Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma

Philipp K. Haber, Florian Castet, Miguel Torres-Martin, Carmen Andreu-Oller, Marc Puigvehí, Miho Maeda, Pompilia Radu, Jean-Francois Dufour, Chris Verslype, Carolin Czauderna, Jens U. Marquardt, Peter R. Galle, Arndt Vogel, Melanie Bathon, Tim Meyer, Ismail Labgaa, Antonia Digklia, Lewis R. Roberts, Mohamed A. Mohamed Ali, Beatriz Mínguez, Davide Citterio, Vincenzo Mazzaferro, Fabian Finkelmeier, Jörg Trojan, Burcin Özdirik, Tobias Müller, Moritz Schmelzle, Anthony Bejjani, Max W. Sung, Myron E. Schwartz, Richard S. Finn, Swan Thung, Augusto Villanueva, Daniela Sia, Josep M. Llovet

 PII:
 S0016-5085(22)01039-3

 DOI:
 https://doi.org/10.1053/j.gastro.2022.09.005

 Reference:
 YGAST 65322

To appear in: *Gastroenterology* Accepted Date: 2 September 2022

Please cite this article as: Haber PK, Castet F, Torres-Martin M, Andreu-Oller C, Puigvehí M, Maeda M, Radu P, Dufour J-F, Verslype C, Czauderna C, Marquardt JU, Galle PR, Vogel A, Bathon M, Meyer T, Labgaa I, Digklia A, Roberts LR, Mohamed Ali MA, Mínguez B, Citterio D, Mazzaferro V, Finkelmeier F, Trojan J, Özdirik B, Müller T, Schmelzle M, Bejjani A, Sung MW, Schwartz ME, Finn RS, Thung S, Villanueva A, Sia D, Llovet JM, Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma, *Gastroenterology* (2022), doi: https://doi.org/10.1053/j.gastro.2022.09.005.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 by the AGA Institute

Title: Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma

Authors: Philipp K. Haber^{1,2}, Florian Castet³, Miguel Torres-Martin³, Carmen Andreu-Oller¹, Marc Puigvehí^{1,4}, Miho Maeda¹, Pompilia Radu⁵, Jean-Francois Dufour^{5,6}, Chris Verslype⁷, Carolin Czauderna^{8,9}, Jens U. Marquardt^{8,9}, Peter R. Galle⁸, Arndt Vogel¹⁰, Melanie Bathon¹⁰, Tim Meyer¹¹, Ismail Labgaa¹², Antonia Digklia¹³, Lewis R. Roberts¹⁴, Mohamed A. Mohamed Ali¹⁴, Beatriz Mínguez¹⁵, Davide Citterio¹⁶, Vincenzo Mazzaferro¹⁶, Fabian Finkelmeier¹⁷, Jörg Trojan¹⁷, Burcin Özdirik¹⁸, Tobias Müller¹⁸, Moritz Schmelzle^{2,19}, Anthony Bejjani²⁰, Max W. Sung¹, Myron E. Schwartz¹, Richard S. Finn²⁰, Swan Thung¹, Augusto Villanueva¹, Daniela Sia¹, Josep M. Llovet^{1,2,21}

Affiliations:

¹Mount Sinai Liver Cancer Program, Division of Liver Diseases -Department of Medicine, Division of Hematology and Medical Oncology- Tisch Cancer Institute. Recanati/Miller Transplantation Institute, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.

²Department of Surgery, Campus Charité Mitte and Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.

³Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clinic, University of Barcelona, Catalonia, Spain

⁴Hepatology Section, Gastroenterology Department, Parc de Salut Mar, IMIM (Hospital del Mar Medical Research Institute), Universitat Autònoma de Barcelona, Barcelona, Spain

⁵University Clinic for Visceral Surgery and Medicine, University of Bern, Inselspital, Bern, Switzerland.

⁶Hepatology, Department of Clinical Research, University of Bern, Bern, Switzerland.

⁷Department of Gastroenterology and Hepatology, KU Leuven, Leuven, Belgium.

⁸Department of Medicine I, University Medical Center of the Johannes-Gutenberg University Mainz, Germany.

⁹Department of Medicine I, University of Lübeck, UKSH – Campus Lübeck, Lübeck, Germany

¹⁰Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany

¹¹Department Oncology, University College London Cancer Institute, London, UK.

¹²Department of Visceral Surgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

¹³Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

¹⁴Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN.

¹⁵Liver Unit, Hospital Universitari Vall d'Hebron, Liver Diseases Research Group, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus. CIBERehd, Universitat Autònoma de Barcelona, Barcelona, Spain.

¹⁶Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy.

¹⁷Department of Gastroenterology, University Liver and Cancer Centre, Frankfurt, Germany.

¹⁸Department of Hepatology & Gastroenterology, Campus Virchow Klinikum and Campus Charité Mitte, Charité University Medicine Berlin, Germany.

¹⁹ Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany.

²⁰Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA.

²¹Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain.

*Corresponding author:

Josep M. Llovet, M.D., Ph.D., Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA . E-mail: josep.llovet@mssm.edu

Financial disclosures: This study was supported by a research grant from Bayer Pharmaceuticals to JM Llovet, MD.

PKH is supported by the fellowship grant of the German Research Foundation (DFG, HA 8754/1-1). FC is supported by a AECC Clínico Junior grant, ID code (CLJUN20007CAST). CAO is supported by a Fulbright fellowship. MP received a "Juan Rodés" scholarship grant from Asociación Española para el Estudio del Hígado (AEEH). J.U.M. is supported by grants from the German Research Foundation (MA 4443/2-2; SFB1292), the Volkswagen Foundation (Lichtenberg program). AV is funded by the DFG, (SFB/TRR 209 - 314905040, and Vo959/9-1). TM is funded by the NIHR UCH Biomedical Research Centre and Accelerator Award (HUNTER, Ref. C9380/A26813, partnership between the CRUK, AECC and AIRC). LRR and MAMA are supported by the Mayo Clinic Hepatobiliary SPORE (P50 CA210964). MS acknowledges a research grant from the DFG (SCHM2661/3-2). The work of DS is supported by the Tisch Cancer Institute and the PhD Scientist Innovative Research Award. J.M.L. is supported by National Cancer Institute (P30-CA196521), NIDDK (R01 DK128289), US. Department of Defense (CA150272P3), European Commission/Horizon 2020 Program (HEPCAR, Ref. 667273-2), Accelerator Award (CRUK, AECC, AIRC) (HUNTER, Ref. C9380/A26813), Samuel Waxman Cancer Research Foundation, Centro de Investigación Biomédica en Red (CIBER) - ISCIII, Spanish National Health Institute (SAF2016-76390), Generalitat de Catalunya/AGAUR (SGR-1358) and the Acadèmia de Ciències Mèdiques i de la Salut de Catalunya i de Balears.

Conflicts of interest relevant to this work:

JFD has received consulting fees from Abbvie, Bayer Healthcare, Bristol-Myers Squibb, Falk, Genfit, Genkyotex, Gilead Sciences, HepaRegenix, Intercept, Eli Lilly, Merck, Novartis, Roche. JUM. received honoraria from Roche, Bayer, Ipsen, Merz, AstraZeneca, MSD and Leap-Tx, Eisai. PRG is receiving honoraria from Adaptimmune, Bayer, BMS, AstraZeneca, Sirtex, MSD, Eisai, Ipsen, Roche, Lilly, Guerbet. AV has received consulting fees and honoraria from AstraZeneca, Bayer, BMS, Eisai, Incyte, Ipsen, Janssen, Lilly, Merck, MSD, Novartis, Pierre Fabre, Roche, and Sanofi. TM reports consulting fees from IPSEN, AstraZeneca, Roche, Bayer Healthcare, Adaptimmune, Boston Scientific and Eisai. LRR has received grant funding from Bayer, BTG International, Exact Sciences, Gilead Sciences, GlycoTest, Redhill, TARGET PharmaSolutions and FUJIFILM Medical Systems, and has consulted for AstraZeneca, Bayer, Exact Sciences, Gilead Sciences, GRAIL, QED Therapeutics, and TAVEC. B.M. received consultancy fees from Bayer-Shering Pharma, and speaker fees from Eisai and MSD. MS is receiving honoraria from ERBE, Amgen, Merck and Bayer Healthcare. MWS is receiving consulting fees from Bayer, EISAI and Exelixis. RSF has received consulting fees from AstraZeneca, Bayer Healthcare, Eisai, CStone, Bristol-Myers Sqibb, Eli Lilly, Pfizer, Merck, Roche/ Genenetech, Exelixis. AV has received consulting fees from Guidepoint, Fujifilm, Boehringer Ingelheim, FirstWord, and MHLife. JML is receiving research support from Bayer HealthCare Pharmaceuticals, Eisai Inc, Bristol-Myers Squibb, Boehringer-Ingelheim and Ipsen, and consulting fees from Eli Lilly, Bayer HealthCare Pharmaceuticals, Bristol-Myers Squibb, Eisai Inc, Celsion Corporation, Exelixis, Merck, Ipsen, Genentech, Roche, Glycotest, Nucleix, Sirtex, Mina Alpha Ltd and AstraZeneca. The remaining co-authors have nothing to disclose related to this manuscript.

Author contributions: Study design: PKH, MP, DS, JML. Patient enrolment/sample and data collection: PKH, FC, MP, PR, JFD, CV, CC, JM, PG, AV, MB, TM, IL, AD, LRR, MAM, BM, DC, VM, FF, JT, BÖ, TM, MS, AB, MWS, MES, RSF. Experiments: PKH, MTM, MP, CAO, MM. Analysis: PKH, MTM, CAO, FC, ST, AV, DS, JML. Drafting of manuscript: PKH, DS, JML. All authors gave intellectual input to the manuscript and have approved its final version.

Abbreviations: AFP: α-fetoprotein, aHCC: Advanced hepatocellular carcinoma, AP: Antigen presentation, AUC: Area under the curve, BCLC: Barcelona Clinic Liver Cancer, CR: Complete response, DCR: Disease control rate, ECOG: Eastern Cooperative Oncology Group, FDR: False discovery rate, FOXP3: Forkhead-Box-Protein P3, HNSCC: Head and neck squamous cell carcinoma, ICI: Immune checkpoint inhibitors, IFNγ: Interferon gamma, IRB: Institutional review board, mAB: Monoclonal antibody, MHC: Major histocompatibility complex, mOS: median overall survival, NASH: Non-alcoholic steatohepatitis, NSCLC: Non-small cell lung cancer, OR: Objective response, ORR: objective response rates, OS: Overall survival, PD: Progressive disease, PFS: Progression free survival, PR: Partial response, RECIST: Response evaluation criteria in solid tumors, ROC: Receiver operating characteristic, SD: Stable disease, TKI: tyrosinekinase inhibitors, VEGF: Vascular endothelial growth factor

Word count: 6960 Abstract word count: 260 Number of figures: 6 Number of tables: 1

ABSTRACT

Background and Aims

Single agent anti-PD1 checkpoint inhibitors convey outstanding clinical benefits in a small fraction (~20%) of patients with advanced hepatocellular carcinoma (aHCC) but the molecular mechanisms determining response are unknown. To fill this gap, we herein analyze the molecular and immune traits of aHCC in patients treated with anti-PD1.

Methods: Overall, 111 tumor samples from patients with aHCC were obtained from 13 centers prior to systemic therapies. We performed molecular analysis and immune deconvolution using whole genome expression data (n=83), mutational analysis (n=72) and histological evaluation with an endpoint of objective response.

Results: Among 83 patients with transcriptomic data, 28 were treated in frontline whereas 55 patients were treated after tyrosine-kinase inhibitors (TKI) either in 2^{nd} or 3^{rd} line. Responders treated in frontline showed upregulated Interferon- γ -signaling and MHCII-related antigen presentation. We generated an 11-gene signature *(IFNAP)*, capturing these molecular features, which predicts response and survival in patients treated with anti-PD1 in frontline. The signature was validated in a separate cohort of aHCC and >240 patients with other solid cancer types where it also predicted response and survival. Of note, the same signature was unable to predict response in archival tissue of patients treated with frontline TKIs, highlighting the need for fresh biopsies prior to immunotherapy.

Conclusion: IFN-signaling and MHCII-related genes are key molecular features of HCCs responding to anti-PD1. A novel 11-gene signature predicts response in frontline aHCC - but not in patients pre-treated with TKIs. These results have to be confirmed in prospective studies and highlight the need for biopsies prior immunotherapy to identify biomarkers of response.

Keywords: Hepatocellular carcinoma, biomarkers, predictors of response, Immunotherapy

INTRODUCTION

Hepatocellular carcinoma (HCC) is a leading cause of cancer related mortality globally and incidence rates are on the rise¹. At advanced stages, where only systemic therapies are effective, outcomes remain dismal. Until recently, the treatment landscape of HCC was dominated by tyrosine-kinase inhibitors (TKIs), such as sorafenib² and lenvatinib³ that have been able to convey a marginal improvement in survival for the majority of the population.

The use of immune checkpoint inhibitors (ICI) has revolutionized clinical care across cancer types. In HCC, the combination of the anti-PD-L1 agent atezolizumab and the monoclonal antibody (mAB) bevacizumab (anti-VEGF) has elicited an outstanding median overall survival (mOS) of 19.2⁴ months in patients with advanced HCC (IMbrave150 trial) and is now considered standard of care in frontline^{1, 5}. Furthermore, new ICI-based combinations are expected to reshape the treatment scenario such as the combination of durvalumab-tremelimumab⁶, which increases overall survival (OS) relative to sorafenib and cabozantinib-atezolizumab, which increases progression-free survival (PFS)⁷. These and other combinations currently under investigation are aimed at enhancing the size of the patient subset that derives a benefit from ICI treatment. In this setting, ICIs are commonly regarded as the driving force in improving outcomes whereas drugs like bevacizumab are thought to expand the immune-sensitive population⁸. Indeed, immunotherapy as standalone treatment is able to convey meaningful benefits in patients with advanced HCC: early efficacy results from anti-PD1 inhibitors nivolumab⁹ and pembrolizumab¹⁰ demonstrated objective response rates (ORR) between 15-20%. These responses lasted beyond 16 months⁹ and are expected to elicit a mOS >26 months, thereby outperforming the new standard of care. However, the comparatively small size of this subset failed to drive a significant advantage for the entire population leading to the failure of phase III trials both in frontline¹¹ (vs sorafenib) and 2nd line¹² setting (vs. placebo), hence the utilization of combination treatments. The molecular mechanisms that determine response to anti-PD1 in HCC remain elusive. Thus, the development of predictive biomarkers of response to ICI has the potential to address several unmet clinical needs: (I) to enhance survival in patients likely to respond to therapy, (II) to reduce

the risk of treatment-related adverse effects conveyed through combination drugs like bevacizumab and (III) maximize efficacious application and thereby cost-effectiveness of different treatments.

To address these needs, we established an international consortium of referral centers to identify biomarkers of response in patients treated with anti-PD1. We analysed tissue samples from patients subsequently undergoing anti-PD1 treatment for advanced HCC at the histological, mutational and gene expression levels. Patients responding to anti-PD1 in frontline showed higher baseline levels of intratumoral inflammatory signalling. We generated a gene-expression signature capable of capturing responders and validated it in an independent cohort of aHCC patients and four publicly available datasets of solid cancer types comprising >240 patients. Interestingly, the same signature failed to predict response in patients that were pre-treated with TKIs, suggesting that archival tissue may not be appropriate to predict response to immunotherapy in patients previously treated with TKIs as these drugs may modulate response patterns to 2nd line anti-PD1 therapy. Overall, these findings provide a comprehensive picture of the molecular landscape of patients with advanced HCC responding to anti-PD1 and define a novel tool for patient selection in future clinical trials.

