
Applicability of single-step
genomic evaluation with a
random regression model for
reproductive traits in turkeys
(Meleagris gallopavo)

Bayode O. Makanjuola1, Emhimad A. Abdalla1,
Benjamin J. Wood1,2,3 and Christine F. Baes1,4*
1Centre for Genomic Improvement of Livestock, Department of Animal Biosciences, University of
Guelph, Guelph, ON, Canada, 2School of Veterinary Science, University of Queensland, Gatton, QLD,
Australia, 3Hybrid Turkeys, Kitchener, ON, Canada, 4Institute of Genetics, Vetsuisse Faculty, University
of Bern, Bern, Switzerland

Fertility and hatchability are economically important traits due to their effect on

poult output coming from the turkey hatchery. Traditionally, fertility is recorded

as the number of fertile eggs set in the incubator (FERT), defined at a time point

during incubation by the identification of a developing embryo. Hatchability is

recorded as either the number of fertile eggs that hatched (hatch of fertile, HOF)

or the number hatched from all the eggs set (hatch of set, HOS). These traits are

collected throughout the productive life of the bird and are conventionally

cumulated, resulting in each bird having a single record per trait. Genetic

evaluations of these traits have been estimated using pedigree relationships.

However, the longitudinal nature of the traits and the availability of genomic

information have renewed interest in using random regression (RR) to capture

the differences in repeatedly recorded traits, as well as in the incorporation of

genomic relationships. Therefore, the objectives of this study were: 1) to

compare the applicability of a RR model with a cumulative model (CUM)

using both pedigree and genomic information for genetic evaluation of

FERT, HOF, and HOS and 2) to estimate and compare predictability from the

models. For this study, a total of 63,935 biweekly FERT, HOF, and HOS records

from 7,211 hensmated to 1,524 tomswere available for amaternal turkey line. In

total, 4,832 animals had genotypic records, and pedigree information on

11,191 animals was available. Estimated heritability from the CUM model

using pedigree information was 0.11 ± 0.02, 0.24 ± 0.02, and 0.24 ±

0.02 for FERT, HOF, and HOS, respectively. With random regression using

pedigree relationships, heritability estimates were in the range of 0.04–0.09,

0.11–0.17, and 0.09–0.18 for FERT, HOF, and HOS, respectively. The

incorporation of genomic information increased the heritability by an

average of 28 and 23% for CUM and RR models, respectively. In addition,

the incorporation of genomic information caused predictability to increase by

approximately 11 and 7% for HOF and HOS, respectively; however, a decrease in

predictability of about 12% was observed for FERT. Our findings suggest that RR

models using pedigree and genomic relationships simultaneously will achieve a

higher predictability than the traditional CUM model.
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Introduction

Turkey meat continues to be a popular meat for consumption

with a total production of approximately 6million tonnes in 2019

(FAO, 2021). The continuous production of turkey poults is

dependent on reproductive efficiency. Therefore, improvement

of reproductive efficiency increases the production of turkey

poults and has a direct effect on the economic growth of the

industry. Given the importance of reproductive efficiency in

turkeys, research emphasis has focused more on improving

egg production (Nestor et al., 1996; Kranis et al., 2007), with

less emphasis placed on fertility and hatchability traits. In

contrast to egg production, fertility and hatchability traits in

turkeys are more directly related to the production of poults.

Furthermore, these traits are significant in improving

reproductive efficiency in turkeys as they are easily and

regularly collected over the productive life of the bird, as well

as being influenced by genetic and environmental factors (Wolc

and Olori, 2009).

Traditionally, genetic evaluation of these traits has been

performed using cumulative (CUM) records collected over the

productive life of the bird (Case et al., 2010). However, the

longitudinal nature of these traits allows the opportunity to use

a model that accounts for the differences in records collected at

different time points. For longitudinal traits, random regression

(RR) has often been proposed as the model of choice to better

account for genetic and environmental variances at different time

points. The first potential and practical application of RR was

implemented on test-day milk yield in dairy cattle (Schaeffer and

Dekkers, 1994). Since its first application, RR has been used to

estimate genetic parameters for carcass conformation in beef cattle

(Englishby et al., 2016), egg production and bodyweight in chicken

(Anang et al., 2002; Rovadoscki et al., 2016), survival rate in dairy

cattle (Sasaki et al., 2015), and body weight in goats (Kheirabadi

and Rashidi, 2016). Furthermore, a broiler breeder study by

Makanjuola et al. (2021) reported higher genetic gain with the

RR model than the cumulative model for hatch of fertile trait.

The availability of genomic information in many species has

allowed for a better estimation of the relationships between

individuals. The combination of this information with

pedigree information simultaneously in a single-step genomic

best linear unbiased prediction (ssGBLUP) (Legarra et al., 2009;

Misztal et al., 2009) has been shown to outperform the traditional

pedigree BLUP approach (Aguilar et al., 2010; Christensen and

Lund, 2010). Based on the ssGBLUP approach, Abdalla et al.

(2019) observed a 16% increased accuracy for walking score in

turkeys over traditional pedigree BLUP. In addition, Emamgholi

Begli et al. (2021) observed that accuracies obtained with RR

ssGBLUP were generally equal to or higher than those obtained

with RR-PBLUP for egg production traits. Similarly, Oliveira

et al. (2019) reported higher validation reliabilities for genomic

estimated breeding values (GEBV) in comparison to parent

averages for milk production traits in dairy cattle when using

a multi-trait RR test-day model. Given the benefits of increasing

the prediction accuracy with genomic information, as well as the

limited number of RR ssGBLUP studies in turkeys, the aims of

this study were to 1) estimate genetic parameters for FERT, HOS,

and HOF in turkeys using CUM and RR models with pedigree

and genomic information and 2) compare the predictive ability of

CUM and RR models when using pedigree and genomic

information.

