this 

criterion. APOBEC was the dominant signature in twice as many osimertinib-resistant samples 
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compared with osimertinib-naïve samples (28% vs 14%, p=0.03, Fig. 2A, Supplementary Fig. 

4A). Numerically higher APOBEC exposure was also detected in osimertinib-resistant tumors 

compared to matched osimertinib-naive samples (Wilcoxon signed-rank test, p=0.33, 

Supplementary Fig. 4B). Somatic tumor mutational burden (TMB) was also higher in post-

osimertinib compared to pre-osimertinib samples, suggesting a possible correlation between 

APOBEC mutagenesis and TMB  (p<0.001, Supplementary Fig. 4C).  

To ascertain the contribution of APOBEC mutagenesis to the mutations acquired after 

treatment with osimertinib, we analyzed 10 cases with paired osimertinib naïve and resistant 

samples that underwent WGS. Interestingly, we found that the proportion of APOBEC site 

mutations private to post-treatment samples was significantly higher than those shared with pre-

treatment samples (44% vs 23%, p<0.001, Supplementary Figure 4D). These data suggest 

that a high proportion of EGFR-mutant lung tumors have evidence of de novo APOBEC activity 

prior to treatment, with further enrichment in APOBEC-driven mutagenesis and acquired 

APOBEC context mutations following osimertinib.  

Concurrent alterations on MSK-IMPACT and mutational signatures  

To evaluate whether recurrent mutations in common somatic hotspots might be associated with 

APOBEC mutagenesis, we focused on cases with both dominant APOBEC mutational signature 

as well as high exposure. There was no specific pattern of concurrent alterations identified in 

osimertinib-resistant samples in tumors with APOBEC as dominant signature (Fig. 2B). 

Similarly, no statistically significant enrichment in gene alterations was found when considering 

tumors with high APOBEC exposure (>20%) as compared to not. No significant changes in 

CNAs were found between osimertinib-naïve and resistant samples when stratifying by 

APOBEC mutational signature <20% vs ≥20% (Supplementary Fig. 4E-F). These findings 
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indicate that APOBEC mutagenesis is unlikely to be involved in the development of canonical 

resistance SNVs or CNAs, such as EGFR C797S or MET amplification.  

APOBEC and its relationship with large scale chromosomal changes  

Previous reports demonstrate that APOBEC-dependent kataegis and chromothripsis[32] provide 

a potential etiology for large scale chromosomal rearrangements in the setting of APOBEC 

mutagenesis, prompting an interest in investigating the potential relationship between structural 

rearrangements and APOBEC mutagenesis. Kataegis describes a pattern of localized 

hypermutation within a cancr genome while chromothripsis is a mutational process where 

thousands of chromosomal rearrangements occur in a single event clustered in a confined 

genomic region.[33] A subset of patients had sufficient tissue to perform WGS (10 paired pre-

/post- samples, 6 pre- only, 11 post- only). In specific cases, kataegis and chromothripsis 

coincided with areas of the genome enriched with APOBEC mutations, as shown with Case 

WGS-01 (Fig. 2C). Collectively, when assessing all WGS samples, large scale genomic 

rearrangements including kataegis and chromothripsis were dispersed uniformly across the 

genome (Fig. 2D). Interestingly, tumors displaying dominant APOBEC signature had a 

statistically significant enrichment of the genome covered by structural variants (p<0.01; Fig. 

2E) and kataegis (p<0.03; Fig. 2F).    

 We analyzed matched samples before and after osimertinib treatment to characterize the tumor 

evolution under therapeutic selection. Case WGS-02 (Fig. 3A) was derived from a patient 

treated with first-line osimertinib for eight months. At progression, MSK-IMPACT identified 

acquired MET amplification and MET H1094Y. Mutational signature analysis of the osimertinib-

naïve and resistant paired samples for this patient revealed APOBEC mutagenesis restricted to 

the dominant clone in the osimertinib-resistant sample (Clone 3). Clone 3 harbored a MET 

H1094Y mutation, which is due to a nucleotide level T(C>T)A transition mutation that occurs in 

the APOBEC-preferred mutational context.  
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Circos plot of the osimertinib-resistant sample also demonstrates that APOBEC-rich 

genomic areas co-localize with kataegis and other structural rearrangements (tandem 

duplications, deletions, inversions and translocations). Similar findings are shown in case WGS-

03 (Fig. 3B), a patient treated with first-line osimertinib and bevacizumab on a clinical trial for 19 

months followed by disease progression; a mechanism of resistance was not identified. 