MATERIALS AND METHODS

Study population and endpoints

Under the umbrella of an international consortium comprising thirteen centers in the United States and Europe (**Table S1**), we retrospectively collected samples from 111 patients for this study. Eligible patients were \geq 18 years with pathologically confirmed HCC at advanced stage (BCLC stage C) or intermediate stage (stage B) after confirmed progression to locoregional therapies and not amenable to a curative treatment approach. Response assessment was performed at least two months after the initiation of anti-PD1 treatment via modified RECIST (mRECIST¹³) and at least one untreated lesion was required for inclusion. Patients had compensated liver function and Eastern Cooperative Oncology Group (ECOG) performance score 0-2 as well as otherwise adequate organ and bone marrow function (white blood cell counts \geq 2000/µL, platelets \geq 50×10³/µL). All patients had archived tissue available obtained from the resection specimen or at the time

of biopsy prior to systemic therapies and underwent anti-PD1 monotherapy. Patients who had been previously treated with an agent targeting T-cell costimulation or checkpoint pathways (including PD-1/PD-L1) were excluded, as were those receiving anti-PD1 or any other treatment neoadjuvantly prior to resection or in combination with other systemic or percutaneous treatments. Further exclusion criteria were: history of other malignancies, other diseases expected to severely limit life expectancy, brain metastases, history of hepatic encephalopathy or clinically significant ascites that required paracentesis. Patients with fibrolamellar HCC, sarcomatoid HCC, or mixed cholangiocarcinoma-HCC were excluded. The present study was conducted in accordance with the Helsinki Declaration and local laws. The institutional review board (IRB) at each contributing center approved the study protocol. All patients alive at the time of study initiation provided written informed consent enabling to use their archived tissues. Consent for already deceased patients was waived by the local IRBs.

Given that different systemic treatments may alter the tumoral microenvironment to the point that it may impact the efficacy of subsequent therapies¹⁴, we stratified patients according to the treatment line in which they received anti-PD1 (**Table S2**).

The primary endpoint applied for the analysis was best objective response (OR), which was assessed in individual centers using mRECIST criteria defining complete response (CR), partial response (PR), stable disease (SD) and progressive disease (PD)¹³. Response was generally assessed 2-3 months after therapy start and every three months thereafter via either computed tomography (CT-scan) or magnetic resonance imaging (MRI). The secondary endpoints were overall- (OS) and progression-free survival (PFS).

Immunohistochemistry, transcriptome analysis, CTNNB1 analysis and molecular data availability

See online supplementary materials and methods.

Statistical analysis

Analyses were performed using the R statistical package and SPSS 24.0 (SPPS Inc., Chicago, USA). Correlations between clinicopathological data and molecular features were performed in case of categorical data with Chi² test, whereas continuous data with

non-parametric distribution was assessed by Wilcoxon-rank-sum test. Continuous variables with Gaussian distribution were compared with ANOVA. Survival analysis was performed with Kaplan-Meier estimates and log-rank test with respect to both OS and PFS as well as a Cox logistic regression model. Biomarkers were considered predictive of response or primary resistance to anti-PD1 therapy when two sided p<0.05.

RESULTS

Baseline characteristics and clinical courses

Among the 111 HCC samples collected for the study, 83 cases had enough tissue available for molecular analysis, met all inclusion criteria and were thus included in the transcriptomic analysis (Figure 1A). The time difference between acquisition of the biological sample and initiation of systemic therapies is depicted in **Figure S1**. Recruited patients were treated with nivolumab (n=67; 80.7%), pembrolizumab (n=14; 16.9%) or tislelizumab (n=2; 2.4%) in either frontline (n=28), 2nd (n=41) or 3rd line (n=14) (Figure **1B**). All patient demographics and disease characteristics were well balanced between response types (**Table 1**). Among the 83 patients, 25 exhibited OR (ORR:30.1%, 3 CR, 22 PR), whereas 21 cases (25.3%) had SD and 37 cases (44.6%) PD as best response. Median time to response was 3.0 months (range 1.7-12.8 months) and responses were very durable with 67% lasting 18 months or longer. Median duration of treatment was 4.9 months, and patients displaying OR had a significantly longer time on therapy than nonresponders (18.2 vs. 3.3 months, p<0.001). In terms of outcome, median follow-up was 12.5 months. Responders did not reach mOS during follow up, whereas mOS was 19.5 months and 12.5 months for patients achieving SD and PD, respectively (p<0.001, Figure **1C**). Likewise, responders had significantly longer PFS compared to patients with either SD or PD (median PFS [mPFS]: 28.8 vs. 6.2 vs. 2.5 months, p<0.0001) (Figure 1D).

Of the 28 patients in the frontline cohort, 12 exhibited OR (ORR:42.9%). These patients had, expectedly, a significantly better outcome than non-responders both in terms of OS and PFS (p<0.005 and p<0.001, respectively, **Figure 2A,B**). A detailed description of patients treated with anti-PD1 in 1st line is provided in **Table S3**.

Molecular features of HCC patients responding to anti-PD1 in front line

Overall, differential expression analysis identified 427 genes significantly upregulated in responders (p<0.01, **Table S4**), with 140 exhibiting a Fold Change >1.5. Among these, several genes involved in Interferon-y (IFNy)-signalling (STAT1, STAT2, IRF1, p < 0.0005, p<0.05, p<0.05, respectively, **Figure 2C**) and antigen-presentation were significantly upregulated in responding patients. This was particularly evident for MHC class II peptides (*HLA-DRA, HLA-DQA1, HLA-DMA*, p<0.01, p<0.005, p<0.05, Figure 2C,D). Metagenes capturing activation of IFN- and T-cell receptor signalling as well as antigen processing and presentation were, likewise, enriched among responders (FDR<0.001). The same patients showed a significant upregulation in the expression of key cytokines involved in chemotaxis (CXCL9, IL18, p<0.005 and p<0.001, respectively). Gene Ontology (GO) Enrichment Analysis of the top 140 differentially expressed genes confirmed IFNy signalling, MHC-II assembly and MHC-II dependent antigen presentation as the most overexpressed pathways among responders (Figure 2E, S2A). Gene set enrichment analysis using the Hallmark gene sets confirmed enhanced IFN-signalling in responders (FDR<0.001, Table S5, Figure S2B). Comparison between patients exhibiting disease-control (DCR=OR+SD) and those with PD revealed a significant enrichment in CD274 (PD-L1) expression in DCR patients, although no difference was observed in PD-L1 staining by immunohistochemistry, a discrepancy previously characterized¹⁵. Likewise, gene expression of *PDCD1LG2* (PD-L2), the alternative ligand to PD-1, was significantly higher in responders (p<0.01), whereas expression of its common receptor PDCD1 (PD1) was markedly increased among patients with PD (p<0.05) (**Figure 2C**).

We next sought to correlate clinical response to anti-PD1 therapy with previously established molecular classes of HCC (**Figure 3A**) including the recently characterized HCC *Inflamed class*¹⁶, which further refines our previously published *Immune class* of HCC¹⁷. The inflamed class entails three subtypes, named *Active, Exhausted, Immune-like* that all share a microenvironment with increased interferon-signalling. Interestingly, patients belonging to the HCC *Inflamed class* showed a higher rate of OR compared to the other classes *Intermediate* and *Excluded* (7/9, vs 5/19, p=0.01), whereas differences

in PFS showed a non-significant trend (p=0.068, **Figure S2C**). Patients with an aggressive and proliferative HCC phenotype (classes *S1* and *S2*) had markedly longer PFS when treated with anti-PD1 compared to the rest (p=0.017, **Figure S2D**). Next, we evaluated previously reported signatures and biomarkers of response to anti-PD1 therapy in our dataset (**Table S6**). Interestingly, we observed that several signatures such as the *IFN signature*¹⁸, *POPLAR*¹⁹ and the *Inflammatory signature*²⁰ were significantly enriched in HCC responding patients (p<0.01, p<0.01, p<0.05, respectively, **Figure 3B**). In terms of outcome, both *IFN-* and the *Inflammatory signature* were associated with longer PFS (p=0.023 for both, **Figure 3C,D**) whereas no differences were observed for *POPLAR* or the *cytolytic activity* signature (**Figure 3E,F**). However, none of the signatures was able to predict significantly longer OS (**Figure 3G-J**). A summary of the performance of these signatures is provided in **Table S7**. When considering histological markers such as the richness of the immune infiltrate, Tertiary lymphoid structures signature²¹ and PD-L1 expression as well as tumor mutational burden inferred through a gene signature²² no positive correlation with response to ICIs was observed (**Figure S3A,C**).

A novel 11-genes signature accurately predicts response to anti-PD1

Given the paucity of studies identifying candidate biomarkers for anti-PD1 in HCC and that none of the previously reported signatures was able to predict both PFS and OS, we then developed a gene expression signature capable of discriminating responding from non-responding patients (see supplementary methods). The resulting 11-gene set, hereafter named *IFNAP-signature* (Interferon and antigen-presentation, **Table S8**), comprises genes involved in IFN- γ signalling (*STAT1, GBP1*), antigen presentation (*B2M, HLA-DRB5, HLA-DRA*) and chemotaxis (*CXCL9*, **Figure 4A**). Most of these genes were not shared with other published immune response signatures (**Figure S4B**) underscoring the unique composition of IFNAP. The IFN signature and IFNAP shared three individual genes, all of which were predictive of OR and PFS. Likewise, the non-overlapping genes in IFNAP were linked with OR and PFS, whereas the remaining genes in the IFN signature where not (**Figure S5A-C**). Patients with high expression of IFNAP (n=9, defined as those within the upper tertile, see supplementary methods) had superior outcomes both with

regards to PFS (p=0.035) and OS (p=0.039, **Figure 4B,C**). ROC analysis indeed revealed IFNAP as the most efficient geneset at discriminating responding from non-responding patients with an AUC of 0.87 (**Figure 4D**).

We next sought to investigate the robustness of the IFNAP signature by testing its stability across different regions within a given tumor to investigate whether intratumoral heterogeneity, which may cause differences in regional adaptive immune responses, may compromise the reproducibility of signature expression. For this purpose we re-analyzed a cohort published by our group including 30 HCC samples from 15 patients with tumors >4cm²³, we found expression between two distinct regions of the same tumor to be very stable and 90% of cases had the same expression category (low/high) in both samples. Indeed, correlation of IFNAP between two regions of a given tumor was significant (R=0.77, p<0.001, **Figure S4C**).

We tested IFNAP in four independent datasets (see supplementary methods) comprising 240 patients with either NSCLC^{24, 25}, HNSCC²⁴ or melanoma^{24, 26, 27} treated with anti-PD1/anti-PD-L1. In the first dataset²⁴, patients with OR had significantly more often high IFNAP expression, which was, moreover, associated with longer mPFS (55% vs. 24.4%, p=0.017 and 6.9 vs. 2.8 months, p=0.039, respectively, Figure 4E-H). Likewise, in the second dataset²⁵ high IFNAP expression was associated with response and longer mPFS (75% vs. 15.8%, p=0.006 and 8.6 vs. 1.2 months, p=0.006, respectively, Figure 4G-H). In the third dataset²⁷, OR was again associated with high IFNAP expression, (42.5% vs. 27.4%, p=0.043, Figure S6A), which in turn predicted longer mPFS and mOS (13.3 vs. 3.2 months, p=0.011 and NR vs. 19.7 months, p=0.033, respectively, Figure S6B,C). Finally, IFNAP also predicted higher response (46.7% vs. 15.6%, p=0.039, Figure S6M) in the fourth dataset ²⁶. Of note, none of the previously published signatures consistently predicted response or PFS in any of the datasets (Figure S6D-L, N-P and Figure S7A-F, I-L) with the exception of the IFN signature in the Jung et al dataset (Figure S7G-H). In summary, the IFNAP signature was able to capture responders to anti-PD1 pre-treatment across cancer types and was associated with longer PFS and OS whereas none of the previously published signatures was capable of consistently eliciting the same significant differences. This is of note as several of these signatures were designed in tumors that are investigated in the validation datasets^{18, 19}. In these, patients were treated with anti-PD1 both in frontline as well as in second line. However, unlike in our cohort, none of the patients underwent TKI treatment prior to immunotherapy and most tissue samples were obtained directly prior to the initiation of anti-PD1 therapy.

Finally, we tested the ability of IFNAP to predict response and longer survival in a dataset of patients treated with either single-agent ICI (n=13, nivolumab) or combination treatment (nivolumab/ipilimumab or spartalizumab/sabatolimab, n=11)²⁸. High expression of IFNAP assessed by nanostring was associated with significantly longer OS and a trend towards higher OR (**Figure S8A-B**) to nivolumab but not to combination treatment (**Figure S8C-D**) suggesting molecularly distinct mechanisms of response for the combination.

The IFNAP gene signature captures a unique immune microenvironment

Since the increased expression of IFN- and AP-related genes is not unequivocally associated with a specific cell type but can be conferred through both tumoral and immune cells, we next characterized the immune infiltration in patients with high IFNAP expression. Strikingly, patients with high and low IFNAP expression were not different in terms of actual immune cell infiltration quantified on H&E stained slides (see methods) both in the intratumoral area and at the invasive margin (Figure 5A). We next hypothesized that the microenvironmental composition rather than overall infiltration may drive response to anti-PD1 in HCC. Thus, we performed virtual microdissection using CIBERSORTx²⁹ and found a significant upregulation of plasma cells, CD4-memory activated Tcells and M1 macrophages in patients with high expression of IFNAP (Figures 5B, S9). Conversely, patients with low IFNAP showed a significant increase in the infiltration of immunosuppressive regulatory Tcells (Tregs, p=0.001). Indeed, expression of IFNAP showed a negative correlation with expression of Tregs and of Forkhead-Box-Protein P3 (FOXP3, Figure 5C), a transcription factor active in Tregs which has been previously implicated in driving immunosuppression across cancer types and is linked with hyperprogression after anti-PD1³⁰. In our dataset, low expression of Tregs or IFNAP, defined by the 1st tertile, was associated with markedly lower PFS (4.9 vs. NR and 3.6 vs. 28.8 months, p=0.012 and p<0.001, respectively, data not shown). We also considered

other features associated with primary resistance to anti-PD1 and found significant negative correlations between IFNAP and *PDCD1* expression (**Figure 5C**). Interestingly, all these markers of immunosuppression were highly correlated with each other and were negatively correlated to all genes of the IFNAP signature (Pearson correlation, **Figure 5D**). Overall, these data indicate that immunosuppressive expression programs predict poor outcome after anti-PD1 therapy. The presence of Tregs in the microenvironment may be one of the key factors eventually driving resistance while the other factors could represent downstream effects of this microenvironmental composition.