Materials and methods

Phenotypes and pedigree data

Phenotypic data for this study were provided by Hybrid

Turkeys, Kitchener, Canada. In total, 63,935 egg production

records collected on a biweekly basis from a purebred turkey

female line were available from 2010 to 2019 (Tables 1, 2). These

egg production records were collected from 7,211 hens such that

there was a total of 7,211 cumulative records, which indicates one

record per hen. Cumulative record for each hen was calculated as

the total number of eggs produced throughout the productive life

of the hen, and this was subsequently used to derive the

cumulative fertility and hatchability records. The 7,211 hens

were mated to 1,524 toms, and eggs were set in the incubator

biweekly throughout the productive life of the hen between

38 and 62 weeks of age. Individual hens were artificially

inseminated, and trap-nest collected eggs were labeled with

the identity of the hen. Consequently, this provided a pedigree

for the progeny, as well as identification for the following

hatchery traits. Fertility (FERT) records were collected by a

process called candling, whereby light is passed through the

eggs to determine the presence of a developing embryo. Hence,

FERT was measured as the percent proportion of fertile eggs over

the total egg set. Following the collection of fertility records,

records of a successful hatching of an egg were used to calculate

hatch of set (HOS), which is the proportion of all egg sets that

hatched. Finally hatch of fertile (HOF) was defined as the

proportion of fertile eggs that successfully hatched. Pedigree

data for all animals with phenotypic records were provided

and consisted of 15 generations and 11,191 individuals.

Genotype data

Of the animals with phenotypic records, a total of

4,832 animals were genotyped using a proprietary 65K SNP
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panel (Illumina, Inc). The genotype call rate was 94%, and

missing genotypes were imputed using AlphaImpute version 2

(Whalen and Hickey, 2020). For imputation, both pedigree and

population algorithms were used with a reference population of

1,626 animals. Default settings in AlphaImpute were used for

imputation; however, the peeling and phasing cycles were

increased to 50 cycles for pedigree and population algorithms,

respectively. Increasing the phasing and peeling cycles was

performed as a measure to increase the probability of

achieving high-confidence-phased haplotypes and correctly

calling the genotypes. An error rate of 0.01% was allowed for

genotype calls. Imputation accuracy was estimated using allelic

r2, which is less dependent on allele frequencies and was greater

than 98%. For quality control measures, non-autosomal SNP

markers and autosomal SNP markers with MAF less than

0.05 and significantly deviating from Hardy–Weinberg

equilibrium (P < 1 × 10−8) were excluded. After editing,

there were a total of 35,751 SNP markers retained for further

analysis.

Statistical analysis

Best linear unbiased prediction
To investigate the influence of different parameters on

reproductive traits, a CUM animal mixed model using only a

single record per animal and a RR animal mixed model using all

available records per animal were applied to estimate genetic

parameters based only on pedigree relationships.

Cumulative model

With the CUMmodel, the followingmixedmodel equation is

used to estimate genetic parameters for reproductive traits:

yij � μ + hwi + aj + eij,

where yij is a vector of the CUM record of either FERT or HOF or

HOS for the jth animal belonging to the ith hatch week, μ is the

overall mean, hwi is a vector of the fixed effect of the ith hatch

week, and aj is a vector of the random genetic effect of the animal.

The assumption of the random effects was: aj ~ N(0,Aσ2aj ),

TABLE 1 Descriptive statistics of the evaluated traits hatch of set (HOS), hatch of fertile (HOF), and fertility of set (FERT) including the number of
records for each model, mean, standard deviation, and the number of records in the training and validation populations for each model.

Model Trait Mean ± SD Number of
records

Training population Validation
population

Cumulative (CUM) HOS 67.94 ± 16.11

HOF 80.86 ± 14.52 7,211 6,447 764

FERT 81.27 ± 14.02

Random regression (RR) HOS 68.64 ± 27.20

HOF 81.10 ± 26.07 63,935 56,471 7,464

FERT 82.03 ± 22.75

TABLE 2 Descriptive statistics for hatch of set (HOS), hatch of fertile (HOF), and fertility of set (FERT) including the number of records, mean, standard
deviation (SD), and coefficient of variation (CV) for the different time points (38–62 weeks).

Week Number of records FERT ± SD (FERT) CV% HOF ± SD (HOF) CV% HOS ± SD (HOS) CV%

38 2,838 84.06 ± 21.06 25.06 83.57 ± 25.49 30.50 71.53 ± 27.20 38.03

40 5,863 83.21 ± 19.47 23.39 83.69 ± 22.25 26.58 70.72 ± 24.70 34.92

42 6,395 82.29 ± 19.07 23.18 83.79 ± 21.02 25.08 69.97 ± 23.44 33.50

44 5,817 83.70 ± 19.06 22.78 83.80 ± 21.68 25.87 71.20 ± 23.84 33.49

46 5,687 84.06 ± 19.66 23.38 82.57 ± 23.21 28.11 70.76 ± 24.71 34.92

48 5,649 84.10 ± 20.55 24.44 82.42 ± 23.90 28.99 71.02 ± 25.36 35.71

50 5,507 83.84 ± 21.89 26.11 81.87 ± 24.99 30.53 70.56 ± 26.48 37.53

52 5,571 81.97 ± 23.84 29.08 81.40 ± 26.28 32.28 69.04 ± 27.74 40.18

54 4,781 81.83 ± 24.10 29.45 80.16 ± 27.37 34.14 67.85 ± 28.42 41.88

56 4,544 81.19 ± 24.76 30.50 79.82 ± 28.00 35.08 67.48 ± 28.85 42.75

58 4,348 79.96 ± 25.71 32.20 77.00 ± 30.25 39.28 64.73 ± 30.11 46.51

60 3,709 77.92 ± 27.61 35.43 75.82 ± 31.56 41.62 62.63 ± 31.16 49.75

62 3,226 74.48 ± 30.02 40.31 73.55 ± 34.40 46.77 59.33 ± 32.62 54.99
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where σ2aj is the additive genetic variance of the animal, σ2eij is the

error variance, and A is the numerator relationship matrix.