Consistent with the findings in WGS-02, clonal decomposition analysis of WGS-03 revealed the 

emergence of a post-therapy subclone (Clone 3) with a dominant APOBEC mutational 

signature, which was not observed prior to osimertinib treatment. These two cases suggest that, 

in a subset of patients, APOBEC mutagenesis may underpin the acquisition of resistance to 

osimertinib as observed in other tumors treated with targeted therapies[34]. Clones selected for 

upon osimertinib treatment harbor repertoires of somatic mutations and structural 

rearrangements distinct from those of the dominant pre-treatment clones, and the development 

of these new clones may be driven by the acquisition of mutagenic processes (e.g. APOBEC) 

that were not operative during the early stages of tumorigenesis.  

Mechanism of resistance to osimertinib in EGFR-mutant LUADs  

We sought to assess the relationship between mutational signatures such as APOBEC and 

established mechanisms of resistance to osimertinib. Tumors were classified into the following 

categories of resistance: lineage plasticity (small cell or squamous transformation), off-target 

(e.g. acquired fusions and MET amplification), on-target (EGFR-mediated), and unknown. 

Tumors were considered to be APOBEC-enriched if either the osimertinib-naïve or resistant 

sample was APOBEC dominant. Lineage plasticity and off-target mechanisms of resistance had 

the highest proportions of APOBEC-enriched samples (56% lineage plasticity, 41% off-target, 

24% unknown, 23% on-target, Fig. 4A), corroborating the association between APOBEC and 

lineage plasticity previously reported by our group and others[13, 14]. Specifically, most cases 

of acquired fusions (3/5, 60%) and lineage plasticity (9/16, 56%) had APOBEC-as the dominant 
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mutational signature (Fig. 4B). Based on the type of substitution and its trinucleotide context, 

none of the acquired oncogenic mutations were directly attributable to APOBEC mutagenesis 

except for the case with an acquired MET H1094Y. There were no associations between pre-

treatment or post-treatment mutational signature and overall survival (Suppl Fig. 5A-D). 

Exploration with a larger number of samples is warranted to investigate the relationship between 

APOBEC mutagenesis and certain mechanisms of resistance, including lineage plasticity and 

acquired structural rearrangements.  

   

DISCUSSION  

In this report, we surveyed mutational signatures in LUADs and identified an association 

between APOBEC mutagenesis and RTK-driven cancers. We demonstrate that the APOBEC 

mutational signature can be derived from a routine multi-gene panel test (i.e. MSK-IMPACT) 

obtained as standard of care in patients with metastatic LUADs. Mutational signatures offer an 

additional layer of genomic information that may clarify how tumors adapt to selective pressure 

on a genome-wide level, providing a broader perspective on resistance and nominating 

interventional strategies that could result in more durable suppression of tumor growth. Although 

WGS remains the ‘gold standard’ for mutational signature decomposition, by circumventing the 

need for more extensive WGS or WES data, which may be costly, require specialized core 

facilities and potentially additional patient material, the methodology described in this study is 

based upon sequencing data already routinely obtained for care of patients in the clinic. In fact, 

in a way akin to how TMB and microsatellite instability are now widely reported on commercial 

multigene panel testing, other mutational signatures, including APOBEC, could become 

clinically reportable and provide actionable results in the future.  

Our data demonstrate that APOBEC mutagenesis, although present in osimertinib-naive 

samples, appears to occur relatively late in the development and progression of LUADs and 

increases with osimertinib exposure, with enrichment in metastatic tumors and subclonal as well 
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as private mutations. Such findings are corrobated by preclinical work that EGFR or ALK 

inhibitor treatment induces expression and mutagenic activity of APOBEC3B in tumor xenograft 

models and cell lines.[35] Separately, inhibiting therapy-induced APOBEC3A mutagenesis by 

gene deletion or RNA inhibitor-meditated suppression in lung cancer cell lines delayed 

resistance to targeted therapies.[36] Identifying a role for APOBEC mutagenesis in mediating 

drug resistance presents opportunities for abrogating the development of such resistance by 

potentially focusing on APOBEC inhibition, an area of active investigation.[37-39] Whilst there 

are currently no direct inhibitors for APOBEC activity, previous studies[40, 41] have proposed a 

potential role for ATR and PARP inhibitors. Preclinical studies demonstrate that activation of 