CTNNB1 mutational status is not a dominant feature to predict resistance to anti-PD1 therapy

Mutations in the WNT-CTNNB1 pathway have been implicated in driving resistance in a murine model of HCC³¹. We then investigated whether the presence of CTNNB1 mutations was able to predict primary resistance to anti-PD1. To this end, we correlated treatment response with tumoral mutational status in 23 cases of frontline-treated patients. We found 4 of 11 responders (36%) and 6 out of 12 non-responders (50%) to have mutations in exon 3 of CTNNB1, the dominant hotspot, thereby showing no significant differences in response rates (Figure 5E). We considered that patients with CTNNB1 exhibited less durable responses than non-mutated patients but no differences were observed in PFS and OS. Likewise, no difference in PFS and OS was seen among non-responding patients based on mutational status (Figure S10). Next, we compared the gene expression profile of CTNNB1 mutated patients that exhibited response (n=4) to those patients with mutations that did not (n=6). We observed a trend towards increased inflammatory signalling as captured by the cytolytic activity gene signature³² in those patients with mutations that responded. Moreover, the same patient subset demonstrated an upregulation in genes associated with an active immune response (*GZMA*, *CXCL9*; one-sided p<0.05).

In summary, *CTNNB1* mutational status did not predict resistance to therapy. A trend towards more inflammatory signalling in responders despite the presence of mutations hints at a more intricate role of *CTNNB1* in this scenario. While previous studies have

shown discrepancies in terms of the role of *CTNNB1* as a driver of immune exclusion^{31, 33, 34}, our findings provide an explanation to reconcile these inconsistencies. Indeed, our data suggest that patients with *CTNNB1*-driven immune exclusion may be prone to resistance. However, in tumors where this profile is overcome by unknown mechanisms to establish an inflamed microenvironment, the conducive effects of IFN-signaling and the intact antigen-presenting machinery may outweigh the impact of *CTNNB1* mutations.

Prior treatment with TKIs may influence response to subsequent anti-PD1 in 2nd line

Overall, 55 patients underwent anti-PD1 treatment as 2nd (41 cases) or 3rd line (14 cases) therapy after previous exposure to TKIs (54 sorafenib, 1 lenvatinib, **Table S9**). In all but two of these cases, though, histology was obtained prior to first line therapy. Overall, the ORR was 23.6%, and as in frontline treated patients, responders had both markedly longer OS and PFS (p=0.047 and p<0.0001, respectively, **Figure 6A-B**). In this setting, neither IFNAP (n=18 patients in 2nd/3rd line) nor other previously reported signatures were significantly enriched among patients with OR (**Figure 6C, S11A,D,G,J**). This translated to clinical outcome, where no differences were observed between patients with high and low expression of these signatures (**Figure S11B,C,E,F,H,I,K,L**). Likewise, histological severity of the immune infiltrate and inferred presence of Tertiary lymphoid structures signature²¹ and high tumor mutational burden (TMB) were not linked to response in patients treated with anti-PD1 in 2nd line either (**Figure S3B,C**).

We thus considered that TKIs may impact the success of subsequent anti-PD1 therapy in a way that renders some tumors that would be expected to respond to anti-PD1 in frontline no longer responsive after prior TKI therapy. Conversely, a subset of tumors that would be expected to exhibit resistance to anti-PD1 when treated in frontline did respond when pretreated with TKIs. In an exploratory analysis, we investigated factors that may guide whether or not TKI therapy is conducive for subsequent anti-PD1 treatment. Patients with low inflammatory signaling and resistance to therapy (IFNAP low NR) showed an upregulation in metabolic signaling pathways compared with patients with low inflammatory signaling that did respond (IFNAP low OR, **Figure S12B**) and retained the

significant enrichment in Tregs infiltration by CIBERSORTx (**Figure S12C**). Conversely, patients with low IFNAP expression and response showed a marked increase in CD4 naïve T cell infiltration. Overall, this data suggested that severe infiltration of regulatory T cells may impede anti-PD1-mediated anti-tumoral immunity even after TKI therapy, as this feature was maintained both in frontline and 2nd/3rd line treated patients. Indeed, markedly worse PFS was observed in the top 20% of patients that harboured the highest infiltration in Tregs in both frontline and 2nd/3rd line (**Figure 6C, D-E**). This same subset of patients presented a significant enrichment in the expression of *SOCS1* and *SOCS3*, key antagonists of JAK/STAT signaling and thus inhibitors of the intracellular IFN-response pathway (**Figure 6C**). In keeping with this, the same subset featured significant downregulation in key genes involved in IFN-signaling and an active antigen presenting machinery.

In the absence of human datasets featuring serial biopsies to investigate the distinct effect of TKIs on the tumoral microenviroment, we explored a recently published murine model in which HCC-bearing mice were treated with either lenvatinib or placebo (**Figure S12D**, see supplementary methods). Comparative gene expression analysis of mice treated with Lenvatinib for two weeks revealed a significant enrichment in inflammatory signaling by TKIs as captured by higher expression of IFNAP and the IFN signatures (**Figure S12E**). Cellular subsets, such as CD4 effector memory cells, that we linked to response to anti-PD1, were, likewise, upregulated after Lenvatinib treatment. Overall this data suggests that TKIs may modulate response to anti-PD1 by altering microenvironmental signalling.

Overall, our findings suggest that fresh tissue should be obtained directly prior to the initiation of a given treatment to enable precision oncology as prior lines of systemic therapy compromise the readout quality of biomarkers. Our data indicates a patient subset, characterized through severe Treg infiltration and overexpression of immune-evasion related genes that is linked to poor outcomes when treated with anti-PD1 both in frontline as well as in 2nd/3rd line.

DISCUSSION

The present study represents a comprehensive characterization of the molecular patterns associated with response and resistance in patients with advanced HCC treated with anti-PD1. Herein, we identified IFN-signalling and AP-related genes to be associated with OR whereas presence of Tregs and pathways associated with immunosuppression are linked to resistance. We developed an 11-gene expression signature capable of predicting response to anti-PD1 in HCC and other solid cancer types when treated with anti-PD1 in the frontline setting. When testing the signature in samples from patients pre-treated with TKIs, we found that neither our signature nor previously reported inflammatory markers predict outcomes to 2nd or 3rd line anti-PD1 therapy suggesting that prior lines of therapy may impact the efficacy of subsequent anti-PD1.

In recent years, several predictive biomarkers of response and resistance to systemic therapies have entered the clinical space. Regarding anti-PD1 therapy, the only FDA-approved biomarkers are high TMB and microsatellite-instability across cancer types. The benefit conveyed by these biomarkers is limited in magnitude (<3% of HCCs) underscoring the need for more refined testing. Earlier studies in melanoma and lung cancer have observed an increase in T-cell infiltration in the tumor microenvironment and enrichment of IFN γ -signalling in patients responding to anti-PD1 therapy^{18, 19}. While this observation has been consistently confirmed in early on-treatment samples collected 2-4 weeks after therapy start³⁵, results in samples collected before the initiation of therapy are conflicting²⁶.

Among the most relevant findings of our study, we identified a gene expression signature – IFNAP – that predicts response and survival to frontline anti-PD1 in aHCC. Notably, it outperformed previously published signatures of response and was the only one to predict significant increases in ORR, OS and PFS in our dataset as well as in an aHCC validation cohort and four expression datasets from other solid cancer types across different platforms (Nanostring, microarray, RNA-seq). IFNAP identified responders independent of the etiology of the underlying liver disease, where 4/5 responders without viral hepatitis had high expression of the signature. This is particularly relevant in light of a recently published report that draws the efficacy of anti-PD1 therapy in patients with NASH into question³⁶. The composition of IFNAP reflects key biological pathways involved in T-cell

directed therapies: (i) Interferon-signalling and (ii) antigen-presentation, which are readouts of nascent cancer cell immunogenicity, that can be leveraged through immunotherapy¹⁸. IFNAP includes genes such as B2M, whose loss of heterozygosity has been implicated as a mechanism of resistance to anti-PD1³⁷, and CXCL9 as well HLA-DRA that have been linked to response in melanoma¹⁸. In our dataset, analysis of the immune infiltrate suggested that the composition rather than overall infiltrate might drive response to immunotherapy. Specifically, CD4+ naïve Tcells were consistently upregulated in patients with high IFNAP expression, whereas Treg infiltration was negatively correlated with IFNAP. The presence of immunosuppressive Treqs and their active transcription factor FOXP3 may in this regard be an impediment towards initiating antitumoral immunity. A recent biomarker analysis of HCC patients treated with atezolizumab and bevacizumab in clinical trials identified that increased IFNy-signalling, active antigen-presentation and low Treg/Effector-T-cell ratio were linked to response. In addition, patients with high Treg infiltration experienced a significantly stronger benefit from combination compared to atezolizumab monotherapy, suggesting synchronous application of ICI with anti-angiogenics may help in overcoming severe Treg infiltration as a driver of resistance to ICI monotherapy³⁸.

Several investigations in melanoma have shown genetic alterations in the WNT-CTNNB1 pathway to be a tumor-intrinsic driver of immune exclusion and resistance to anti-PD1³⁹. In HCC, a preclinical study suggested that *CTNNB1* mutations conveyed defective recruitment of dendritic cells and subsequently impaired cytotoxic T-cell function³¹. These effects were reverted upon overexpression of *CCL5*. One cohort study supported this correlation in patients that underwent biopsy prior to treatment³³, whereas another did not identify *CTNNB1* mutations in liquid biopsy impacting PFS³⁴. Our results point towards the fact that *CTNNB1* mutations alone are not associated with resistance, although the underlying biological mechanisms remain elusive. Those patients with inflammatory signalling counterbalancing *CTNNB1*—related immunosuppression showed a trend to better OR, as opposed to those where *CTNNB1* mutations was the dominant molecular feature determining lack of response to anti-PD1. In the former cases, other signalling pathways such as IFN-signalling and an active antigen-presenting machinery may overcome *CTNNB1*—mediated immune exclusion and thus facilitate response.

Finally, the aforementioned differences in expression profiles between responding and non-responding patients were no longer evident in those patients receiving TKIs between sample acquisition and immunotherapy start. This finding could be due to the longer time elapsed between tissue acquisition and anti-PD1 treatment in the 2nd/3rd line when compared to the frontline which may increase the odds of molecular events contributing to immunosuppression, although this is unlikely given the relative stability of driver events during cancer evolution⁴⁰. An alternative hypothesis would be that treatment with TKIs may influence how a patient responds to anti-PD1 therapy in subsequent treatment lines. In the absence of serial biopsies, the molecular mechanisms that guide the impact of TKIs on other treatments remain unknown and it is unclear as to whether an inflamed microenvironment pre-sorafenib remains inflamed thereafter or if the effect of the TKI may ameliorate inflammatory signalling in these tumors.

Data from murine model suggests^{41, 42} that TKIs may overall increase inflammatory signalling within the tumor and induce a shift in the composition of the microenvironment. However, it needs to be acknowledged that these models are not fully reflective of human disease course since the molecular analyses were performed on animals during TKI treatment while humans are generally not exposed to anti-PD1 before resistance to TKIs. As previous studies have shown that while sorafenib sensitive tumors display an increase in inflammatory signaling and an enhanced antigen-presentation apparatus, resistance in turn is associated with a less rich T cell infiltration and less overall inflammatory signaling within the tumor⁴². Likewise, a recent biomarker companion study for a phase I clinical trial aiming at converting locally advanced disease to resectable HCC through neoadjuvant cabozantinib and nivolumab confirmed heterogeneous expression of TKI targets and inflammatory markers based on response status⁴³.

Our data implies that responders in different treatment lines are different populations with some overlap. Conversely, we have identified a subset of patients that exhibit resistance to anti-PD1 regardless of whether treatment is administered in frontline or after exposure to TKIs. This subset was characterized through an increase in Treg infiltration and expression of genes that are direct inhibitors of active JAK/STAT signalling. Overall, our data opens up the enticing perspective that more HCC patients could respond to anti-

PD1 therapy through selective pre-treatment/or combination with TKIs, although some patients may not be suitable for anti-PD1 in any case. Our data ultimately calls for the need of biopsies prior to anti-PD1 treatment start to enable biomarker-based precision oncology regardless of treatment line.

Several limitations of this study need to be addressed: first, the distinction between therapy lines diminishes the sample size considerably and limits the power of the study despite recruitment from 13 international referral centers. The observed response rate of 43% in the first-line cohort is certainly above the expected 15-20% response rate and is a reflection of the inclusion criteria of a minimal duration of 2 months of treatment to evaluate response. While this naturally increases the proportion of responders, it also increases the power of our biomarker analysis. In addition, the use of mRECIST response criteria likely contributes a small further increase in the ORR. Second, the lack of serial biopsies between systemic treatments precludes a refined analysis on how precisely TKI therapy alters the microenvironment and impacts efficacy of subsequent immunotherapy. Finally, validation of IFNAP could only be performed in a comparatively small HCC dataset as well as cohorts with other cancer types. Therefore, validation of IFNAP in future larger HCC cohorts remains a critical unmet need particularly in light of the limited number of cases that were used for the construction of the signature.

In summary, our study defines the key molecular drivers of response to anti-PD1 in HCC. We generated and validated a signature recapitulating these pathways that predict response and longer survival in HCC and other cancer types and therefore has potential to maximize the efficiency of anti-PD1 application. The final value of this signature needs to be explored within phase III investigations. In patients treated with 2nd and 3rd line anti-PD1, prior TKI therapy likely impairs the predictive potential of the IFNAP signature, although further studies will be required to clarify the reasons for this observation.

REFERENCES

1. Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers 2021;7:6.

- 2. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008;359:378-90.
- 3. Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. The Lancet 2018;391:1163-1173.
- 4. Finn RS, Qin S, Ikeda M, et al. IMbrave150: Updated overall survival (OS) data from a global, randomized, open-label phase III study of atezolizumab (atezo) + bevacizumab (bev) versus sorafenib (sor) in patients (pts) with unresectable hepatocellular carcinoma (HCC). Journal of Clinical Oncology 2021;39:267-267.
- 5. Finn RS, Qin S, Ikeda M, et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med 2020;382:1894-1905.
- 6. Abou-Alfa Ghassan K, Lau G, Kudo M, et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evidence;0:EVIDoa2100070.
- 7. **Kelley RK, Rimassa L**, Cheng A-L, et al. Cabozantinib plus atezolizumab versus sorafenib for advanced hepatocellular carcinoma (COSMIC-312): a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology.
- 8. Greten TF, Lai CW, Li G, et al. Targeted and Immune-Based Therapies for Hepatocellular Carcinoma. Gastroenterology 2019;156:510-524.
- 9. El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389:2492-2502.
- 10. Zhu AX, Finn RS, Edeline J, et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): a non-randomised, open-label phase 2 trial. The Lancet Oncology 2018;19:940-952.
- 11. Yau T, Park JW, Finn RS, et al. CheckMate 459: A randomized, multi-center phase III study of nivolumab (NIVO) vs sorafenib (SOR) as first-line (1L) treatment in patients (pts) with advanced hepatocellular carcinoma (aHCC). Ann Oncol 2019;30 (suppl_5):v851-v934.
- 12. Finn RS, Ryoo BY, Merle P, et al. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J Clin Oncol 2020;38:193-202.
- 13. Llovet JM, Lencioni R. mRECIST for HCC: Performance and novel refinements. J Hepatol 2020;72:288-306.
- 14. **Isomoto K, Haratani K**, Hayashi H, et al. Impact of EGFR-TKI Treatment on the Tumor Immune Microenvironment in EGFR Mutation-Positive Non-Small Cell Lung Cancer. Clin Cancer Res 2020;26:2037-2046.
- 15. Lee H-H, Wang Y-N, Xia W, et al. Removal of N-Linked Glycosylation Enhances PD-L1 Detection and Predicts Anti-PD-1/PD-L1 Therapeutic Efficacy. Cancer Cell 2019;36:168-178.e4.
- 16. **Montironi C, Castet F, Haber PK**, et al. Inflamed and non-inflamed classes of HCC: a revised immunogenomic classification. Gut 2022.
- 17. Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology 2017;153:812-826.
- 18. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 2017;127:2930-2940.
- 19. Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. The Lancet 2016;387:1837-1846.