Random regression model

For the RR model, the following mixed model equation is

used to estimate genetic parameters for reproductive trait

biweekly records:

yijkno � μ + hwi + ehwj +∑3
l�1
blXlk +∑3

l�0
aFnolZlk +∑3

l�0
peFnolZlk

+∑1
l�0
aMolZlk +∑2

l�0
peMolZlk + eijkno,

where yijkno is a vector of repeated biweekly records for either

FERT or HOF or HOS of the nth hen mated to the oth tom at the

kth age belonging to the ith hatch week, µ is the overall mean, hwi

is a vector of the fixed effect of the ith hatch week, ehwj is a vector

of the fixed effect of the jth egg hatch week, bl is a fixed regression
coefficient of age of the hen when records were collected, Xlk is the

incidencematrix value of the lth degree Legendre polynomial fitted

for the effect of kth age, aFnol is the RR coefficient of additive

genetic effect of the nth henmated to the oth tom, aMol is the RR of

additive genetic effect of the oth tom, peFnol is the RR coefficient of

permanent environment effect of the hen mated to the oth tom,

peMol is the RR coefficient of permanent environment effect of the

oth tom, Zlk is the incidence matrix value of the lth degree

Legendre polynomial fitted for the additive genetic and

permanent environment effects at kth age, and eijkno is the

residual error term. The assumptions of the random effects

were: aFno ~ N(0, Aσ2aFno ), aMo ~ N(0,Aσ2aMo
),

peMo ~ N(0, Iσ2peMo
), peFno ~ N(0, Iσ2peFno ), and

eijkno ~ N(0, Iσ2eijkno ), where σ2aFno is the hen additive genetic

variance, σ2aMo
is the tom additive genetic variance, σ2peMo

is the

tom permanent environment variance, σ2peFno is the hen permanent

environment variance, σ2eijkno is the error variance, and A is the

numerator relationship matrix. Also, the model was fitted using

heterogeneous residuals per age class. For the purpose of

comparison between CUM and RR models, variance

components estimated for biweekly ages with the RR model

were averaged to produce a single value for the additive genetic

variance, permanent environment variance, and repeatability.

Single-step genomic best linear unbiased
prediction

Following the presentation of creating a relationship matrix

that included pedigree and genomic information (Legarra et al.,

2009), an H relationship matrix derived from the combination of

pedigree and genomic data was created to replace the pedigree

relationship matrix (A) used in the aforementioned animal

mixed model. Due to the computational cost of computing

the H matrix, the inverse of H matrix is computed with a

simpler structure:

H−1 � A−1 + [ 0 0
0 (0.95G + 0.05A22)−1 − A−1

22
],

where A−1 is the inverse of the pedigree relationship matrix, A−1
22

is the inverse of the Amatrix of only the genotyped animals, and

G−1 is the inverse of the genomic relationship matrix estimated

using the method presented by VanRaden (2008). Singular

matrices are not invertible; therefore, to ensure that the G

matrix is invertible, 0.05 of A22 was added to 0.95 of G. These

weighting parameters were chosen because Abdalla et al. (2019)

observed slightly more improvement in breast meat yield in

turkeys with these weightings.

Estimates of the RR coefficients from BLUP and ssGBLUP RR

models were used to derive the pedigree-estimated breeding value

(EBV) and genomic-estimated breeding value (GEBV), respectively.

EBVi � Wα̂i,

GEBVi � W δ̂i,

where α̂i is the estimated additive genetic regression coefficients

for the ith animal, δ̂i is the estimated additive genomic regression

coefficients for the ith animal, andW is a matrix of age covariate

ranging from 38 to 62 weeks and associated with the degree of

Legendre polynomials used.

Variance components and model
comparison

All variance components and genetic parameters used in this

study were estimated using the WOMBAT software program

(Meyer, 2007). To adequately capture the parameters that

TABLE 3 Summary of the fitted degree of Legendre polynomialsa used
in the random regression model with their corresponding log
likelihoods (logL), Akaike information criteria (AIC), and the
significance of their log likelihood ratio test (LRT) relative to the full
model.

Model aF aM peF peM logL AIC LRT

1 3 2 3 2 -231144.99 462382 Full model

2b 3 1 3 2 -231145.36 462376.71 NS

3 3 1 3 1 -231183.22 462446.43 c

aF = additive genetic effect of the hen; aM = additive genetic effect of the tom; peF =

permanent environment effect of the hen; peM = permanent environment effect of

the tom.
aDegree of Legendre polynomials: 1 = linear regression; 2 = quadratic regression; 3 =

cubic regression.
bModel with the best fit in comparison to the full model.
cp value <0.001; NS: no significant difference; full model: model that had the highest

number of parameters indicated by higher degree of Legendre polynomials.
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contribute to the variation observed in reproductive traits when

using RR models, three different models with varying degrees of

Legendre polynomials were compared as shown in Table 3. The first

model was a full model that had the highest possible degree of

Legendre polynomials that converged. The second and third models

were reduced models with lower degrees of Legendre polynomials.