APOBEC-3A and APOBEC-3B may sensitize tumor cells to DNA damage response pathway 

inhibitors, such as ATR and PARP inhibitors; in vitro studies have shown that ATR inhibition can 

overcome osimertinib resistance in some cases.[42]  

Consistent with previous observations[32], our data demonstrate that APOBEC 

mutagenesis is associated with kataegis and chromothripsis.[43] These phenomena can 

increase the probability of translocations leading to activating gene fusions that can drive 

resistance to EGFR TKIs. The association between APOBEC and lineage plasticity can be 

considered in analogy with simpler organisms, as lineage plasticity mirrors phenotypic switching 

seen in bacteria following antibiotic exposure.[44] In bacteria, larger scale genomic processes 

with functional similarities to APOBEC mutagenesis, including slipped strand repair, 

homologous recombination, site specific recombination, and transposon insertion and excision 

can all induce phenotypic switching.[45] APOBEC-derived catastrophic genomic events such as 

chromothripsis may result in profound reprogramming of cancer cells, creating a milieu that is 

conducive for phenotypic plasticity and resultant drug resistance. Alternatively, APOBEC 

mutagenesis may result in greater clonal diversity, providing the required conditions for the 

selection of de-differentiated subclones that have gained histologic plasticity.  

Jo
urn

al 
Pre-

pro
of



This study has several limitations. Although WGS analysis was performed for a subset of 

pre- and post-osimertinib treated samples, mutational signature decomposition was largely 

performed by applying SigMA to MSK-IMPACT targeted sequencing data. Despite the 

agreement between MSK-IMPACT and WES using SigMA for the detection of APOBEC 

mutagenesis, our analysis may have overestimated the extent of APOBEC exposure across 

samples from all groups analyzed.  

Indeed, the five SNVs cut-off applied for the inclusion of samples in our mutational 

signature analysis was found to display ~75% specificity against the gold-standard 

WES. The specificity, however, was higher when ≥10 and ≥15 SNVs were used as cut-

off values (86% and 85%, respectively). Nonetheless, the inclusion of only samples with 

more than 10 SNVs would result in the exclusion of a large proportion of samples from 

the analysis, inevitably creating a selection bias for LUADs with higher mutation burden. 

Due to limited availability of paired tumor samples obtained before and after a given 

treatment, we did not investigate whether APOBEC enrichment following targeted 

therapy would also occur in the context of chemotherapy and immunotherapy treatment. 

In fact, here we focused on EGFR-mutant lung cancer; the analysis of other RTK driver 

lung cancers, including ALK, RET and ROS1-positive lung cancers, in sufficiently 

powered cohorts should be entertained in future studies.  

Although the mechanistic basis for the induction of APOBEC mutagenesis in cancer 

cells and the causes of the selective enrichment for this phenomenon in certain clinical contexts 

remains to be fully elucidated, the association with RTK-driven lung cancers, targeted therapy 

exposure, and selected mechanisms of resistance provide clear directions for further study. 

APOBEC mutagenesis appears to constitute a transient, intermittent process[16], and 

deciphering the factors that induce and suppress episodic APOBEC mutagenesis during cancer 

evolution may inform whether this process might be harnessed therapeutically. Mutational 

Jo
urn

al 
Pre-

pro
of



signatures as a biomarker for treatment have been established with homologous repair 

deficiency and microsatellite instability, which can select patients for treatment with DNA-

damaging agents[46] and immunotherapy, respectively. The value of mutational signatures is 

heighted by the ability to infer signatures from multigene panel sequencing, which is frequently 

obtained for routine clinical care for patients with LUADs; at present, however, 

detecting APOBEC mutagenesis clinically is not warranted for lung cancer patients. Ultimately, 

the clinical relevance of APOBEC mutagenesis centers around therapeutic vulnerability. Future 

studies focusing on the development of approaches seeking to prevent the development of 

resistance by blocking the APOBEC mutagenesis process as well synthetic lethal approaches 

specifically targeting cancer cells with active APOBEC mutagenesis are warranted.  
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FIGURE LEGENDS:  