- 20. **Sangro B, Melero I,** Wadhawan S, et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol 2020;73:1460-1469.
- 21. Finkin S, Yuan D, Stein I, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol 2015;16:1235-44.
- 22. Tian S, Roepman P, Popovici V, et al. A robust genomic signature for the detection of colorectal cancer patients with microsatellite instability phenotype and high mutation frequency. J Pathol 2012;228:586-95.
- 23. **Torrecilla S, Sia D, Harrington AN**, et al. Trunk mutational events present minimal intra- and intertumoral heterogeneity in hepatocellular carcinoma. J Hepatol 2017;67:1222-1231.
- 24. Prat A, Navarro A, Paré L, et al. Immune-Related Gene Expression Profiling After PD-1 Blockade in Non–Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma. Cancer Research 2017;77:3540-3550.
- 25. **Jung H, Kim HS**, Kim JY, et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nature Communications 2019;10:4278.
- 26. **Hugo W, Zaretsky JM**, Sun L, et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 2016;165:35-44.
- 27. **Liu D, Schilling B**, Liu D, et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nature Medicine 2019;25:1916-1927.
- 28. Hsu CL, Ou DL, Bai LY, et al. Exploring Markers of Exhausted CD8 T Cells to Predict Response to Immune Checkpoint Inhibitor Therapy for Hepatocellular Carcinoma. Liver Cancer 2021;10:346-359.
- 29. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology 2019;37:773-782.
- 30. Kamada T, Togashi Y, Tay C, et al. PD-1<sup>+</sup> regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proceedings of the National Academy of Sciences 2019;116:9999.
- Ruiz de Galarreta M, Bresnahan E, Molina-Sánchez P, et al. β-Catenin Activation Promotes Immune Escape and Resistance to Anti-PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discov 2019;9:1124-1141.
- 32. Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160:48-61.
- 33. Harding JJ, Nandakumar S, Armenia J, et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin Cancer Res 2019;25:2116-2126.
- 34. von Felden J, Craig AJ, Garcia-Lezana T, et al. Mutations in circulating tumor DNA predict primary resistance to systemic therapies in advanced hepatocellular carcinoma. Oncogene 2021;40:140-151.
- 35. **Chen P-L, Roh W**, Reuben A, et al. Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade. Cancer Discovery 2016;6:827-837.
- 36. Pfister D, Núñez NG, Pinyol R, et al. NASH limits anti-tumour surveillance in immunotherapytreated HCC. Nature 2021.
- 37. **Sade-Feldman M, Jiao YJ**, Chen JH, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nature Communications 2017;8:1136.
- 38. Zhu AX, Abbas AR, de Galarreta MR, et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nature Medicine 2022;28:1599-1611.

- 39. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015;523:231-235.
- 40. van de Haar J, Hoes LR, Roepman P, et al. Limited evolution of the actionable metastatic cancer genome under therapeutic pressure. Nature Medicine 2021;27:1553-1563.
- 41. Torrens L, Montironi C, Puigvehí M, et al. Immunomodulatory Effects of Lenvatinib Plus Anti-Programmed Cell Death Protein 1 in Mice and Rationale for Patient Enrichment in Hepatocellular Carcinoma. Hepatology 2021.
- 42. Tovar V, Cornella H, Moeini A, et al. Tumour initiating cells and IGF/FGF signalling contribute to sorafenib resistance in hepatocellular carcinoma. Gut 2017;66:530-540.
- 43. **Ho WJ, Zhu Q**, Durham J, et al. Neoadjuvant Cabozantinib and Nivolumab Converts Locally Advanced HCC into Resectable Disease with Enhanced Antitumor Immunity. Nat Cancer 2021;2:891-903.

Table 1

	All (n = 83)	Objective response (n = 25)	Stable disease (n = 21)	Progressive disease (n = 37)	р
Median age (range)	66 (22-86)	65 (29-86)	63 (22-79)	66 (28-83)	0.79
Gender, male (%)	65 (77.1)	21 (84.0)	17 (81.0)	26 (70.3)	0.4
Etiology (%)					
HBV	16 (19.3)	8 (32.0)	3 (14.3)	5 (13.5)	0.16
HCV	24 (28.9)	6 (24.0)	7 (33.3)	11 (29.7)	0.78
NASH	13 (15.7)	5 (20.0)	4 (19.0)	4 (10.8)	0.79
Other Uninfected	31 (37.3)	7 (28.0)	7 (33.3)	17 (45.9)	0.323
Child Pugh Score (%) [*]					0.45
A	72 (88.9)	20 (83.3)	20 (95.2)	32 (88.9)	
В	9 (11.1)	4 (16.7)	1 (4.8)	4 (11.1)	
Fibrosis F3/F4	25 (48.1)	10 (55.6)	7 (50.0)	8 (40.0)	0.62
Platelets <100,000 / mm3 (%)***	17 (21.3)	4 (16.7)	6 (28.6)	7 (20.0)	0.61
BCLC stage (%)		.05			0.35
Intermediate (B)	17 (20.5)	3 (12.0)	4 (19.0)	10 (27.0)	
Advanced (C)	66 (79.5)	22 (88.0)	17 (81.0)	28 (73.0)	
Macrovascular invasion (%) [#]	23 (28.0)	10 (40.0)	6 (28.6)	7 (19.4)	0.21
Extrahepatic disease (%)	53 (63.9)	17 (68.0)	14 (66.7)	22 (59.5)	0.75
Sample origin (%)					0.12
Primary tumor	73 (88.0)	22 (88.0)	16 (76.2)	35 (94.6)	
Metastasis	10 (12.0)	3 (12.0)	5 (23.8)	2 (5.4)	
Specimen type (%)					0.61
Resection	49 (59.0)	14 (56.0)	11 (52.4)	24 (64.9)	
Biopsy	34 (41.0)	11 (44.0)	10 (47.6)	13 (35.1)	
AFP (ng/ml) > 200 (%) [#]	30 (36.6)	7 (28.0)	10 (47.6)	13 (36.1)	0.39
Anti-PD1 drug (%)					0.67
Nivolumab	67 (80.7)	19 (76.0)	16 (76.2)	32 (86.5)	
Pembrolizumab	14 (16.9)	5 (20.0)	4 (19.0)	5 (13.5)	
Tislelizumab	2 (2.4)	1 (4.0)	1 (4.8)	0 (0)	
Median time on therapy in month (range)	4.9 (0.47- 45.4)	18.2 (3.1- 45.4)	4.9 (0.5- 25.7)	2.3 (0.47- 33.6)	<0.001
Events					
Deceased	32 (38.6)	3 (12.0)	10 (47.6)	19 (51.4)	<0.01
Progression	58 (69.9)	8 (32.0)	14 (66.7)	37 (100)	<0.001
Median time to response in months (range) ##		3 (1.7-12.8)			

BCLC – Barcelona clinic liver cancer; AFP – Alpha fetoprotein; *Data missing from 2 cases; **Data missing from 31 cases; ***Data missing from 3 cases; #Data missing from one case; ##Data missing from 7 cases

FIGURE LEGENDS

Figure 1. Cohort overview and outcomes. (A) Study flowchart: Of the 111 samples collected for this study, 83 cases, treated with anti-PD1 in either frontline or after exposure to TKIs were eventually included in the transcriptomic analysis. (B) Alluvial plot showing response patterns based on treatment line. The numbers in the boxes represent the number of patients with that specific response (C,D) Kaplan-Meier (KM) estimates of all patients included in the transcriptomic analysis are shown for OS (C) and PFS (D) based on whether patients exhibited objective response (OR), stable disease (SD) or progressive disease (PD). P values in KM curves represent log-rank tests.

Figure 2. Upregulation of inflammation and antigen-presentation associated genes in responders. (A,B) KM estimates for OS (A) and (PFS) for all 28 patients treated with anti-PD1 in frontline based on whether patients exhibited OR or non-response (NR). (C) Heatmap of gene expression analysis based on observed response types. Each signature or individual gene is significantly upregulated in one response subgroup relative to the others, whereas no differences were observed regarding PD-L1 by IHC. (D) Volcano plot showing differentially expressed genes in responders compared to non-responders. Genes differentially expressed at p<0.05 are depicted in red, all others in orange. (E) GeneOntology gene set enrichment analysis of differentially expressed genes using the *biological processes* classification. P values in KM curves represent log-rank tests.

Figure 3. Association of previously reported gene signatures and HCC molecular classes with response and resistance to anti-PD1. (A) Circular classification plot integrating response types with molecular classes of HCC. Each sector represents one patient. Significant enrichment of the *S1/2* classes and the *Inflamed HCC* subgroup is observed in responders. (B) Boxplot comparison for the expression of previously reported gene signatures based on observed response. (C-J) KM estimates for PFS (C-F) and OS (G-J) based on expression of previously reported signatures. P values in boxplot comparison represents Mann-Whitney test, while those in the KM curves represent log-rank tests.

Figure 4. Generation and validation of expression signature associated with response. (a) Heatmap of genes incorporated in the IFNAP signature. (B,C) KM

estimates for PFS (B) and OS (C) are shown based on expression of IFNAP. (D) Receiver operating characteristic (ROC) curve is shown for IFNAP and previously characterized signatures of response. (E-F) Validation of IFNAP in two independent datasets of anti-PD1/anti-PDL1 treated patients with melanoma, non-small cell lung cancer (NSCLC) and head and neck squamous cell cancer (E,G) and NSCLC (F,H), respectively. Patients with response showed marked enrichment in IFNAP (E,F) which was associated with longer PFS (G,H). P values for KM analysis derive from log-rank test whereas those in the barplots represent 2-sided Chi² test.

Figure 5. Characterization of IFNAP and correlates of resistance to anti-PD1. (A) Histological assessment of the immune infiltrate, applying a previously characterized semi-quantitative score¹⁷, in the intratumoral compartment and at the invasive margin. (B) Boxplot representation of virtual-microdissection with CIBERSORTx based on IFNAP expression. (C) Correlation of IFNAP expression with previously characterized resistance markers. (D) Correlation heatmap with unsupervised clustering of factors associated with response and resistance to anti-PD1 therapy. (E) Heatmap of patients treated in frontline with anti-PD1 ordered by response and CTNNB1 mutational status. No differences in response rates were observed, while a trend towards increased inflammatory signaling in responders with CTNNB1 mutations compared to non-responders with mutations was noted. P values in boxplot comparison represents Mann-Whitney test, while those in the correlation plots represent Pearson tests.

Figure 6. TKI therapy compromises predictive potential of response-signatures. (A-B) Kaplan-Meier estimates for PFS and OS in patients treated with anti-PD1 in 2nd/3rd line. (C) Heatmap of patients treated with anti-PD1 in 2nd and 3rd line highlights inability of previously characterized markers to capture responders to anti-PD1 after TKI therapy. (D-E) Forest plots showing log Hazard ratios from a Cox regression model for PFS defines high infiltration of Tregs (Top 20%) as a poor prognostic marker in patients treated with anti-PD1 both in frontline (D) and after exposure to TKIs (E). P values in KM curves represent a log-rank test.

Journal Pre-proof

Time in months

Created by Universal Document Converter

Created by Universal Document Converter

Figure 3

Created by Universal Downment Converter

D

Ε

Frontline - Cox regression for PFS High Treg infiltration* CTNNB1 mutation Uninfected liver disease Intratumoral TILs Tumor mutational burden TLS signature HBV High immune infiltrate IFNAP signature 0.25 0.5 2 8 4 1

Hazard ratio (log scale)

4

-2

-4

Lay summary

Here, we define the molecular factors associated with response to frontline anti-PD1 in advanced HCC and develop a predictive signature, IFNAP, that can maximize the effectiveness of anti-PD1 in HCC.

Journal Pre-proof

What you need to know

BACKGROUND AND CONTEXT:

Only 15-20% of patients with advanced HCC patients treated with anti-PD1 exhibit a strong benefit but an understanding of the molecular underpinnings that would enable precision oncology is still amiss.

NEW FINDINGS

We develop a tissue-based genomic tool to predict response in patients treated with anti-PD1 in frontline. Treatment with tyrosine-kinase-inhibitors between tissue acquisition and anti-PD1 compromises the predictive ability of this marker.

LIMITATIONS

Due to the absence of serial biopsies, an understanding of how TKIs reshape the tumoral microenvironment to mitigate applicability of biomarkers in patients receiving anti-PD1 in 2nd/3rd line remains unclear.