The criteria used to choose the best model were based on the log

likelihood ratio test, the most parsimonious model that converged

with both pedigree and genomic information and the Akaike

information criterion (Akaike, 1998). For the fixed effect, a cubic

polynomial was used because it appropriately described the trend in

the biweekly reproductive traits as shown in Figure 1.

Predictive ability

Predictive ability of BLUP and ssGBLUP for all models was

assessed using the following technique. Initially, observed

phenotypes were corrected for all fixed effects fitted in the full

model based on traditional BLUP (adjusted phenotype). Next,

phenotypic records were removed for approximately 10% (the

youngest animals) defined by hatch between the year 2018 and

2019 (reduced data set). These young animals were assigned to

the validation population, and the remaining 90% animals were

assigned to the training population. Thereafter, EBV and GEBV

for the validation population were estimated. The predictive

ability for each trait was calculated as the Pearson correlation

coefficient between the EBV or GEBV estimated based on the

reduced data set and the adjusted phenotype estimated from the

full data set from the CUM model, while considering only

animals in the validation population. Likewise, Pearson

correlation coefficients between biweekly adjusted phenotypes

from the full model and the biweekly EBV or GEBV estimated

from the reduced data set and only considering animals in the

validation population were used for the RR model.

Results

Data structure

The observed mean for FERT, HOF, and HOS was 81.27,

80.86, and 67.94%, respectively, for single records used for the

CUM model as shown in Table 1. Biweekly averages of FERT,

HOF, and HOS records collected during the productive life of the

hen are plotted in Figure 1 and presented in Table 2. The

reproductive performance trend shows an average of

approximately 84.0% at the early stages of the hen’s productive

life, with a noticeable decline at the later stages of production/lay,

decreasing to approximately 75.0% for FERT and HOF. Similarly,

HOS was high at the beginning of production with an initial value

of approximately 71.0%; however, after week 52, a steady decrease

was observed until 62 weeks with a value of 59.0%.

Genetic parameters of different models
with pedigree and genomic information

Estimates of the variance components for all the models

implemented are presented in Table 4. For the CUMmodel using

FIGURE 1
Biweekly mean of fertility of set (FERT), hatch of fertile (HOF), and hatch of set (HOS) from 38 to 62 weeks of hen age when records were
measured.
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only pedigree information, the additive genetic variances ranged

from 16.50 to 55.05 for all three traits; however, the inclusion of

genomic information consequently increased the additive genetic

variance by approximately 36, 60, and 36% for FERT, HOF, and

HOS, respectively. Generally, the average additive genetic

variances estimated using RR models were higher than those

estimated using CUM and ranged from 35.86 to 108.98 for all

traits with only pedigree information. With the addition of

genomic information, average additive genetic variance

increased to 45.06, 137.08, and 125.46 for FERT, HOF, and

HOS, respectively. The residual variances from the CUM model

were on average 5% lower for all traits when using pedigree and

genomic information than using only pedigree information. In

contrast, for the RR model, there were no substantive differences

in the estimated residual variances between pedigree only and

with the addition of genomic information.

An important reason for the implementation of RR is the

ability to appropriately model the trajectory of longitudinal traits.

This accounts for both the additive and permanent environment

effect for traits with repeated records. The trends observed in the

variance components estimated with the RR model are shown in

Figure 2. The estimated additive genetic variance for HOF shows

that the hen predominantly contributes to the observed variation,

with close to zero contribution from the sire. A similar pattern

was found with HOS; however, the sire contribution to the

additive genetic variation increased steadily toward the end of

production with a slight decline observed in the genetic variation

of the hen. For FERT, both the hen and the sire contributed

considerably to the additive genetic variance, with the sire having

less contribution at the early stages and more contribution at the

later stages of production. The permanent environment

variances of the sire and hen increased gradually from the

beginning of production to the end of production for all traits

except for the permanent environment variance of the hen for

FERT, which was constant throughout the production with a

steep increase at the later production stages. In general, the

addition of genomic information resulted in an increase in the

additive genetic variances contributed by the hen for all traits

with almost no changes in the other variance components.

Heritability estimates from the CUM model for the traits

ranged from 0.11 to 0.24 for all traits with pedigree information

(Tables 5, 6, 7, 8, 9, 10). On average, heritability estimates

increased by approximately 28% for all traits with the

addition of genomic information. Although not directly

comparable to the CUM model, the average heritability

estimates from the RR model with pedigree and genomic

information was estimated to be 0.08, 0.17, and 0.16 for

FERT, HOF, and HOS, respectively. Pedigree estimates of

heritability from the RR model were an average of 23% lower

than estimates with the inclusion of genomic information. The

trend in heritability estimated from the RR model ranged from

0.04 to 0.10, 0.11 to 0.19, and 0.09 to 0.19 for FERT, HOF, and

HOS, respectively (Figure 3). The peak for heritability estimates

was observed at 42 weeks of age or from eggs produced

approximately 1 month into production for all traits, and the

lowest estimates were found at the end of production for FERT

and HOS and 2 weeks into production for HOF. Overall,

heritability estimates from pedigree and genomic information

were higher than pedigree estimates.

Phenotypic and genetic correlations from the RR model are

shown in Tables 5, 6, 7, 8, 9, 10. Estimated genetic correlation was

found to be very high for adjacent weeks and ranged from 0.96 to

0.99. However, as the distance between the weeks increased, the

correlations declined and varied from 0.57 to 0.98. In a similar

pattern, phenotypic correlations were higher for closer weeks

than for weeks further apart. Phenotypic correlations were

substantially lower than genetic correlations and ranged from

0.02 to 0.58.

TABLE 4 Estimates of additive, permanent, error, and phenotypic variances, heritability, and repeatability.