Figure 1: Mutational signatures derived from multigene panel sequencing. A) Performance 

evaluation of SigMA comparing whole exome sequencing (WES) data from The Cancer 

Genome Atlas (TCGA) lung adenocarcinoma (LUAD) cohort to that same data restricted to the 

MSK-IMPACT genomic footprint. Schematic demonstrating workflow for SigMA validation is 

shown on the left. Sensitivity, specificity, and accuracy are referred to the capacity of SigMA to 

detect APOBEC as dominant mutational signature compared to TCGA cohort. Performance is 

evaluated at cutoffs for samples with at least 5 single-nucleotide variants (SNVs), 10 SNVs, and 

15 SNVs. B) Mutational signature heatmap of lung adenocarcinomas (n=3276) from the MSK-

IMPACT cohort. Exposure of mutational signatures for each sample according to the group 

(receptor tyrosine kinase [RTK] driver [n=625], KRAS mutant [n=1389), Other [n=1262]). 

Exposures are reported as continuous variables and colored according to the legend (0 = white; 

0.01-0.19 = orange shades; 0.2-1.0 = red shades). C) Stacked bar plots of dominant signatures 

across RTK driver, KRAS mutant,  and Other groups. Dominant signature was selected 

according to the category assigned by SigMA. D) Comparison of APOBEC and smoking-related 

mutational signature exposures between RTK driver, KRAS mutant, and Other groups. The 

mean exposures attributed to smoking and APOBEC processes are plotted with error bars 

indicating standard deviations. Mutational signatures are color-coded according to the legend. 

Statistical comparisons were performed using two-sided Wilcoxon-Mann–Whitney test. RTK 

driver was considered as reference group. **** = p < 0.001  

   

Figure 2: APOBEC mutagenesis in EGFR-mutant lung adenocarcinomas treated with 

osimertinib. A) Pie charts showing the proportions of cases with APOBEC dominant, APOBEC 

mutational signature exposure >20% but non-dominant, Other, and not assessable (<5 single 

nucleotide variants [SNVs]) signatures between pre- (n=93) and post-osimertinib (n=93) 

samples. B) Repertoire of somatic genetic alterations of lung adenocarcinomas treated with 
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osimertinib harboring APOBEC mutational signature ≥20% (pre=32; post=49). APOBEC 

mutational signature exposure, treatment status (pre vs. post osimertinib), dominant mutational 

signature (APOBEC vs. Other), and acquired resistance mechanism for each sample are 

represented and color-coded according to the legend. C) Region of overlap of chromothripsis 

and kataegis on chromosome 3 for a single sample with osimertinib resistance (WGS-Post01). 

APOBEC and non-APOBEC single-nucleotide variants ([SNVs] top) are shown along with 

regions of kataegis, structural variants ([SVs] upper-middle) with inversions as black dots 

connected by curved lines and translocations as green dots. A green curved line encompasses 

the segment of the chromosome that has undergone chromothripsis (middle). Integer copy 

number [CN] of segments of chromosome 3 are shown in the bottom graph. D) Genomic 

footprint of kataegis and chromothripsis across pre- and post-treatment whole-genome 

sequenced samples (n=36). E) Quantification of SVs and F) kataegis across the genome in 

APOBEC dominant whole-genome sequenced samples as compared to APOBEC non-

dominant. Statistical comparisons were performed using two-sided Wilcoxon-Mann–Whitney 

test.  

   

Figure 3: Large scale molecular patterns detected by WGS in EGFR-mutant lung 

adenocarcinomas. A) Circos plot of pre-treatment (top left) and post-treatment (top right) 

displaying (from inside to outside) inter-variant distance and apobec classification of single-

nucleotide variants (SNVs), regions of kataegis, indels, copy number and structural variants of 

WGS-02-Pre/Post osimertinib and (B) WGS-03-Pre/Post. Clonality heatmap (bottom left) and 

fishtail plot (bottom right) showing cancer cell fractions (CCFs), mutations of interest, and 

mutational signatures in bioinformatically inferred clones.  

   

Figure 4: Correlations between APOBEC and acquired resistance in EGFR-mutant lung 

adenocarcinomas. A) For 93 paired pre- and post-osimertinib samples, mechanism of 
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resistance subgroup (on target, off target, lineage plasticity, and unknown) and specific 

alteration acquired were correlated with presence of dominant APOBEC signature in either pre- 

or post-osimertinib sample. B) Table displaying specific acquired molecular alteration and 

APOBEC status. 