IMPACT

We provide a comprehensive molecular characterization of responders to anti-PD1. Discrepancies between patients treated in frontline and in 2nd/3rd line highlight the need for fresh biopsies directly prior to anti-PD1.
Table S1: Participating centers

Center	Recruited cases
Mount Sinai	21
University of Bern	12
University of Leuven	11
University of Mainz	9
University of Hannover	9
Royal Free Hospital	8
University of Lausanne	7
Mayo Clinic	3
Hosp. Vall d'Hebron	4
Istituto Nazionale dei Tumori	1
University of Frankfurt	10
UCLA	8
Charité	8

	Frontline (n=28)	2nd/3rd line (n=55)	р
Median age (range)	66.5 (22-85)	63.0 (28-86)	0.55
Gender, male (%)	22 (78.6)	42 (76.4)	1
Etiology (%)			0.31
HBV	5 (17.9)	11 (20.0)	
HCV	11 (39.3)	13 (23.6)	
Uninfected	13 (46.4)	31 (56.4)	
Child Pugh Score (%) [*]			0.71
A	24 (92.3)	48 (87.3)	
В	2 (7.7)	7 (12.7)	
Advanced Fibrosis F3/4(%)**	10 (55.6)	15 (44.1)	0.56
Platelets <100.000 / mm3 (%)***	3 (12)	14 (25.5)	0.24
BCLC stage (%)			0.78
Intermediate (B)	5 (17.9)	12 (21.8)	
Advanced (C)	23 (82.1)	43 (78.2)	
Macrovascular invasion (%)#	11 (39.3)	12 (22.2)	0.12
Extrahepatic disease (%)	14 (50.0)	39 (70.9)	0.09
Sample origin (%)			0.73
Primary tumor	24 (85.7)	49 (89.1)	
Metastasis	4 (14.3)	6 (10.9)	
Specimen type (%)			0.248
Resection	14 (50.0)	35 (63.6)	
Biopsy	14 (50.0)	20 (36.4)	
AFP (ng/ml) > 200 (%)#	7 (25.9)	23 (41.8)	0.22
Anti-PD1 drug (%)			0.22
Nivolumab	25 (89.3)	42 (76.4)	
Pembrolizumab	2 (7.1)	12 (21.8)	
Tislelizumab	1 (3.6)	1 (1.8)	
Objective response (%)##	12 (42.9)	13 (23.6%)	0.08
Disease control (%)##	17 (60.7)	29 (52.7)	0.64
	6.25	2.0	0.36
Median time on therapy in month	0.20	0.8	0.30
Events			
Deceased	9 (32.1)	23 (41.8)	0.48
Progression	19 (67.9)	40 (72.7)	0.80

Table S2: Cohort characteristics based on treatment line

* data missing from 2 cases ** data missing from 31 cases

*** data missing from 3 cases

data missing from one case

Assessment in 2 centers (11 patients) via RECIST 1.1

	All (n = 28)	Objective response (n=12)	No response (n=16)	р
Age (years), median (range)	66.5 (22-85)	66.5 (29-85)	66.5 (22-79)	0.91
>65 years, n(%)	19 (67.9)	7 (58.3)	12 (75.0)	0.43
Sex, n (%)				0.80
Male	22 (78.6)	9 (75)	13 (81.2)	
Female	6 (21.4)	3 (25)	3 (18.8)	
Region, n (%)				0.05
US	17 (60.7)	10 (83.3)	7 (43.8)	
Europe	11 (39.3)	2 (16.7)	9 (56.2)	
Aetiology, n (%))	
HBV	5 (17.9)	3 (25.0)	2 (12.5)	0.63
HCV	11 (39.3)	5 (41.7)	6 (37.5)	1.0
Uninfected	13 (46.4)	5 (41.7)	8 (50.0)	0.71
BCLC stage, n (%)		.0.		0.48
Intermediate (B)	5 (17.9)	1 (8.3)	4 (25.0)	
Advanced (C)	23 (82.1)	11 (91.7)	12 (75.0)	
Sample origin, n (%)				0.66
Primary tumor	24 (85.7)	11 (91.7)	13 (81.2)	
Metastasis	4 (14.3)	1 (8.3)	3 (18.8)	
Specimen type, n (%)				0.54
Resection	14 (50.0)	5 (41.7)	9 (56.3)	
Biopsy	14 (50.0)	7 (58.3)	7 (43.7)	
Child Pugh Score, n (%)*				1.0
A	24 (92.3)	10 (90.9)	14 (93.3)	
В	2 (7.7)	1 (9.1)	1 (6.7)	
Advanced Fibrosis F3-4, n (%)**	10 (55.6)	6 (66.7)	4 (44.4)	0.71
Platelets >100,000 / mm3, n (%)***	22 (88)	10 (90.9)	12 (85.7)	1.0
AFP (ng/mL), median (range) [*]	15 (2-78981)	20 (2-78981)	15 (2-1780)	0.91
AFP (ng/ml) > 200, n (%)*	7 (25.9)	4 (33.3)	3 (20.0)	0.66
Macrovascular invasion, n (%)	11 (39.3)	6 (50.0)	5 (31.3)	0.44
Extrahepatic disease, n (%)	14 (50.0)	7 (58.3)	7 (43.8)	0.70
Anti-PD1 drug, n (%)				0.63
Nivolumab	25 (89.3)	10 (83.3)	15 (93.8)	
Pembrolizumab	2 (7.1)	1 (8.3)	1 (6.3)	
Tislelizumab	1 (3.6)	1 (8.3)	0 (0.0)	
Median time on therapy (months), median (range)	6.25	13.8	3.8	<0.001

Table S3: Clinicopathological characteristics of patients treated with anti-PD1 in frontline

* data missing from 2 cases ** data missing from 10 cases *** data missing from 3 cases

Gene	logFC	FC	Wilcoxon p upregulated in OR
LIN9	0.045117382	1.031767124	0.026344429
BACE1	0.055614396	1.039301613	0.045311299
RAP2A	0.055883361	1.039495391	0.023457892
OTUD4	0.065624121	1.046537582	0.036746083
EID3	0.067156124	1.047649495	0.020832926
SLC38A2	0.068823633	1.048861099	0.032970758
TSPAN31	0.085555799	1.06109645	0.011041353
ARHGAP8	0.085834713	1.061301611	0.029509206
MIPOL1	0.085852306	1.061314553	0.020832926
GCG	0.090346649	1.064625958	0.040853946
RXYLT1	0.090977593	1.065091661	0.029509206
GALNT2	0.092254855	1.066035037	0.009640554
RHEB	0.093882142	1.067238149	0.040853946
ZSWIM8	0.0970303	1.069569551	0.032970758
CSNK1E	0.102473039	1.07361225	0.045311299
ARL4A	0.102940823	1.073960418	0.040853946
FGFR1OP2	0.104827961	1.075366147	0.040853946
USP37	0.104896163	1.075416985	0.032970758
SGCE	0.109035283	1.078506808	0.032970758
TRMT10A	0.110509033	1.079609093	0.045311299
FAM20C	0.111481887	1.080337352	0.032970758
IMMP2L	0.112367225	1.081000526	0.040853946
AKNAD1	0.112462324	1.081071785	0.014355333
SOCS5	0.11296337	1.081447305	0.029509206
BBS10	0.113345959	1.081734132	0.029509206
ADIRF	0.116383117	1.084013796	0.045311299
AGAP11	0.116383117	1.084013796	0.045311299
FCHO2	0.117376551	1.0847605	0.045311299
JHY	0.118206331	1.08538459	0.045311299
NPHP3	0.118766342	1.085805985	0.026344429
SHQ1	0.119699336	1.086508406	0.040853946
RNF212B	0.120907979	1.087419029	0.029509206
UFSP1	0.120920373	1.087428371	0.029509206
GTF2H3	0.121050927	1.08752678	0.003995217
MRPL37	0.121338752	1.087743769	0.040853946
CHPT1	0.121563362	1.08791313	0.045311299
MICU3	0.124473146	1.090109566	0.029509206
GLA	0.125357524	1.090778012	0.023457892
TIPRL	0.125580614	1.090946697	0.009640554
CCDC66	0.126567595	1.091693294	0.023457892
TRMT10C	0.126949985	1.091982688	0.036746083
DEFB114	0.127014161	1.092031265	0.026344429
KDM4C	0.12778562	1.092615368	0.026344429

Table S4: Differentially expressed genes between responders and non-responders in frontline treated patients

MTERF2	0.128655766	1.093274566	0.036746083
PREB	0.128867812	1.093435266	0.045311299
PTPDC1	0.129952769	1.094257877	0.032970758
MARK4	0.130567708	1.094724397	0.032970758
FUCA2	0.132300215	1.096039821	0.040853946
GSTCD	0.132392077	1.096109612	0.026344429
ANKRD26	0.132591936	1.096261469	0.032970758
PRSS48	0.133448204	1.096912315	0.040853946
HIST1H2AC	0.133916092	1.097268118	0.026344429
RFTN2	0.135166828	1.098219801	0.029509206
UCHL3	0.137050827	1.09965489	0.036746083
ELOVL2	0.13832529	1.100626744	0.040853946
IQCD	0.138404	1.100686793	0.029509206
OMG	0.138881561	1.101051203	0.018451648
CCDC65	0.139021683	1.101158148	0.014355333
MIR6890	0.141343166	1.10293148	0.036746083
QARS	0.141343166	1.10293148	0.036746083
WRNIP1	0.142083453	1.10349757	0.029509206
SGF29	0.142214972	1.103598172	0.020832926
LOC100133315	0.142490156	1.103808696	0.00466565
PIGK	0.142772282	1.104024572	0.023457892
ZC3H7B	0.142865787	1.104096129	0.045311299
RAP1GDS1	0.143393422	1.104500002	0.023457892
LOC653513	0.143434409	1.104531382	0.026344429
PDE4DIP	0.143434409	1.104531382	0.026344429
CDC7	0.144861823	1.105624755	0.026344429
RRAGA	0.146428054	1.106825705	0.045311299
KAAG1	0.147930202	1.107978742	0.040853946
NFYB	0.149123617	1.108895655	0.023457892
AGBL3	0.151405805	1.110651197	0.012608351
CLTA	0.151407061	1.110652163	0.040853946
FAR2	0.152441647	1.11144892	0.029509206
CPPED1	0.152449965	1.111455328	0.045311299
SCFD1	0.152623315	1.111588886	0.020832926
OPA1	0.152671749	1.111626204	0.032970758
CARD6	0.153253171	1.112074293	0.016298131
TUBB1	0.153756984	1.112462715	0.040853946
OSBPL1A	0.154881395	1.113330087	0.032970758
ARIH1	0.15635548	1.114468222	0.018451648
MIR630	0.15635548	1.114468222	0.018451648
LRRTM2	0.157835308	1.115611962	0.029509206
TSC22D2	0.158322536	1.11598879	0.023457892
VPS26B	0.159119646	1.116605561	0.003995217
HSPA4	0.159388116	1.116813369	0.029509206
RPRD1B	0.160511105	1.117683031	0.026344429
ENPP2	0.161054213	1.118103866	0.040853946
PPP1R3C	0.163076408	1.119672187	0.026344429

RBM4	0.163157603	1.119735204	0.002454436
WDR27	0.163239374	1.119798672	0.014355333
AIFM1	0.16401848	1.120403566	0.040853946
PLPP1	0.164993279	1.121160855	0.026344429
RNF138P1	0.164993279	1.121160855	0.026344429
MIR7855	0.165042408	1.121199035	0.032970758
SPTB	0.165042408	1.121199035	0.032970758
DCAF17	0.165684854	1.121698427	0.032970758
ATPAF1	0.166243008	1.122132477	0.036746083
EPHX4	0.167132891	1.122824844	0.020832926
ZNF174	0.167435996	1.12306077	0.011041353
CEP295	0.167586471	1.123177913	0.026344429
HADHB	0.167713162	1.12327655	0.023457892
CCDC73	0.168109743	1.123585369	0.023457892
C1orf53	0.168500108	1.12388943	0.016298131
GTF2B	0.168653921	1.12400926	0.036746083
SEC61B	0.168881522	1.124186599	0.040853946
MID1	0.169361187	1.124560428	0.045311299
MYPN	0.169967496	1.125033137	0.001456447
C6orf106	0.170710234	1.125612483	0.036746083
DLGAP1	0.171108843	1.125923527	0.016298131
PLD3	0.171319022	1.126087569	0.045311299
C5orf15	0.171336329	1.126101078	0.029509206
CDCA2	0.171764944	1.126435685	0.045311299
LRP5	0.172810869	1.127252625	0.012608351
FIGNL1	0.173376852	1.127694944	0.040853946
TUBG1	0.173822997	1.12804373	0.040853946
CAAP1	0.173883967	1.128091404	0.040853946
SEC22A	0.173907314	1.12810966	0.020832926
VAMP2	0.173917573	1.128117681	0.016298131
ZNF623	0.174732834	1.128755356	0.045311299
KIAA1107	0.175253279	1.129162623	0.001456447
SLC25A16	0.175605069	1.129437994	0.036746083
LACTB	0.17629913	1.129981482	0.040853946
ASAH2	0.177154002	1.130651253	0.036746083
PPARG	0.17722447	1.130706481	0.045311299
TMEM147	0.177291457	1.130758983	0.001740183
PPFIBP1	0.177555669	1.130966087	0.011041353
HABP4	0.178933002	1.132046329	0.032970758
ERI2	0.179229018	1.132278629	0.036746083
METAP1D	0.179600626	1.132570318	0.002898085
UBA5	0.179923254	1.132823622	0.036746083
SPATC1L	0.179968787	1.132859375	0.032970758
GALNT1	0.180059189	1.132930364	0.045311299
ST3GAL6	0.182612339	1.134937097	0.045311299
CFAP69	0.18266831	1.134981128	0.026344429
SCRN3	0.182714448	1.135017426	0.011041353

FAM81A	0.18277948	1.135068591	0.014355333
PPP6R3	0.1838499	1.135911077	0.032970758
SDAD1	0.184019276	1.136044444	0.032970758
RARB	0.184230427	1.136210725	0.00466565
TRIP13	0.184294482	1.136261174	0.032970758
HIST1H3G	0.185591883	1.137283462	0.045311299
SMU1	0.1861536	1.137726352	0.023457892
TTC23	0.186193933	1.13775816	0.036746083
CAMK1D	0.186431539	1.137945559	0.045311299
SENP1	0.18685455	1.138279264	0.026344429
ANKEF1	0.187117881	1.13848705	0.036746083
GSPT1	0.187628822	1.138890325	0.020832926
KANSL1	0.187755528	1.138990353	0.029509206
KIF16B	0.188789777	1.139807173	0.023457892
SH3GL1	0.189298106	1.140208851	0.023457892
ZBP1	0.189589828	1.140439432	0.032970758
KRT18	0.189963346	1.140734733	0.045311299
POP5	0.190325803	1.141021363	0.040853946
TMEM9	0.190328597	1.141023573	0.032970758
HTR2B	0.190855657	1.141440499	0.032970758
ZNF398	0.191525855	1.141970874	0.036746083
MTREX	0.192642006	1.142854709	0.007281815
IL1R1	0.192761566	1.142949425	0.016298131
CXCL10	0.193020544	1.143154614	0.040853946
LSM3	0.193052392	1.14317985	0.018451648
PNPT1	0.193337754	1.14340599	0.045311299
PIGF	0.193893369	1.143846427	0.029509206
NR1D2	0.194035035	1.143958753	0.020832926
ZAR1L	0.194222796	1.144107645	0.018451648
IFT74	0.195260688	1.144931026	0.014355333
C20orf194	0.195480229	1.145105268	0.036746083
AZI2	0.195533244	1.145147347	0.023457892
CREG1	0.195865765	1.145411319	0.032970758
CBL	0.196046423	1.145554759	0.036746083
SCAF11	0.19628652	1.145745421	0.045311299
WFDC10A	0.196322665	1.145774127	0.007281815
GORAB	0.196608102	1.146000841	0.012608351
RSPH9	0.196756842	1.146118998	0.020832926
ATG4A	0.197256659	1.146516136	0.003408791
ARHGAP1	0.197596995	1.146786634	0.007281815
PARP4	0.197731983	1.14689394	0.016298131
ETFDH	0.198189098	1.147257389	0.040853946
P4HA2	0.19859402	1.147579435	0.023457892
KIF9	0.198655039	1.147627973	0.023457892
LACTB2	0.19931052	1.14814951	0.018451648
ERGIC2	0.200840513	1.149367781	0.014355333
TESK2	0.201094581	1.14957021	0.011041353