Trait Model Relationshipa σ2
a σ2

pe σ2
e σ2

p h2 re

FERT Cumulative P 16.50 — 128.92 145.42 0.11 ± 0.02 —

P and G 22.27 — 126.36 148.63 0.15 ± 0.02 —

Random regressionb P 35.86 86.79 296.83 635.42 0.06 ± 0.01 0.19

P and G 45.06 84.05 296.77 638.94 0.08 ± 0.01 0.20

HOF Cumulative P 49.21 — 157.27 206.48 0.24 ± 0.02 —

P and G 78.67 — 144.68 223.35 0.35 ± 0.02 —

Random regressionb P 108.98 117.82 477.88 799.77 0.14 ± 0.02 0.29

P and G 137.08 109.58 478.28 815.70 0.17 ± 0.02 0.31

HOS Cumulative P 55.05 — 179.32 234.37 0.24 ± 0.02 —

P and G 75.00 — 171.71 246.72 0.30 ± 0.02 —

Random regressionb P 102.43 144.98 435.05 810.46 0.14 ± 0.02 0.31

P and G 125.46 138.85 435.33 822.42 0.16 ± 0.02 0.32

aP, pedigree information only; P & G, pedigree and genomic information.
bAll variance components, heritability, and repeatability for the random regression are average estimates across time point.
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Predictive ability

As shown in Table 11, the predictive ability of BLUP and

ssGBLUP was assessed for all models considered in this study.

Across most of the studied traits and models, BLUP was

outperformed by ssGBLUP with higher predictivity, and only

FERT showed lower ssGBLUP predictivity than BLUP. For the

CUM model, BLUP predictive ability was estimated to be 0.23,

FIGURE 2
Estimates of variance components for (A) fertility (FERT) with pedigree, (B) FERT with genotypes, (C) hatch of fertile (HOF) with pedigree, (D)
HOFwith ssGBLUP, (E) hatch of set (HOS) with pedigree, and (F)HOSwith ssGBLUP from the random regressionmodel with linear regression for the
additive genetic variance of the hen (hen) and tom (tom), the permanent environment variance of the hen (henpe) and tom (tompe), and the residual
variance (res).
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0.22, and 0.23 for FERT, HOF, and HOS, respectively. With the

incorporation of genomics, these predictivities increased by 14 and

9% forHOF andHOS, respectively, and reduced by 9% for FERT. To

facilitate comparison with the CUMmodel, average predictive ability

were estimated for the RRmodel, which ranged from 0.11 to 0.27 for

all studied traits. The biweekly trend of the predictivities estimated

from the RR model is shown in Figure 4. The figure shows the

maximum predictive ability estimated at approximately 44–46 weeks

of age forHOF andHOS using BLUP and ssGBLUP. Conversely, the

maximum predictivity for FERT was observed at 38 weeks.

Predictivities estimated from BLUP were generally lower than

those estimated from ssGBLUP across all biweekly records and

for all traits. However, BLUP predictive ability at the early stages

of production was higher than ssGBLUP for FERT.

Discussion

The present study sought to estimate genetic parameters for

reproductive traits in a maternal turkey line using CUM and RR

models with pedigree and genomic information. Estimated average

HOF and FERT were approximately 80%, which is close to the

estimates reported by Case et al. (2010). The slightly lower

estimates from this study could be attributable to differences in

the population used. Presently, there are no literature reports on

HOS and limited reports on FERT and HOF in turkeys; hence,

results from layer and broiler chickens were used for comparison.

The mean HOS in this study was 18% lower than HOF, which is

within the range reported for chickens (Wolc et al., 2010; Wolc

et al., 2019). In accordance with previous studies, the trajectory

trend in biweekly FERT, HOF, and HOS are similar to those

reported in turkeys (Dunnington et al., 1990), in broilers (Heier

and Jarp, 2001; Wolc et al., 2009), and in layers (Wolc et al., 2007).

This trend supports the characteristically declining feature of the

traits over the productive life of the hen as well as the longitudinal

nature of these traits.

Genetic parameters between different
models with pedigree and genomic
information

The present study shows that the additive genetic effect of

both the hen and sire plays a significant role in the observed

variation in FERT, which is in line with the study published by

Wolc et al. (2009) in broiler chickens with natural mating.

Conversely, the sire additive genetic effect had a non-

significant contribution to the variation observed in HOF.

Similar results were reported in broiler chickens (Wolc et al.,

2010), which may be due to the limited effect of the male after

fertilization and more pronounced effect of the hen based on the

environment provided for the developing embryo (quality of egg

produced by the hen) (Wolc and Olori, 2009). Estimated additive

genetic and error variances were smaller for all studied traits with

the CUM model than with the RR model. The reduced variances

may be because of accumulating repeated records as a single

record per animal, thereby removing the covariance that exists

between repeated records. With the simultaneous combination of

pedigree and genomic information, additive genetic variances

were higher for all the models and traits than pedigree only

information. This outcome demonstrates that genomic

information better captures actual relationships between

individuals than the expected relationship captured by the

pedigree (Hayes and Goddard, 2008). Based on the pedigree,

heritability estimates for all traits ranged from 0.06 to 0.24 for all

models. These estimates are within the range of

0.08–0.18 reported by Case et al. (2010). As expected,

estimated heritabilities from the CUM model were higher

than those from the RR model (Anang et al., 2000). This

could be due to the reduced residual variance, as well as the

inability to account for the correlated structure of the repeated

records from the different ages. In addition, some components of

the permanent environment variance could be attributed to the

additive genetic variance, which would not be easily removed due

FIGURE 3
Heritability trend for different age classes for (A) fertility (FERT), (B) hatch of fertile (HOF), and (C) hatch of set (HOS) estimated from the random
regression model using pedigree and genotypic information.
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TABLE 5 Estimates of heritability (diagonal), phenotypic correlations (below diagonal), and genetic correlations (above diagonal) for fertility (FERT) using the pedigree random regression model.