1  
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SUPPLEMTARY METHODS 

MSK-IMPACT targeted sequencing and whole-genome sequencing analyses 

Genomic analysis was performed for all patients by the FDA-cleared New York State 

Department of Health-approved MSK-IMPACT assay with somatic genetic alterations detected, 

as previously described [1]. WGS sequencing data were processed using our validated 

bioinformatics pipeline [2, 3]. In brief, sequence reads were aligned to the reference human 

genome GRCh37 using the Burrows-Wheeler Aligner (BWA v0.7.15) [4]. For both WGS and 

MSK-IMPACT, somatic single nucleotide variants (SNVs) were detected with MuTect (v1.0) [5]. 

Insertion and deletions (indels) were detected using Strelka (v2.0.15) [6], VarScan2 (v2.3.7) [7], 

Platypus (v0.8.1) [8], Lancet (v1.0.0) [9], and Scalpel (v0.5.3) [10]. Copy number alterations 

(CNAs) and loss of heterozygosity were determined using FACETS [11]. Somatic mutations in 

tumor suppressor genes that were deleterious/loss-of-function or targeting a mutational hotspot 

in oncogenes were considered pathogenic. Mutations targeting hotspot loci were annotated 

using cancerhotspots.org[12]. 

 

Formalin-fixed paraffin-embedded (FFPE) artefact evaluation 

To evaluate the presence of mutations stemming from the process of formalin fixation and 

paraffin embedding, the distribution of variant allele fractions (VAFs) across all single nucleotide 

substitution types was assessed to rule out the presence of C>T low VAF mutations which are a 

common feature of FFPE artefacts. Mutations were grouped into 3 categories; all mutations, 

less than 10% VAF and less than 5% VAF to compare if there was any difference in substitution 

frequencies amongst those 3 groups. Additionally, the distribution of nucleotide change 

frequencies was compared between pre- and post-treatment samples as well as between 

shared and private samples in cases where we had matched pre- and post-treatment data 
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available. Finally, we compared C>T mutations in the APOBEC context versus those that were 

not in the APOBEC context to ascertain if a significant enrichment of low VAF mutations in the 

APOBEC or non-APOBEC mutation groups was observed. 

 

Genotyping, cancer cell fraction (CCF) calculation, clonal decomposition and signature 

analysis for WGS samples 

Curated variant calls from each patient were checked in the bam files for each sample from the 

patient (genotyping) using SUFAM (https://github.com/inodb/sufam). Initial cancer cell fractions 

(CCFs) for each mutation were computed with ABSOLUTE [13] using variant allele frequencies 

from SUFAM and copy number alterations from FACETS [11]. CCFs were further refined and 

clustered using Dirichlet process with PhylogicNDT (PNDT) [14]. Mutation clusters identified by 

PNDT for each patient were plotted as heatmaps showing CCF levels for each cluster in each 

sample of the patient. Clusters with less than 5% of total mutations across all samples from a 

given patient were excluded. PhylogicNDT clusters were depicted using fishplot package [15] 

(https://github.com/chrisamiller/fishplot). CCFs refined by PhylogicNDT were used to infer the 

order of clones in pre- and post-treatment, and for other timepoints, fractions were simulated 

due to lack of data. Mutational signatures (COSMIC v3.1) for each mutation cluster were 

computed with MutationalPatterns [16]. MutationalPatterns was run in strict mode with 

bootstrapping. Median exposures across 100 iterations were picked for each signature. 

Signatures with the same etiology were combined (e.g., SBS2 and SBS13 for APOBEC).  

Structural variant calls and circos plot 

Manta [17] and SvABA [18] were used to call structure variants from whole-genome 

sequencing. The details for the setup and calling can be found at the following code repository, 

respectively: Manta- https://github.com/ipstone/modules/blob/master/sv_callers/mantaTN.mk, 
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SvABA: https://github.com/ipstone/modules/blob/master/sv_callers/svabaTN.mk. The VCF 

outputs are converted to Bedpe format with the vcfToBedpe script 

(https://github.com/ctsa/svtools) before being intersected with bedtools [19] pairToPair function 

with '-slop' option set at 25. The intersected structure variant calls are used with other genomics 

data (SNV, indels, copy number alterations) to generate the circos plots through the 

signature.tools.lib R package [20](https://github.com/Nik-Zainal-Group/signature.tools.lib). 