IKZF5	0.201683675	1.150039708	0.023457892
NAPA	0.201958445	1.150258761	0.011041353
TADA2A	0.202498355	1.150689311	0.040853946
MLH3	0.202892901	1.151004043	0.016298131
WNT5B	0.203012601	1.151099545	0.045311299
NDUFB11	0.204439638	1.152238715	0.029509206
MGMT	0.204777709	1.152508754	0.023457892
ACAD10	0.20531724	1.152939843	0.040853946
MFAP3	0.205554766	1.153129679	0.029509206
RALGAPA2	0.205794149	1.153321032	0.040853946
DLX6	0.2068949	1.154201331	0.045311299
CDKL5	0.206984243	1.154272811	0.006298355
ZNF518A	0.207361526	1.154574707	0.026344429
FAM83H	0.207507273	1.154691353	0.003408791
HIBCH	0.207657326	1.154811457	0.029509206
ARL15	0.208043814	1.155120864	0.023457892
SIAH1	0.21005977	1.156736106	0.040853946
DNAJB5	0.210160065	1.156816524	0.023457892
TMF1	0.210579305	1.157152738	0.036746083
MMAB	0.210825645	1.157350339	0.014355333
FLJ30679	0.211176283	1.157631659	0.016298131
MYH9	0.211457745	1.157857529	0.018451648
SASH1	0.211534156	1.157918855	0.036746083
CCT8	0.212147809	1.158411483	0.016298131
BCL6	0.212668641	1.158829761	0.029509206
EIF4G3	0.212733936	1.158882209	0.036746083
INSIG2	0.212752747	1.15889732	0.032970758
LIMS1	0.213517653	1.159511921	0.011041353
FBXO22	0.213820242	1.159755141	0.029509206
SPATA6	0.213929229	1.159842757	0.023457892
ARMC10	0.21468895	1.16045369	0.014355333
STAT2	0.214791179	1.160535922	0.032970758
UPRT	0.214937013	1.16065324	0.026344429
SSRP1	0.215055534	1.160748594	0.040853946
ING2	0.215369747	1.161001429	0.011041353
KIAA2026	0.216805671	1.162157556	0.001213644
KAT2A	0.217828694	1.162981941	0.045311299
FYTTD1	0.218295927	1.163358647	0.011041353
BAZ1B	0.218884027	1.163832975	0.040853946
SCYL2	0.219288635	1.16415942	0.020832926
CEP112	0.219386155	1.164238116	0.003408791
MAPK9	0.219463306	1.164300377	0.026344429
ХРА	0.219759787	1.164539671	0.018451648
FAM86C1	0.22021449	1.164906764	0.011041353
ARPP19	0.220796098	1.165376479	0.012608351
FASTKD1	0.220995817	1.165537818	0.045311299
PRKD3	0.221016625	1.165554629	0.029509206

PPP2CB	0.221040428	1.16557386	0.029509206
POP4	0.221168407	1.16567726	0.00466565
CCDC146	0.221283311	1.165770105	0.018451648
GTF2F1	0.221954651	1.166312708	0.018451648
IRF2BP1	0.222015626	1.166362003	0.006298355
ABI2	0.223544021	1.167598304	0.029509206
RAP2B	0.224314913	1.168222368	0.045311299
CEP41	0.224530127	1.16839665	0.020832926
RIC1	0.225102353	1.168860171	0.011041353
PCYT2	0.225163534	1.168909741	0.016298131
TRIM5	0.225285887	1.169008878	0.018451648
MMS19	0.22603473	1.16961582	0.020832926
MMP15	0.226386927	1.169901386	0.018451648
SHLD1	0.22654551	1.170029991	0.016298131
ACP2	0.227046002	1.170435961	0.009640554
NPAT	0.227413457	1.17073411	0.040853946
TMEM144	0.227790354	1.171039999	0.009640554
MED29	0.227941476	1.171162672	0.016298131
ZNF267	0.228487685	1.171606161	0.040853946
SMARCD1	0.229790165	1.172664376	0.023457892
LOC388436	0.22980634	1.172677525	0.029509206
LOC79999	0.22980634	1.172677525	0.029509206
HCFC1	0.229883475	1.172740224	0.045311299
PRKCA	0.230087492	1.172906078	0.014355333
BRK1	0.230639613	1.173355036	0.012608351
DLST	0.231319783	1.173908354	0.036746083
AIDA	0.231520385	1.174071593	0.032970758
UBTF	0.232759247	1.175080218	0.036746083
SOX13	0.233815477	1.175940836	0.016298131
SLC25A4	0.23410661	1.176178163	0.023457892
ATR	0.234175215	1.176234095	0.029509206
DNTTIP1	0.234421261	1.176434714	0.002898085
TLR3	0.234578145	1.176562651	0.045311299
DNAJC3	0.234619146	1.176596089	0.020832926
PRDX2	0.235414475	1.177244902	0.016298131
PTPN12	0.23597366	1.177701287	0.040853946
PPID	0.236299062	1.177966949	0.005430149
PARL	0.236563556	1.17818293	0.014355333
SERPINB6	0.236587325	1.178202342	0.012608351
LINC01549	0.236753734	1.17833825	0.032970758
HECW2	0.237379418	1.178849396	0.018451648
ZACN	0.237532805	1.178974738	0.002898085
SHARPIN	0.237954632	1.179319506	0.032970758
RHOBTB1	0.238219477	1.179536021	0.011041353
PATZ1	0.238362594	1.179653039	0.040853946
BTF3L4	0.23954678	1.180621713	0.018451648
TBCD	0.24051331	1.181412933	0.045311299

TTLL1	0.240538961	1.181433938	0.014355333
AK4	0.241412763	1.182149718	0.040853946
CD40	0.242644589	1.183159512	0.029509206
FBXL5	0.242684037	1.183191864	0.026344429
MAPRE2	0.242737445	1.183235666	0.003408791
SLC25A44	0.243105757	1.183537778	0.029509206
ZFYVE9	0.243186299	1.183603854	0.018451648
SF3B5	0.243242447	1.183649919	0.008391519
XPC	0.243668768	1.183999743	0.007281815
ERGIC1	0.243905261	1.184193846	0.045311299
RGPD1	0.244468372	1.184656149	0.032970758
RGPD2	0.244468372	1.184656149	0.032970758
ZFYVE16	0.244533713	1.184709804	0.045311299
PTGFR	0.245384917	1.185409001	0.026344429
ATAD1	0.24541217	1.185431393	0.036746083
MFSD8	0.24615081	1.186038474	0.011041353
RAB3GAP1	0.247410583	1.187074585	0.000296775
KNTC1	0.24811661	1.187655658	0.012608351
ASNA1	0.248516609	1.187984991	0.023457892
UBXN8	0.24854609	1.188009267	0.036746083
OTUD1	0.248557254	1.18801846	0.014355333
HS6ST1	0.24860955	1.188061525	0.018451648
BCHE	0.248670856	1.188112012	0.014355333
ZYG11B	0.249592015	1.188870862	0.036746083
SLC35F5	0.249657461	1.188924795	0.009640554
SIRT2	0.249807293	1.189048278	0.003995217
HACL1	0.249869395	1.189099463	0.040853946
GNG10	0.249956646	1.189171379	0.020832926
RABEP1	0.25039915	1.189536178	0.023457892
PSMG3-AS1	0.252321704	1.191122426	0.007281815
METAP2	0.252347504	1.191143727	0.036746083
HAO1	0.252402213	1.191188898	0.018451648
NAPB	0.252502662	1.191271838	0.006298355
PLEKHA3	0.253040636	1.191716141	0.036746083
SOCS4	0.253074198	1.191743864	0.040853946
MIR4742	0.253104165	1.191768619	0.045311299
WDR26	0.253104165	1.191768619	0.045311299
AKR1B1	0.253773187	1.192321407	0.026344429
ETFA	0.253952085	1.192469267	0.009640554
WRN	0.25414591	1.192629486	0.012608351
EIF2A	0.254274504	1.192735795	0.005430149
SETX	0.254360401	1.192806812	0.020832926
DYNC2LI1	0.254593812	1.192999809	0.023457892
LGALSL	0.255289507	1.193575235	0.020832926
CXorf56	0.255565394	1.193803504	0.009640554
UMAD1	0.25575555	1.193960865	0.023457892
RHBDL3	0.255951208	1.194122801	0.045311299

TSPAN15	0.255996837	1.194160569	0.020832926
NDUFA2	0.256017924	1.194178023	0.016298131
SLC28A3	0.256150865	1.194288069	0.029509206
SETD5	0.256174291	1.194307462	0.029509206
APOBEC3G	0.256217214	1.194342995	0.036746083
HNRNPA2B1	0.257847263	1.195693203	0.040853946
THAP5	0.258290605	1.196060697	0.036746083
COA4	0.258724693	1.19642063	0.029509206
C1orf174	0.258957389	1.19661362	0.020832926
SNRPD3	0.258980874	1.1966331	0.020832926
MBNL3	0.259042368	1.196684106	0.020832926
DCAF10	0.259263569	1.196867601	0.007281815
CLIC6	0.259509631	1.197071753	0.032970758
LGMN	0.259536836	1.197094327	0.026344429
BUB3	0.259730692	1.197255192	0.014355333
GPRC5D	0.259806536	1.197318134	0.029509206
MAF	0.259856067	1.197359242	0.045311299
EPG5	0.260017924	1.197493582	0.006298355
BCL2L13	0.261182977	1.198461013	0.018451648
CDK12	0.261225315	1.198496183	0.00466565
PIGS	0.261688472	1.198881006	0.045311299
KIAA1958	0.261995038	1.199135789	0.045311299
PCNX4	0.262094693	1.199218623	0.008391519
NAIP	0.2624319	1.199498955	0.008391519
RPL29	0.263311726	1.200230691	0.011041353
VASH1	0.26336726	1.200276892	0.005430149
NEK6	0.264327775	1.201076276	0.020832926
STARD3NL	0.264850685	1.20151169	0.007281815
FEN1	0.265074077	1.20169775	0.020832926
RGMB	0.265214219	1.201814488	0.029509206
GLCE	0.265310274	1.201894507	0.045311299
NR2F1	0.265346774	1.201924916	0.023457892
PDE5A	0.265472224	1.202029434	0.005430149
TRAF6	0.265587979	1.202125883	0.016298131
GLB1	0.265606297	1.202141147	0.045311299
TMPPE	0.265606297	1.202141147	0.045311299
CPSF3	0.265614641	1.2021481	0.018451648
DIRC2	0.266158851	1.202601656	0.032970758
CDKL1	0.266828872	1.203160302	0.029509206
WHAMM	0.267473934	1.203698383	0.040853946
EIF3A	0.26785422	1.204015713	0.023457892
DYM	0.268878638	1.204870955	0.040853946
ZNF614	0.269161767	1.205107434	0.029509206
LTV1	0.269267169	1.205195481	0.023457892
HDHD3	0.269329074	1.205247197	0.009640554
BTG3	0.269471831	1.205366464	0.006298355
KIDINS220	0.269728966	1.205581318	0.016298131

RNF31	0.270898422	1.206558965	0.032970758
LRCH1	0.271006289	1.20664918	0.002070906
TSPYL4	0.271171169	1.206787091	0.014355333
SREBF2	0.271650155	1.20718782	0.040853946
TNPO3	0.271810049	1.20732162	0.016298131
RGSL1	0.272554044	1.207944394	0.045311299
ROCK1	0.27257393	1.207961044	0.018451648
MPHOSPH9	0.273379872	1.208636044	0.040853946
PHB	0.273402666	1.20865514	0.023457892
MFN2	0.273682674	1.208889747	0.040853946
PPM1G	0.274474973	1.209553827	0.023457892
ARHGAP11B	0.275037518	1.210025556	0.036746083
ST3GAL5	0.275298099	1.210244132	0.026344429
PIK3C2A	0.275519577	1.210429939	0.029509206
GDE1	0.275959086	1.210798746	0.020832926
AP1B1	0.27647353	1.211230576	0.045311299
RHOT1	0.276808487	1.211511825	0.001740183
MT4	0.277450536	1.21205111	0.009640554
MED4	0.278228607	1.212704967	0.026344429
CINP	0.27857889	1.212999444	0.00466565
HSBP1L1	0.278755551	1.213147988	0.020832926
GRB14	0.27888064	1.213253178	0.045311299
NFIA	0.27898584	1.213341652	0.012608351
PSMA1	0.279386503	1.213678666	0.023457892
MAP7D2	0.279465252	1.213744915	0.007281815
IBTK	0.279629323	1.213882957	0.018451648
ACTL6A	0.279820129	1.214043512	0.023457892
ATP5MC3	0.279883604	1.214096927	0.036746083
CD180	0.280205982	1.214368254	0.029509206
MIR6132	0.280532254	1.21464292	0.032970758
ST7	0.280532254	1.21464292	0.032970758
ST7-OT3	0.280532254	1.21464292	0.032970758
ST7-OT4	0.280532254	1.21464292	0.032970758
TMCC1	0.28093971	1.214986016	0.003995217
APOA2	0.281158443	1.21517024	0.029509206
SRRT	0.281199692	1.215204984	0.016298131
SAP30L	0.281560086	1.215508587	0.009640554
FAM76B	0.2822877	1.216121776	0.045311299
ARID1B	0.282333749	1.216160594	0.002454436
DNM2	0.282566246	1.216356599	0.045311299
DNAJC13	0.283738139	1.21734504	0.008391519
EP300	0.284045812	1.217604682	0.00466565
MIR1281	0.284045812	1.217604682	0.00466565
TMX2-CTNND1	0.284964553	1.218380327	0.036746083
RER1	0.285130233	1.218520255	0.023457892
INTS6	0.285380628	1.218731761	0.014355333
COPZ1	0.285386962	1.218737112	0.029509206

EPM2A	0.285678841	1.218983706	0.026344429
SLC30A1	0.285768424	1.2190594	0.023457892
MAIP1	0.285829971	1.219111407	0.040853946
UHRF2	0.285985565	1.219242895	0.045311299
ANKRD36	0.286121312	1.219357622	0.032970758
COMMD4	0.286686347	1.21983528	0.036746083
DHX15	0.287358203	1.220403483	0.023457892
APOBEC3F	0.287422007	1.220457458	0.040853946
SETD1B	0.287807953	1.220783995	0.045311299
RARS2	0.288045076	1.220984661	0.007281815
ZNF282	0.288060098	1.220997375	0.026344429
FMN1	0.288400897	1.221285837	0.012608351
PAK4	0.288496023	1.221366367	0.036746083
AKAP1	0.288944959	1.221746489	0.014355333
LAMTOR3	0.289321621	1.222065507	0.020832926
SOS1	0.28933078	1.222073266	0.023457892
KALRN	0.289737078	1.22241748	0.023457892
DTYMK	0.289944435	1.222593189	0.018451648
SEC22B	0.290037487	1.222672047	0.023457892
COG2	0.290367691	1.222951925	0.032970758
RCAN2	0.291286245	1.223730817	0.023457892
ATXN2	0.291304097	1.22374596	0.002070906
AGFG2	0.291751876	1.224125841	0.026344429
NEK1	0.291994794	1.224331975	0.014355333
SLC22A12	0.292127186	1.224444333	0.020832926
SPCS1	0.292158692	1.224471073	0.026344429
ZNF567	0.293072105	1.225246567	0.029509206
PMPCB	0.293105508	1.225274936	0.029509206
CPNE3	0.293316385	1.225454046	0.040853946
GOLGB1	0.293836949	1.225896303	0.020832926
TOGARAM1	0.293852033	1.225909121	0.005430149
OXSR1	0.293892924	1.225943868	0.040853946
POM121	0.294165463	1.226175482	0.007281815
PEA15	0.29422898	1.226229468	0.045311299
TEX10	0.294637074	1.226576379	0.023457892
ADIPOR2	0.294986827	1.226873775	0.001456447
SCFD2	0.294996982	1.226882411	0.036746083
MRRF	0.295174125	1.227033064	0.011041353
DNAJC22	0.296209868	1.227914295	0.036746083
GTF2H5	0.296234926	1.227935622	0.026344429
PRLR	0.296512648	1.228172026	0.023457892
FBXO5	0.296706494	1.228337058	0.002070906
PRKAA2	0.297235001	1.228787122	0.008391519
CENPU	0.298336103	1.229725322	0.001740183
RNF13	0.298357514	1.229743572	0.016298131
DHX29	0.298436754	1.229811117	0.045311299
PREP	0.298918476	1.230221826	0.011041353