Age 38 40 42 44 46 48 50 52 54 56 58 60 62

38 0.09 ± 0.02 0.97 0.91 0.86 0.82 0.81 0.81 0.81 0.79 0.78 0.76 0.72 0.66

40 0.25 0.09 ± 0.01 0.98 0.95 0.92 0.90 0.88 0.86 0.83 0.79 0.76 0.71 0.65

42 0.19 0.27 0.09 ± 0.01 0.99 0.97 0.96 0.93 0.89 0.84 0.80 0.75 0.69 0.64

44 0.14 0.25 0.34 0.08 ± 0.01 0.99 0.98 0.95 0.91 0.86 0.81 0.76 0.71 0.65

46 0.10 0.23 0.33 0.39 0.07 ± 0.01 0.99 0.97 0.94 0.89 0.84 0.79 0.75 0.69

48 0.08 0.20 0.31 0.39 0.44 0.07 ± 0.01 0.99 0.97 0.93 0.89 0.84 0.80 0.75

50 0.07 0.17 0.28 0.36 0.42 0.46 0.06 ± 0.01 0.99 0.97 0.93 0.90 0.86 0.81

52 0.06 0.15 0.25 0.33 0.40 0.46 0.48 0.06 ± 0.01 0.99 0.97 0.94 0.92 0.87

54 0.05 0.14 0.23 0.32 0.39 0.45 0.49 0.51 0.06 ± 0.01 0.99 0.98 0.95 0.92

56 0.05 0.12 0.21 0.29 0.37 0.43 0.47 0.50 0.54 0.06 ± 0.01 0.99 0.98 0.95

58 0.04 0.11 0.19 0.27 0.35 0.41 0.46 0.49 0.53 0.56 0.06 ± 0.01 0.99 0.97

60 0.03 0.10 0.18 0.25 0.31 0.37 0.41 0.44 0.49 0.53 0.57 0.05 ± 0.01 0.99

62 0.02 0.09 0.17 0.23 0.28 0.33 0.36 0.39 0.44 0.49 0.54 0.58 0.04 ± 0.01

TABLE 6 Estimates of heritability (diagonal), phenotypic correlations (below diagonal), and genetic correlations (above diagonal) for fertility (FERT) using the ssGBLUP random regression model.

Age 38 40 42 44 46 48 50 52 54 56 58 60 62

38 0.09 ± 0.02 0.99 0.98 0.97 0.95 0.92 0.88 0.85 0.83 0.81 0.81 0.83 0.87

40 0.26 0.10 ± 0.01 0.99 0.98 0.96 0.92 0.88 0.83 0.80 0.78 0.78 0.79 0.82

42 0.20 0.28 0.10 ± 0.01 0.99 0.97 0.94 0.89 0.85 0.82 0.79 0.78 0.79 0.80

44 0.15 0.26 0.34 0.09 ± 0.01 0.99 0.96 0.93 0.89 0.86 0.84 0.82 0.82 0.82

46 0.12 0.23 0.34 0.40 0.09 ± 0.01 0.99 0.97 0.94 0.92 0.89 0.87 0.86 0.85

48 0.09 0.21 0.32 0.39 0.44 0.09 ± 0.01 0.99 0.97 0.96 0.94 0.92 0.91 0.88

50 0.08 0.18 0.29 0.37 0.43 0.47 0.09 ± 0.01 0.99 0.98 0.97 0.95 0.94 0.90

52 0.07 0.16 0.26 0.34 0.41 0.46 0.49 0.09 ± 0.01 0.99 0.99 0.98 0.96 0.92

54 0.06 0.15 0.24 0.32 0.40 0.46 0.49 0.52 0.09 ± 0.01 0.99 0.99 0.97 0.93

56 0.06 0.13 0.22 0.30 0.37 0.44 0.48 0.51 0.55 0.09 ± 0.01 0.99 0.98 0.95

58 0.05 0.12 0.20 0.28 0.35 0.42 0.46 0.50 0.54 0.56 0.08 ± 0.01 0.99 0.97

60 0.04 0.11 0.18 0.25 0.32 0.37 0.42 0.45 0.49 0.53 0.57 0.06 ± 0.01 0.98

62 0.02 0.10 0.17 0.23 0.28 0.33 0.36 0.39 0.44 0.49 0.54 0.58 0.05 ± 0.01
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TABLE 7 Estimates of heritability (diagonal), phenotypic correlations (below diagonal), and genetic correlations (above diagonal) for hatch of fertile (HOF) using the pedigree random regression model.