Assessment of kataegis and chromothripsis in WGS samples 

The R package KataegisPortal was used to identify loci of localised hypermutations[21].  The 

KataegisPortal code and documentation are available at 

https://github.com/MeichunCai/KataegisPortal. Copy number segment files and structural 

variant calls were inputted in to ShatterSeek [22] and regions of chromothripsis were filtered to 

only “high confidence” regions determined by oscillating copy number states and statistically 

significant breakpoint enrichment/fragment joins as previously described [22]. Kataegis, and 

chromothripsis regions were visualized using tagore, a python package created to visualize 

areas of interest on human chromosome ideograms, as previously described [23]. 
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SUPPLEMENTARY TABLES 
 
 
Supplementary Table 1.  Frequency of single nucleotide substitutions in pre-
treatment and post-treatment samples 
 
 

 Pre-Treatment 
Mutations 
(N=160,067) 

Post-Treatment 
Mutations 
(N=180,943) 

C>A 33097 (20.7%) 30682 (16.9%) 
C>G 22260 (13.9%) 36275 (20%) 
C>T 44299 (27.7%) 57965 (32%) 
T>A 16718 (10.4%) 15350 (8.5%) 
T>C 28710 (17.9%) 26564 (14.7%) 
T>G 14983 (9.4%) 14107 (7.8%) 
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Supplementary Table 2. Frequency of single nucleotide substitutions in all 
mutations, mutations at <10% variant allele frequency (VAF) and mutations at 
<5% VAF 
 
 

 All mutations 
(N=300,334) 

Mutations <10% 
VAF 
(N=87,635) 

Mutations <5% 
VAF 
(N=4,413) 

C>A 57218 (19%) 13387 (15.3%) 535 (12.1%) 
C>G 53702 (17.9%) 15514 (17.7%) 994 (22.5%) 
C>T 89833 (29.9%) 28273 (32.3%) 1290 (29.2%) 
T>A 28035 (9.3%) 7141 (8.1%) 306 (6.9%)  
T>C 46163 (15.4%) 15686 (17.9%) 916 (20.7%) 
T>G 25383 (8.4%) 7634 (8.7%) 372 (8.4%) 
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Supplementary Table 3. Cohen’s Kappa correlation coefficients for the 
agreement in detecting APOBEC as dominant signature in lung adenocarcinoma 
from the TCGA between whole exome sequencing (WES) and simulated MSK-
IMPACT gene panel. SNVs: single nucleotide variants. 
 

 Actual Positive Actual Negative K Score 

>5 SNVs   0.72 

Predicted Positive 37 11  

Predicted Negative 13 329  

>10 SNVs   0.77 

Predicted Positive 24 8  

Predicted Negative 4 227  

>15 SNVs   0.81 

Predicted Positive 17 4  

Predicted Negative 3 156  
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Supplementary Table 4. Univariate analysis for APOBEC as dominant 
mutational signature 
 

Characteristic N Event N OR1 95% CI1 p-value q-value2 

Group 3,248 470   <0.001 <0.001 

RTK Actionable Driver   — —   

KRAS Mutant   0.30 0.23, 0.39   

Other   0.72 0.57, 0.91   

Gender 3,005 434   0.004 0.005 

Female   — —   

Male   1.36 1.10, 1.67   

Smoking status 2,067 319   <0.001 <0.001 

Current   — —   

Former   1.11 0.79, 1.60   

Never   4.54 3.14, 6.67   

Age category 3,239 469   0.11 0.11 

<65 years   — —   

≥65 years   0.85 0.69, 1.04   

Sample type 3,248 470   <0.001 <0.001 

Metastasis   — —   

Primary   0.59 0.48, 0.72   

1OR = Odds Ratio, CI = Confidence Interval 
2False discovery rate correction for multiple testing 
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Supplementary Table 5. Multivariate analysis for APOBEC as dominant 
mutational signature 
 