	PLSCR1	0.299079562	1.230359195	0.040853946
	MRPL40	0.299306302	1.230552579	0.009640554
	IFT81	0.300074879	1.231208314	0.036746083
	CTSD	0.300340736	1.231435219	0.026344429
	TENT2	0.300455138	1.231532873	0.040853946
	NDRG3	0.30088551	1.231900308	0.045311299
	FAM149B1	0.301320056	1.232271417	0.023457892
	PLAUR	0.301340652	1.23228901	0.006298355
	KIAA0754	0.302185993	1.233011276	0.005430149
	MACF1	0.302185993	1.233011276	0.005430149
	MTIF2	0.302278281	1.233090153	0.006298355
	NTAN1	0.303227224	1.233901494	0.018451648
	PKIB	0.303421436	1.23406761	0.040853946
	LATS1	0.303449848	1.234091913	0.032970758
	ILVBL	0.303550032	1.234177615	0.00466565
	LYNX1	0.303720575	1.234323517	0.045311299
	COX7A2L	0.303819276	1.234407965	0.029509206
	SYNJ2	0.304154173	1.234694545	0.036746083
	ZNF639	0.304646826	1.235116242	0.036746083
	CREBRF	0.305090153	1.23549584	0.005430149
	PATJ	0.305213014	1.23560106	0.045311299
	SNX4	0.305492942	1.235840828	0.029509206
	FKBP1A	0.305784079	1.236090248	0.026344429
1	MIR6869	0.305784079	1.236090248	0.026344429
	ABCB7	0.305816947	1.236118409	0.032970758
	THUMPD1	0.306200734	1.236447286	0.011041353
	MTFR1L	0.306283502	1.236518223	0.045311299
	DMD	0.306741417	1.23691076	0.032970758
	COX8A	0.307001927	1.237134131	0.005430149
	MTAP	0.3071817	1.237288299	0.045311299
	C6orf48	0.307221054	1.237322051	0.036746083
	SNORD48	0.307221054	1.237322051	0.036746083
	SNORD52	0.307221054	1.237322051	0.036746083
	SPATA5	0.307390899	1.237467726	0.014355333
	POLR2L	0.307419347	1.237492127	0.026344429
	CACHD1	0.307555952	1.237609307	0.001740183
	DENND6A	0.307738181	1.237765642	0.003408791
	ADRA1A	0.30785336	1.237864464	0.029509206
	DCDC2	0.30789966	1.237904191	0.00466565
	RBBP6	0.307932164	1.237932081	0.036746083
	GLIP	0.309124073	1.238955245	0.006298355
	IREB2	0.309439365	1.23922604	0.045311299
	PIPRO	0.309674859	1.239428338	0.040853946
		0.310435019	1.240081568	0.009640554
		0.31106564	1.240623742	0.040853946
		0.31116196	1.240706575	0.003408791
	UBE3D	0.311199879	1.240739184	0.018451648

NEK7	0.312022664	1.241446994	0.023457892
SPICE1	0.312094609	1.241508905	0.006298355
ZNF512	0.312199856	1.241599478	0.026344429
C1QB	0.312304815	1.24168981	0.040853946
02. Sep	0.313160584	1.242426566	0.029509206
ELOVL6	0.314139825	1.24327016	0.006298355
BBOF1	0.314274247	1.243386006	0.016298131
HNRNPL	0.314620861	1.243684771	0.036746083
TMEM183B	0.314639545	1.243700877	0.045311299
FBXO25	0.314719348	1.243769675	0.036746083
NDUFB9	0.314913111	1.243936733	0.036746083
SHPRH	0.315353562	1.244316561	0.040853946
CSNK1D	0.315556201	1.244491348	0.045311299
CRLF3	0.315672006	1.244591248	0.032970758
SNX24	0.31610208	1.244962321	0.032970758
TRIM4	0.316124927	1.244982037	0.009640554
KIFAP3	0.31618358	1.245032653	0.007281815
EIF4ENIF1	0.317245792	1.24594967	0.000559323
GPBP1L1	0.317305804	1.246001499	0.002454436
FNDC3A	0.317481483	1.246153236	0.018451648
TATDN3	0.317918689	1.246530938	0.023457892
MIR4741	0.318119009	1.246704031	0.000455291
RBBP8	0.318119009	1.246704031	0.000455291
PERP	0.318229024	1.246799105	0.026344429
KLC4	0.318436043	1.246978027	0.036746083
EIF4H	0.318478905	1.247015074	0.020832926
OSBPL2	0.3198159	1.248171261	0.020832926
GCNT1	0.320111975	1.248427442	0.029509206
HLTF	0.320549071	1.248805737	0.016298131
RBBP5	0.320935369	1.249140164	0.007281815
PRIMPOL	0.321056395	1.249244957	0.029509206
GFM2	0.322080583	1.250132128	0.018451648
PSMD10	0.322561007	1.250548496	0.032970758
KLF3	0.322935831	1.250873442	0.036746083
HIVEP2	0.323065937	1.250986254	0.006298355
CDC73	0.324336758	1.252088691	0.026344429
HPF1	0.324671378	1.252379135	0.014355333
KIAA0825	0.325104297	1.252755001	0.032970758
MINPP1	0.325405553	1.253016622	0.029509206
TBC1D14	0.325552403	1.253144171	0.029509206
ANXA5	0.325601397	1.253186729	0.036746083
ADAT2	0.327863787	1.25515348	0.020832926
MITD1	0.328170958	1.255420749	0.005430149
MIR937	0.328180508	1.255429059	0.002070906
SCRIB	0.328180508	1.255429059	0.002070906
LNPEP	0.328241718	1.255482324	0.020832926
ATP5MGL	0.328433904	1.255649583	0.040853946

THUMPD3-AS1	0.329174365	1.256294208	0.026344429
SNX3	0.329435498	1.256521623	0.007281815
KLHDC3	0.329658645	1.256715989	0.018451648
MAP2K4	0.329902803	1.25692869	0.029509206
MIR744	0.329902803	1.25692869	0.029509206
TMEM60	0.33020176	1.257189179	0.023457892
NPRL2	0.330299334	1.25727421	0.018451648
CCNY	0.330329295	1.257300321	0.020832926
COX20	0.330396112	1.257358553	0.029509206
SWAP70	0.330956529	1.25784707	0.008391519
FOXJ2	0.331468879	1.258293854	0.012608351
FAM208A	0.331545247	1.258360462	0.020832926
SF3A1	0.332133167	1.258873368	0.005430149
PTEN	0.33217315	1.258908257	0.006298355
SDHC	0.332895212	1.259538492	0.040853946
TYSND1	0.332988989	1.259620367	0.002070906
DDX6	0.333145137	1.259756707	0.016298131
ENPEP	0.333166722	1.259775554	0.003408791
RMDN1	0.33319016	1.259796021	0.018451648
CALML4	0.333841375	1.260364806	0.023457892
LACC1	0.334775859	1.261181453	0.0000233
MBTPS1	0.33489986	1.261289857	0.032970758
MTMR10	0.33508532	1.261452008	0.026344429
COIL	0.335429198	1.261752721	0.006298355
NDUFA10	0.335893366	1.262158739	0.020832926
KIAA0232	0.336015347	1.26226546	0.016298131
ATG12	0.336437748	1.262635087	0.018451648
AGO1	0.336516643	1.262704137	0.018451648
ттк	0.337155296	1.263263236	0.045311299
PTPRG	0.337491503	1.263557662	0.012608351
MRPL30	0.338380827	1.2643368	0.016298131
ZNF713	0.338598914	1.26452794	0.029509206
ATE1	0.338916513	1.264806348	0.018451648
ZNF638	0.339649937	1.265449501	0.045311299
PRDX5	0.340072103	1.265819855	0.026344429
ETF1	0.340207077	1.265938287	0.014355333
ARHGAP29	0.341132273	1.26675039	0.018451648
CHST9	0.341827033	1.267360567	0.040853946
INVS	0.342250307	1.267732454	0.018451648
COP1	0.342466444	1.267922393	0.016298131
SREK1	0.342739827	1.26816268	0.018451648
G3BP2	0.34282727	1.268239547	0.040853946
SERINC2	0.343319957	1.268672731	0.029509206
ARHGAP5	0.343561796	1.268885416	0.045311299
CSRP2	0.343853226	1.269141762	0.026344429
FAM214A	0.344073066	1.269335171	0.003408791
IPO7	0.344836279	1.27000685	0.000455291

SNORA23	0.344836279	1.27000685	0.000455291
NCOA4	0.345250888	1.270371884	0.040853946
CCDC125	0.345359215	1.270467275	0.001456447
HDHD2	0.345703015	1.270770069	0.003408791
DEFB1	0.345940049	1.270978873	0.036746083
MRPS18C	0.346149218	1.271163159	0.045311299
PPP4R3B	0.346536578	1.271504509	0.040853946
UGGT1	0.346622628	1.27158035	0.032970758
HSF1	0.346624162	1.271581702	0.023457892
PLXND1	0.346958603	1.27187651	0.011041353
UBA3	0.34731657	1.272192133	0.008391519
ANO6	0.347568029	1.272413892	0.008391519
TSPAN3	0.347650635	1.27248675	0.012608351
SQSTM1	0.34843759	1.27318105	0.016298131
KRTAP21-3	0.348804334	1.273504744	0.020832926
CEPT1	0.349105827	1.273770907	0.00100707
NISCH	0.349238747	1.273888269	0.008391519
SLFN5	0.349308225	1.27394962	0.012608351
CEP192	0.349600994	1.274208171	0.005430149
TTC32	0.349619649	1.274224647	0.026344429
MOB1A	0.349961515	1.274526628	0.005430149
FH	0.349984037	1.274546525	0.026344429
NUP35	0.350175144	1.274715369	0.036746083
VPS13A	0.350468571	1.274974658	0.040853946
RNF169	0.350582234	1.27507511	0.005430149
TSPYL1	0.350603471	1.27509388	0.032970758
CDC14B	0.350851086	1.275312748	0.040853946
RTRAF	0.350966931	1.275415157	0.009640554
FAM49A	0.35133327	1.27573906	0.002454436
CSDE1	0.352135571	1.276448712	0.045311299
H1F0	0.352366833	1.276653341	0.023457892
GOPC	0.352523968	1.276792399	0.018451648
PHF6	0.35307037	1.277276059	0.018451648
CSNK2A2	0.353129918	1.277328781	0.032970758
ATF4	0.353500382	1.277656822	0.020832926
PAICS	0.353709353	1.277841902	0.014355333
ALKBH5	0.353897232	1.278008323	0.007281815
GNG10	0.353932319	1.278039405	0.009640554
NUPL2	0.354691079	1.278711744	0.005430149
GALNT10	0.355621003	1.279536234	0.002454436
EIF5B	0.355717246	1.279621596	0.011041353
BCAS2	0.355948942	1.279827119	0.020832926
NAT8	0.355962166	1.27983885	0.014355333
ZNF24	0.356430984	1.280254814	0.036746083
YWHAEP7	0.356707988	1.280500652	0.014355333
ZNF780B	0.356848258	1.280625159	0.032970758
PBX3	0.357209569	1.280945921	0.020832926

DNAJC21	0.357340741	1.281062392	0.014355333
SMIM14	0.357682262	1.281365686	0.011041353
ANKRD40	0.359314462	1.282816186	0.012608351
TRIM21	0.359657543	1.283121283	0.006298355
NCOA6	0.360510629	1.283880235	0.045311299
REEP3	0.360622059	1.283979403	0.026344429
GNPAT	0.360914571	1.284239761	0.012608351
MAP3K8	0.361376582	1.284651094	0.016298131
PAM	0.361487016	1.284749433	0.014355333
LXN	0.362012551	1.285217518	0.002898085
ARFGAP3	0.362094594	1.285290609	0.023457892
RBAK	0.36321628	1.286290302	0.007281815
RBAK- RBAKDN	0.36321628	1.286290302	0.007281815
RBAKDN	0.36321628	1.286290302	0.007281815
RBMS2	0.363291564	1.286357426	0.018451648
TMEM59	0.363320425	1.28638316	0.002898085
09. Sep	0.363543054	1.286581683	0.012608351
METTL14	0.363553821	1.286591285	0.001740183
RPARP-AS1	0.36355877	1.286595698	0.016298131
KCNJ2	0.363931421	1.286928071	0.029509206
FGD6	0.364100742	1.28707912	0.008391519
WASHC2C	0.364131332	1.28710641	0.040853946
RAVER2	0.364259414	1.287220684	0.00466565
FAM86B1	0.364318541	1.287273441	0.026344429
TMEM184B	0.364825192	1.287725589	0.029509206
ZNF480	0.36522962	1.288086626	0.040853946
IQCJ	0.36526662	1.288119661	0.014355333
IQCJ-SCHIP1	0.36526662	1.288119661	0.014355333
SCHIP1	0.36526662	1.288119661	0.014355333
PI4KB	0.366140227	1.288899903	0.009640554
TRMT1L	0.366888527	1.289568605	0.002070906
COL6A3	0.366909299	1.289587173	0.014355333
MIR6839	0.367086788	1.289745835	0.036746083
ZNF107	0.367086788	1.289745835	0.036746083
C3orf67	0.367549338	1.290159414	0.014355333
BRAF	0.368645682	1.291140214	0.032970758
HARS2	0.368666226	1.2911586	0.045311299
JOSD1	0.369060735	1.291511719	0.029509206
PTCH1	0.36932637	1.29174954	0.003408791
TBCEL	0.369440698	1.29185191	0.018451648
BRD7	0.369647233	1.292036864	0.012608351
IFI44L	0.369826569	1.292197482	0.005430149
DPF2	0.370093454	1.292436549	0.014355333
GHR	0.370260849	1.292586518	0.018451648
OSBP	0.370675608	1.292958176	0.008391519
LYRM2	0.370975381	1.293226863	0.026344429
ZBTB44	0.371696965	1.29387385	0.026344429