Age 38 40 42 44 46 48 50 52 54 56 58 60 62

38 0.12 ± 0.02 0.96 0.86 0.77 0.69 0.64 0.60 0.58 0.57 0.57 0.58 0.59 0.61

40 0.25 0.14 ± 0.02 0.97 0.921 0.869 0.825 0.790 0.761 0.74 0.71 0.69 0.68 0.67

42 0.19 0.29 0.17 ± 0.02 0.98 0.95 0.92 0.89 0.87 0.83 0.79 0.76 0.73 0.70

44 0.15 0.26 0.35 0.17 ± 0.02 0.99 0.97 0.953 0.92 0.88 0.85 0.80 0.76 0.72

46 0.12 0.24 0.34 0.38 0.16 ± 0.02 0.99 0.98 0.95 0.93 0.88 0.84 0.79 0.74

48 0.10 0.22 0.32 0.37 0.39 0.16 ± 0.02 0.99 0.98 0.95 0.92 0.87 0.82 0.78

50 0.09 0.19 0.29 0.34 0.38 0.40 0.15 ± 0.01 0.99 0.98 0.95 0.91 0.86 0.82

52 0.09 0.17 0.26 0.31 0.35 0.39 0.40 0.14 ± 0.01 0.99 0.98 0.94 0.91 0.87

54 0.09 0.16 0.24 0.29 0.33 0.37 0.39 0.41 0.14 ± 0.02 0.99 0.97 0.95 0.91

56 0.10 0.15 0.21 0.26 0.31 0.35 0.38 0.41 0.43 0.13 ± 0.02 0.99 0.98 0.95

58 0.11 0.15 0.20 0.24 0.28 0.33 0.36 0.39 0.42 0.43 0.13 ± 0.02 0.99 0.98

60 0.11 0.15 0.19 0.23 0.26 0.30 0.33 0.36 0.39 0.42 0.43 0.14 ± 0.02 0.99

62 0.11 0.15 0.19 0.21 0.24 0.27 0.29 0.31 0.34 0.37 0.39 0.42 0.13 ± 0.03

TABLE 8 Estimates of heritability (diagonal), phenotypic correlations (below diagonal), and genetic correlations (above diagonal) for hatch of fertile (HOF) using the ssGBLUP random regression model.

Age 38 40 42 44 46 48 50 52 54 56 58 60 62

38 0.13 ± 0.02 0.96 0.84 0.80 0.73 0.68 0.65 0.63 0.63 0.64 0.67 0.69 0.73

40 0.257 0.16 ± 0.02 0.98 0.93 0.88 0.84 0.81 0.79 0.78 0.77 0.77 0.77 0.78

42 0.212 0.30 0.19 ± 0.02 0.99 0.96 0.93 0.91 0.89 0.87 0.85 0.83 0.81 0.79

44 0.163 0.28 0.36 0.19 ± 0.02 0.99 0.98 0.96 0.94 0.92 0.89 0.86 0.83 0.79

46 0.131 0.26 0.35 0.39 0.19 ± 0.02 0.99 0.98 0.97 0.95 0.92 0.88 0.84 0.80

48 0.115 0.24 0.33 0.39 0.41 0.19 ± 0.02 0.99 0.98 0.97 0.94 0.91 0.86 0.82

50 0.106 0.21 0.30 0.36 0.39 0.42 0.18 ± 0.01 0.99 0.98 0.96 0.93 0.89 0.85

52 0.104 0.19 0.27 0.33 0.37 0.40 0.42 0.17 ± 0.01 0.99 0.98 0.96 0.92 0.88

54 0.110 0.18 0.25 0.30 0.35 0.39 0.41 0.43 0.17 ± 0.02 0.99 0.98 0.95 0.92

56 0.116 0.17 0.23 0.28 0.32 0.37 0.39 0.42 0.44 0.17 ± 0.02 0.99 0.98 0.95

58 0.122 0.17 0.22 0.26 0.30 0.34 0.37 0.40 0.43 0.45 0.17 ± 0.02 0.99 0.98

60 0.126 0.17 0.21 0.25 0.28 0.32 0.34 0.37 0.41 0.43 0.44 0.17 ± 0.02 0.99

62 0.122 0.17 0.21 0.23 0.25 0.28 0.30 0.32 0.35 0.38 0.41 0.43 0.17 ± 0.02
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TABLE 9 Estimates of heritability (diagonal), phenotypic correlations (below diagonal), and genetic correlations (above diagonal) for hatch of set (HOS) using the pedigree random regression model.

Age 38 40 42 44 46 48 50 52 54 56 58 60 62

38 0.15 ± 0.02 0.95 0.84 0.74 0.67 0.63 0.60 0.58 0.57 0.56 0.56 0.55 0.55

40 0.31 0.16 ± 0.02 0.97 0.91 0.86 0.82 0.78 0.75 0.71 0.68 0.66 0.65 0.65

42 0.25 0.33 0.18 ± 0.02 0.98 0.95 0.92 0.88 0.84 0.80 0.75 0.72 0.70 0.70

44 0.19 0.30 0.39 0.18 ± 0.02 0.99 0.97 0.94 0.90 0.86 0.80 0.77 0.74 0.75

46 0.15 0.28 0.37 0.42 0.17 ± 0.02 0.99 0.97 0.94 0.90 0.85 0.81 0.79 0.79

48 0.13 0.25 0.35 0.41 0.44 0.16 ± 0.01 0.99 0.97 0.93 0.90 0.86 0.84 0.84

50 0.11 0.22 0.32 0.38 0.42 0.45 0.15 ± 0.01 0.99 0.97 0.94 0.91 0.89 0.89

52 0.11 0.20 0.29 0.35 0.39 0.43 0.45 0.13 ± 0.01 0.99 0.97 0.95 0.94 0.93

54 0.12 0.19 0.26 0.32 0.37 0.41 0.44 0.46 0.13 ± 0.01 0.99 0.98 0.97 0.96

56 0.12 0.18 0.24 0.29 0.34 0.39 0.43 0.45 0.48 0.12 ± 0.02 0.99 0.98 0.97

58 0.12 0.17 0.22 0.27 0.32 0.36 0.40 0.43 0.46 0.48 0.12 ± 0.02 0.99 0.98

60 0.12 0.16 0.21 0.25 0.29 0.33 0.36 0.39 0.43 0.45 0.47 0.11 ± 0.02 0.99

62 0.11 0.16 0.20 0.24 0.27 0.29 0.32 0.34 0.38 0.41 0.45 0.47 0.09 ± 0.02

TABLE 10 Estimates of heritability (diagonal), phenotypic correlations (below diagonal), and genetic correlations (above diagonal) for hatch of set (HOS) using the ssGBLUP random regression model.