Characteristic N Event N OR1 95% CI1 p-value q-value2 

Group 2,011 309   <0.001 <0.001 

RTK Actionable Driver   — —   

KRAS Mutant   0.58 0.38, 0.88   

Other   1.24 0.88, 1.77   

Gender 2,011 309   0.021 0.028 

Female   — —   

Male   1.35 1.05, 1.75   

Smoking status 2,011 309   <0.001 <0.001 

Current   — —   

Former   1.06 0.74, 1.53   

Never   3.70 2.36, 5.86   

Sample type 2,011 309   0.037 0.037 

Metastasis   — —   

Primary   0.76 0.59, 0.98   
1OR = Odds Ratio, CI = Confidence Interval 
2False discovery rate correction for multiple testing 
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SUPPLEMENTARY FIGURE LEGENDS 
 
Supplementary Figure 1. Evaluation of APOBEC mutagenesis in lung adenocarcinomas 
sequenced by MSK-IMPACT targeted multi-gene panel.  
A. Performance evaluation of SigMA on simulated MSK-IMPACT data from TCGA lung 
adenocarcinoma (LUAD). Pearson’s correlation of APOBEC exposures obtained through whole-
exome sequencing (WES) and MSK-IMPACT panel data obtained from simulation through 
down-sampling of the WES. Sensitivity, specificity, and accuracy are referred to the capacity of 
SigMA to detect APOBEC exposures higher than the 20% threshold (i.e., APOBEC is greater than 
20% of the total exposure). The performance was evaluated using three different cutoffs for the 
minimum number of single nucleotide variants (SNVs) detected from the simulated MSK-
IMPACT panel (≥5 SNVs, n=390 samples; ≥10 SNVs, n=263 samples; ≥15 SNVs, n=180=samples). 
B. Correlation between APOBEC exposure inferred from WES data (TCGA) and APOBEC 
exposure from simulated MSK-IMPACT targeted sequencing. Scatter plot depicting the 
correlation of APOBEC mutational signatures exposure in samples that underwent both WES 
and simulated MSK-IMPACT (n=390), by down-sampling the TCGA WES data to match the MSK-
IMPACT genomic footprint. The regression line and 95% confidence intervals are highlighted in 
blue. Statistical correlation was performed using the Pearson’s correlation test. C. Correlation 
between APOBEC exposure calculated from whole-genome sequencing data and APOBEC 
exposure from MSK-IMPACT targeted sequencing performed in matched samples. Scatter plot 
shows the correlation of APOBEC mutational signatures exposure in samples (n=18) that 
underwent both whole-genome sequencing and MSK-IMPACT sequencing. The regression line 
and 95% confidence intervals are highlighted in blue. Statistical correlation was performed 
using the Pearson’s correlation test. 
 
Supplementary Figure 2. APOBEC mutagenesis in lung adenocarcinoma according to pre-
specified single nucleotide variants (SNVs) cut-offs. 
A-C. Stacked bar plots of dominant signatures across RTK driver, KRAS mutant, and Other 
groups using different single nucleotide variants (SNVs) as input cut-off, ≥ 5 SNVs (A), ≥10 
SNVs (B), and ≥15 SNVs (C). Dominant signature was selected according to the category 
assigned by SigMA. D-F. Comparison of APOBEC and smoking-related mutational signature 
exposures between RTK driver, KRAS mutant, and Other groups, using different samples with 
varying numbers of single nucleotide variants (SNVs) as input cut-off, namely ≥ 5 SNVs (D), 
≥10 SNVs (E), and ≥15 SNVs (F). The mean exposures attributed to smoking and APOBEC 
processes are plotted with error bars indicating standard deviations. Mutational signatures are 
color-coded according to the legend. Statistical comparisons were performed using two-sided 
Wilcoxon-Mann–Whitney test. RTK driver was considered as reference group. **** = p < 0.001. 
 