Age 38 40 42 44 46 48 50 52 54 56 58 60 62

38 0.14 ± 0.02 0.95 0.87 0.79 0.74 0.70 0.68 0.66 0.65 0.65 0.66 0.67 0.68

40 0.32 0.16 ± 0.02 0.97 0.93 0.89 0.85 0.83 0.80 0.78 0.76 0.74 0.74 0.74

42 0.26 0.34 0.19 ± 0.02 0.98 0.96 0.94 0.91 0.88 0.85 0.82 0,79 0.78 0.78

44 0.19 0.31 0.40 0.19 ± 0.02 0.99 0.97 0.95 0.92 0.89 0.86 0.83 0.81 0.80

46 0.16 0.29 0.39 0.44 0.19 ± 0.02 0.99 0.980 0.95 0.92 0.89 0.87 0.85 0.83

48 0.14 0.26 0.37 0.42 0.45 0.18 ± 0.01 0.99 0.98 0.95 0.93 0.90 0.88 0.86

50 0.13 0.24 0.33 0.40 0.43 0.46 0.18 ± 0.01 0.99 0.98 0.96 0.93 0.91 0.89

52 0.12 0.21 0.30 0.36 0.41 0.44 0.46 0.17 ± 0.01 0.99 0.98 0.96 0.94 0.92

54 0.13 0.20 0.28 0.33 0.38 0.43 0.46 0.48 0.16 ± 0.02 0.99 0.98 0.97 0.95

56 0.13 0.19 0.26 0.31 0.35 0.40 0.44 0.47 0.49 0.16 ± 0.02 0.99 0.98 0.96

58 0.14 0.18 0.23 0.28 0.33 0.37 0.41 0.44 0.47 0.49 0.15 ± 0.02 0.99 0.98

60 0.13 0.18 0.22 0.26 0.30 0.34 0.37 0.40 0.43 0.46 0.48 0.14 ± 0.02 0.99

62 0.12 0.17 0.22 0.25 0.28 0.30 0.33 0.36 0.39 0.41 0.45 0.48 0.13 ± 0.02
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to the cumulation of records. From the RR model, heritability

increased from 38 weeks of age when records were measured to a

maximum at approximately week 42–46 and varied across all

productive ages. Similar trends across multiple time points have

been found for FERT, HOF, and egg production in turkeys

(Kranis et al., 2007; Case, 2011). This indicates that RR

properly accounts for environmental differences throughout

the productive life of the animals. This may also indicate that

different genes are being expressed at different times across the

productive life of the animals. Overall, heritability estimated

using the combination of pedigree and genomic relationship

for all traits and models was higher than that using only pedigree

relationships. Higher estimates of heritability with ssGBLUP

than BLUP have also been reported in turkeys for feed

conversion ratio, residual feed intake, body weight, breast

meat yield, and walking score (Abdalla et al., 2019).

Correlations estimated in this study showed that proximate

ages had higher correlations, which declined as the ages

became further apart. This pattern is similar to studies from

test-day milk yield in dairy cattle (Jamrozik and Schaeffer, 1997)

and goat (Brito et al., 2017). This could indicate that repeated

records of the same trait collected at different ages represent

different traits, especially when the time points are further apart.

Predictive ability

Predictive ability estimated based on ssGBLUP had higher

estimates than BLUP for most traits. This is expected as many

studies have shown lower predictivity from pedigree-based EBV

than marker-based EBV (Hayes et al., 2010; Abdalla et al., 2019;

Oliveira et al., 2019). Similarly, Lourenco et al. (2015) reported an

increase in ssGBLUP predictive ability that ranged from 0.05 to

0.1 for birth weight in beef cattle relative to BLUP. In contrast to

the higher predictions of marker-based EBV, pedigree-based

EBV prediction was higher than marker-based prediction for

FERT in this study. Wolc et al. (2019) found similar results for

male fertility in White Leghorns layers with natural floor pen

mating. This may be because fertility is influenced largely by

environmental factors, and in this study, FERT had the lowest

heritability among all studied traits. Another possibility is that

some causal genomic regions could be located on the sex

chromosomes, which were removed from these analyses.

Furthermore, the CUM model had slightly higher

predictability than the RR model. This is also expected

because of the higher heritability estimates from the CUM

model. However, these higher heritability estimates could be

TABLE 11 Estimates of predictive ability using cumulative and random
regression models with pedigree and genomic information.

Trait Model Relationshipa Predictive ability

FERT Cumulative P 0.23

P and G 0.21

Random regression P 0.13

P and G 0.11

HOF Cumulative P 0.22

P and G 0.25

Random regression P 0.25

P and G 0.27

HOS Cumulative P 0.23

P and G 0.25

Random regression P 0.26

P and G 0.27

aP, pedigree information only; P and G, pedigree and genomic information.

FIGURE 4
Predictive ability trend for different age classes for (A) fertility (FERT), (B) hatch of fertile (HOF), and (C) hatch of set (HOS) estimated from the
random regression model using pedigree and genotypic information.
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overestimated due to the inability to account for the permanent

environment effects observed from longitudinal traits (Anang

et al., 2000).

Conclusion

In this study, the applicability of RR ssGBLUP was

investigated and compared to the traditional CUM model

used in estimating the reproductive trait in turkeys. Our

findings suggest that genomic relationships result in higher

heritability estimates over traditional pedigree relationships,

consequently causing higher predictive ability. In addition, the

RR model captured the covariance and correlation that exist

between different ages throughout the productive life of the

animal. Therefore, the use of RR with the incorporation of

genomic information is a feasible endeavor for analyzing

longitudinal traits like FERT, HOF, and HOS in turkeys.
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