Supplementary Figure 3. APOBEC mutagenesis in primary and metastatic lung 
adenocarcinomas. 
A. Correlations of mutational signatures exposures in lung adenocarcinoma. The heatmap 
matrix shows the correlation between relevant mutational signatures, such as Aging, APOBEC, 
Smoking and homologous recombination deficiency (HRD), in lung adenocarcinoma samples 
from the MSK-IMPACT cohort (n=3276). Legend indicates strength of correlation coefficient 
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(red: high correlation; blue: weak correlation). Statistical correlation was performed using the 
Pearson’s correlation test. B. APOBEC site mutations according to the clonal status. Barplots 
show the proportion of APOBEC site vs non-APOBEC site mutations by the clonal status 
assessed for the given mutation. Subgroup analysis by APOBEC dominant vs non-APOBEC 
dominant (columns) and different molecular subgroups (rows) is displayed (RTK driven [N=625], 
KRAS mutant [N=1389), Other [N=1262]). C. Mutational signature heatmaps of primary 
(n=1884) and metastatic (n=1364) lung adenocarcinomas from MSK-IMPACT cohort. The 
heatmap shows the landscape of mutational signatures from primary and metastatic lung 
adenocarcinomas based on different clinically relevant subtypes (RTK Driver, KRAS mutant and 
Other). Exposure of mutational signatures for each sample according to the group (RTK driven 
[N=625], KRAS mutant [N=1389), Other [N=1262]) and dominant mutational signature category. 
Exposures are reported as continuous variables and colored according to the legend (0 = white; 
0.01-0.19 = orange shades; 0.2-1.0 = red shades). D. APOBEC exposure in primary versus 
metastatic lung adenocarcinoma. Plotted are the mean exposure of APOBEC, with error bars 
indicating standard deviations. Statistical comparisons were performed using two-sided 
Wilcoxon-Mann–Whitney test. ns, not significant; * = P < 0.05, ** = P < 0.01, *** = P < 0.001. E. 
APOBEC exposure in primary versus metastatic lung adenocarcinoma, according to the clinical 
subtype. Plotted are the mean exposure of APOBEC, with error bars indicating standard 
deviations. Statistical comparisons were performed using two-sided Wilcoxon-Mann–Whitney 
test. ns, not significant; * = p < 0.05, ** = p< 0.01, *** = p< 0.001. 
 
Supplementary Figure 4. APOBEC mutagenesis in pre- and post-osimertinib EGFR-mutant lung 
adenocarcinomas. 
A. Stacked bar plots of dominant signatures across pre- (N=93) and post-osimertinib (N=93) 
subgroups. Dominant signature was selected according to the category assigned by SigMA. B. 
APOBEC mutational signature exposure in paired pre- and post-osimertinib samples (n=54). 
Plotted are the median, with error bars indicating interquartile ranges. Lines are colored by 
type of change in exposure (increase vs not-increase) according to the legend.  Statistical 
comparisons were performed using two-sided Wilcoxon signed-rank test. C. Somatic tumor 
mutation burden (TMB) APOBEC exposure in in pre-osimertinib and post-osimertinib lung 
adenocarcinoma. Plotted are the median, with error bars indicating interquartile ranges. 
Statistical comparisons were performed using two-sided Wilcoxon-Mann–Whitney test. D. 
Proportion of mutations private to the post-treatment or shared with the pre-treatment 
sample from 9 paired cases analyzed by whole genome sequencing (WGS). Barplots show the 
proportion of mutations based on the condition of being an APOBEC site (yellow) or not (grey). 
P value indicates statistical significance by Fisher’s exact test. E-F. Patterns of copy number 
alterations in pre-osimertinib (top) and post-osimertinib (middle) lung adenocarcinoma. E) 
Patterns of copy number alterations in APOBEC low (<20%) pre-osimertinib (top) and post-
osimertinib (middle) lung adenocarcinoma. F) Patterns of copy number alterations in APOBEC 
high (>20%) pre-osimertinib (top) and post-osimertinib (middle) lung adenocarcinoma. At the 
bottom of each plot, −Log10(P) by two-sided Fisher’s exact tests, corrected for multiple testing. 
The frequencies of amplifications (green bars) and homozygous deletions (blue bars) are 
plotted above and below the x axis, respectively. 
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Supplementary Figure 5. Clinical correlations in osimertinib-treated EGFR-mutant 
adenocarcinoma samples.  
A. Kaplan-Meier overall survival (OS) curves based on pre-treatment dominant signature 
(APOBEC vs. other). B. Kaplan-Meier OS based on post-treatment dominant signature (APOBEC 
vs other). C. Kaplan-Meier OS based on APOBEC as dominant signature in either the pre- or 
post-treatment sample. D. Kaplan-Meier TTD for patients treated with first line osimertinib 
stratified according to the pre-treatment dominant signature. 
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