RBM18	0.371943924	1.294095353	0.003995217
CHAMP1	0.372019578	1.294163217	0.020832926
LARP4	0.372901653	1.29495472	0.036746083
DCTN4	0.372947142	1.294995551	0.045311299
VAPB	0.373093614	1.295127035	0.045311299
TSG101	0.373698912	1.295670533	0.026344429
EIF3G	0.373880645	1.295833756	0.009640554
PLEC	0.37404637	1.295982619	0.040853946
CTNNBL1	0.374347833	1.296253454	0.045311299
GTPBP4	0.374977154	1.296819019	0.045311299
PTPN4	0.375368152	1.297170529	0.007281815
WDR45B	0.37564265	1.297417362	0.023457892
MIR3615	0.376299245	1.298007973	0.045311299
SLC9A3R1	0.376299245	1.298007973	0.045311299
HSPD1	0.377096501	1.298725471	0.026344429
VKORC1L1	0.377293381	1.298902716	0.003408791
KIAA0556	0.37801985	1.299556942	0.036746083
MIR8072	0.378294823	1.299804658	0.020832926
SBNO1	0.378294823	1.299804658	0.020832926
AP3B1	0.378331026	1.299837275	0.032970758
PIK3C2B	0.378711854	1.300180439	0.023457892
KCTD3	0.379052029	1.300487046	0.002898085
HNRNPF	0.379085477	1.300517197	0.029509206
POLR2A	0.379239608	1.300656146	0.026344429
APH1B	0.379330714	1.300738285	0.020832926
PWARSN	0.379504224	1.300894731	0.020832926
SNORD107	0.379504224	1.300894731	0.020832926
SNRPN	0.379504224	1.300894731	0.020832926
SNURF	0.379504224	1.300894731	0.020832926
THYN1	0.379624657	1.301003332	0.032970758
PRKAR1A	0.380178079	1.301502496	0.040853946
TMEM165	0.380860411	1.302118196	0.012608351
NHLRC2	0.381092706	1.302327873	0.020832926
RTF1	0.381424269	1.302627211	0.045311299
ARFGAP2	0.381551134	1.302741764	0.036746083
GTDC1	0.381721978	1.302896044	0.007281815
CCDC7	0.381862038	1.303022538	0.007281815
SPATS2	0.382404725	1.303512778	0.029509206
USF3	0.382427532	1.303533384	0.009640554
KITLG	0.382522495	1.303619191	0.023457892
ZRANB2	0.382532665	1.30362838	0.007281815
PRPF4B	0.382702595	1.303781938	0.029509206
BLMH	0.382856318	1.303920868	0.011041353
APIP	0.383128486	1.304166878	0.040853946
RAB6A	0.383248854	1.304275693	0.020832926
EMP3	0.384094874	1.305040767	0.032970758
TBC1D13	0.384255402	1.305185986	0.023457892

ICK	0.384744941	1.30562894	0.032970758
AMBRA1	0.385294044	1.306125969	0.014355333
SUCO	0.385384242	1.306207631	0.023457892
CBX1	0.385425422	1.306244916	0.008391519
DDRGK1	0.385835944	1.306616664	0.006298355
PUM1	0.385941745	1.306712489	0.016298131
FAM120A	0.386425654	1.30715086	0.007281815
MIR611	0.387214144	1.307865465	0.032970758
TMEM258	0.387214144	1.307865465	0.032970758
TMEM41B	0.387222788	1.307873301	0.009640554
ZMYND11	0.38723423	1.307883674	0.018451648
TARBP1	0.387621644	1.308234934	0.026344429
HNRNPC	0.387946327	1.308529389	0.020832926
LYPLAL1	0.38831862	1.308867104	0.040853946
ADSS	0.388332775	1.308879946	0.007281815
SLC25A20	0.388462757	1.308997876	0.003408791
07. Sep	0.388514079	1.309044444	0.045311299
GNG11	0.389035432	1.309517584	0.007281815
SLC30A10	0.389248703	1.309711182	0.036746083
UBE4A	0.389500565	1.309939848	0.005430149
RB1CC1	0.389591017	1.31002198	0.012608351
AGXT2	0.389752858	1.310168945	0.029509206
RPL15	0.389860366	1.310266581	0.012608351
WDR44	0.389937737	1.310336852	0.026344429
GATAD1	0.390082603	1.310468434	0.006298355
RNASEH2B	0.390108087	1.310491583	0.009640554
ILK	0.390124242	1.310506257	0.040853946
NDUFB3	0.391133722	1.311423564	0.026344429
ARSB	0.391407837	1.31167276	0.007281815
LINC00174	0.391569645	1.311819881	0.000831696
SFT2D2	0.391712285	1.311949588	0.040853946
MALSU1	0.391912139	1.312131342	0.011041353
ZNF652	0.392081353	1.312285252	0.020832926
OSTC	0.392108941	1.312310346	0.023457892
POLK	0.392476842	1.312645041	0.029509206
TBC1D1	0.392638031	1.312791708	0.018451648
TNKS2	0.393140985	1.313249455	0.018451648
SRP9	0.393542017	1.313614555	0.002070906
RPL22L1	0.393981257	1.314014556	0.000455291
TP53INP1	0.394197454	1.314211484	0.029509206
PACRGL	0.394366559	1.314365538	0.023457892
PRKCQ	0.394787603	1.314749186	0.045311299
ZNF12	0.394877276	1.314830908	0.008391519
CISD2	0.39606761	1.315916192	0.007281815
POLDIP2	0.396525819	1.316334202	0.012608351
SNAPC3	0.39708059	1.31684048	0.020832926
LYRM1	0.397089633	1.316848734	0.014355333

CNNM2	0.39713334	1.316888629	0.00466565
LCMT1	0.397523071	1.317244423	0.026344429
LDB2	0.397953361	1.317637355	0.003408791
SMAP1	0.398210794	1.317872494	0.026344429
RUFY3	0.398607053	1.318234518	0.0000414
CCDC198	0.398654502	1.318277874	0.014355333
CTNNB1	0.399501626	1.31905217	0.045311299
IPO11	0.399569022	1.319113791	0.002070906
IPO11-LRRC70	0.399569022	1.319113791	0.002070906
LRRC70	0.399569022	1.319113791	0.002070906
H2AFY	0.399605601	1.319147238	0.045311299
SNX9	0.399879641	1.319397833	0.014355333
CCDC144B	0.400297348	1.319779897	0.029509206
FAM106A	0.400297348	1.319779897	0.029509206
USP32P2	0.400297348	1.319779897	0.029509206
ME1	0.401614397	1.320985286	0.009640554
MSRB2	0.401710129	1.321072945	0.002070906
PSMF1	0.402042193	1.32137705	0.018451648
DLEU2	0.402084499	1.321415799	0.029509206
MIR15A	0.402084499	1.321415799	0.029509206
MIR16-1	0.402084499	1.321415799	0.029509206
MIR3613	0.402084499	1.321415799	0.029509206
CROT	0.402116849	1.32144543	0.012608351
MAN1A1	0.402384858	1.321690937	0.029509206
GNAI3	0.402426738	1.321729306	0.00100707
YAE1	0.402499769	1.321796214	0.040853946
WDR76	0.403216368	1.322452925	0.020832926
CTHRC1	0.404106118	1.32326877	0.014355333
TARDBP	0.404308285	1.323454214	0.016298131
TMEM126A	0.404712156	1.323824757	0.045311299
PCNA	0.405265989	1.324333055	0.036746083
RPL24	0.405652644	1.324688035	0.036746083
ESF1	0.405660044	1.32469483	0.020832926
SEC24C	0.405711833	1.324742384	0.012608351
ANKIB1	0.405749008	1.32477652	0.026344429
PTPA	0.405873421	1.324890769	0.009640554
CAMLG	0.406650555	1.325604638	0.018451648
NCL	0.407071693	1.325991652	0.032970758
SLC2A13	0.40709279	1.326011043	0.009640554
NRIP1	0.407515821	1.326399917	0.006298355
TNPO2	0.408004653	1.32684942	0.009640554
TBC1D7	0.408006226	1.326850867	0.018451648
UGP2	0.408535681	1.327337897	0.006298355
ARL3	0.408850304	1.327627395	0.003408791
MAP4	0.409169077	1.327920775	0.014355333
GFM1	0.409181127	1.327931866	0.026344429
HNF4G	0.409253097	1.327998113	0.026344429

SMARCE1	0.409329014	1.328067996	0.020832926
RAB5A	0.409469294	1.328197137	0.045311299
UHRF1BP1	0.410007163	1.328692411	0.001740183
ARHGEF12	0.410170448	1.328842802	0.032970758
ZBTB2	0.410432729	1.329084406	0.026344429
MIR1287	0.410671586	1.329304472	0.032970758
PYROXD2	0.410671586	1.329304472	0.032970758
RPS5	0.410789183	1.32941283	0.040853946
APOO	0.410933774	1.329546075	0.029509206
COX6B1	0.41121262	1.329803076	0.036746083
PTBP2	0.411879944	1.330418324	0.020832926
MIR99AHG	0.412957964	1.331412819	0.009640554
NDUFV2	0.4133265	1.331752972	0.032970758
ENOPH1	0.413897006	1.33227971	0.040853946
MRPL52	0.414065318	1.33243515	0.003408791
TMEM209	0.414436685	1.332778178	0.011041353
KMT2A	0.414455831	1.332795866	0.023457892
FAM122A	0.414809339	1.333122485	0.003995217
CAPZA1	0.415062777	1.333356695	0.032970758
ADAR	0.415826777	1.33406298	0.002898085
MAP2K6	0.416644746	1.334819572	0.023457892
ATP6V1B2	0.417122528	1.335261702	0.016298131
HAUS6	0.417450069	1.335564887	0.012608351
SDC3	0.417518742	1.335628462	0.032970758
ASH2L	0.417623888	1.335725808	0.029509206
ZNF33A	0.41769656	1.335793093	0.023457892
KIF21A	0.417776345	1.335866969	0.011041353
CHD1	0.418315548	1.336366338	0.045311299
CALM3	0.418503668	1.336540604	0.012608351
PIK3C3	0.418633695	1.33666107	0.020832926
HEATR5B	0.418912758	1.336919648	0.007281815
GATAD2B	0.419042215	1.337039618	0.026344429
SNRPD2	0.419167264	1.337155514	0.032970758
SUSD1	0.419272751	1.337253289	0.009640554
NMI	0.419519227	1.337481769	0.040853946
DAP3	0.420309758	1.338214849	0.032970758
ANXA13	0.420790221	1.338660592	0.029509206
ATG5	0.421264505	1.339100747	0.032970758
ACACB	0.421376915	1.339205088	0.032970758
ILF2	0.422547435	1.340292084	0.012608351
RAB5C	0.424179798	1.34180944	0.036746083
FLRT3	0.424659819	1.342255968	0.026344429
LINC00266-1	0.424690594	1.3422846	0.018451648
MIR6844	0.424759358	1.34234858	0.016298131
TATDN1	0.424759358	1.34234858	0.016298131
NDUFA12	0.425131935	1.342695287	0.029509206
GUF1	0.425460642	1.343001245	0.026344429

VPS33A	0.425802055	1.343319103	0.020832926
KIF2A	0.426806246	1.344254449	0.032970758
MLX	0.427783273	1.345165118	0.0000014
ARFIP1	0.428051824	1.345415537	0.001456447
C6orf62	0.428432553	1.34577064	0.040853946
THOC5	0.428860317	1.346169726	0.009640554
ZNF44	0.428891225	1.346198566	0.012608351
BPHL	0.429019136	1.346317927	0.040853946
CAPZB	0.429674201	1.34692937	0.011041353
SH3GLB1	0.430627103	1.347819312	0.008391519
TRIM37	0.430739952	1.347924744	0.026344429
STK39	0.43101808	1.348184627	0.023457892
TMEM38B	0.431617244	1.348744657	0.005430149
FAM133B	0.431874907	1.348985562	0.029509206
SMIM11A	0.432464856	1.349537304	0.007281815
DHFR	0.432542575	1.349610006	0.036746083
RPL17-	0 400040007	1 240707545	0.045211200
0180032	0.432646837	1.349707545	0.045311299
RPF2	0.432804612	1.349855159	0.012608351
SPG21	0.432805481	1.349855971	0.026344429
FUBP3	0.433080293	1.350113123	0.040853946
DNAJC1	0.433427753	1.350438325	0.000296775
HERC4	0.434061789	1.351031946	0.011041353
MAPK1	0.43429972	1.351254778	0.000831696
VRK1	0.434893337	1.351810886	0.014355333
CSNK1G3	0.434920413	1.351836256	0.023457892
MPRIP	0.435016009	1.351925835	0.029509206
SLC7A8	0.435148245	1.352049757	0.032970758
DDX59	0.435500007	1.352379457	0.012608351
NFE2L2	0.436337729	1.353164965	0.012608351
DCP2	0.436454069	1.353274089	0.026344429
MELK	0.437041551	1.35382527	0.026344429
CISD1	0.438001687	1.354726561	0.040853946
GRB10	0.438770628	1.355448809	0.00466565
PARD3	0.438961503	1.355628153	0.003995217
MAN2A1	0.439585257	1.35621439	0.029509206
SETD2	0.439598367	1.356226714	0.020832926
ANK3	0.439748865	1.356368199	0.000296775
FBXO8	0.440276078	1.356863956	0.020832926
VPS45	0.440426057	1.35700502	0.036746083
FAM104B	0.441293105	1.357820813	0.018451648
RNF20	0.441621593	1.358130011	0.001213644
NDUFB2	0.44201725	1.358502528	0.023457892
NFX1	0.442048946	1.358532374	0.023457892
ZBED6	0.442787454	1.359227978	0.036746083
ZC3H11A	0.442787454	1.359227978	0.036746083
FNIP1	0.44305608	1.359481087	0.002454436
VPS41	0.443371779	1.359778608	0.014355333

SMARCB1	0.444240491	1.360597639	0.020832926
KLHL5	0.44450672	1.360848742	0.029509206
TMEM131	0.445962388	1.36222252	0.026344429
MTCH2	0.446604325	1.362828785	0.014355333
ZNF17	0.448429907	1.364554396	0.016298131
RPS11	0.448786183	1.364891417	0.007281815
SNORD35B	0.448786183	1.364891417	0.007281815
SLAIN2	0.448812381	1.364916202	0.012608351
PTPRA	0.44899701	1.365090889	0.023457892
RASSF5	0.449797192	1.365848238	0.032970758
RAB11FIP2	0.450114116	1.366148314	0.029509206
TMEM64	0.450283704	1.366308913	0.009640554
BET1	0.450755271	1.366755585	0.005430149
RALGPS2	0.451036452	1.367021991	0.009640554
N4BP1	0.451207362	1.367183947	0.011041353
ELF2	0.451369161	1.367337285	0.001740183
AFDN	0.451377433	1.367345126	0.006298355
TFB2M	0.451408715	1.367374774	0.008391519
ITCH	0.451538582	1.367497867	0.036746083
RPS4X	0.451578019	1.367535248	0.040853946
ZNF791	0.452364042	1.368280525	0.029509206
EIF3L	0.452366781	1.368283122	0.018451648
XRN2	0.454522241	1.370328936	0.009640554
ATP5MG	0.455629935	1.371381471	0.018451648
RWDD4	0.455776272	1.371520581	0.026344429
PLRG1	0.457572024	1.373228804	0.032970758
RSU1	0.457669712	1.373321792	0.036746083
RPL36A	0.457811362	1.373456637	0.045311299
QRICH1	0.458049395	1.373683265	0.003995217
IL18	0.458601685	1.374209236	0.000237495
NECTIN3	0.458635556	1.3742415	0.002454436
TPK1	0.459270568	1.374846515	0.018451648
PHLDB2	0.459656495	1.375214341	0.023457892
PLCXD2	0.459656495	1.375214341	0.023457892
HDGF	0.460384011	1.375908003	0.018451648
NPAS2	0.460788673	1.376293986	0.036746083
RNF217	0.46101371	1.376508682	0.032970758
GBP3	0.461231207	1.376716218	0.029509206
FAM129A	0.461338561	1.376818666	0.009640554
RAD23B	0.461576514	1.377045771	0.023457892
RNF115	0.461954921	1.377407007	0.008391519
CAPNS1	0.462071934	1.377518729	0.045311299
SHTN1	0.462477699	1.377906217	0.014355333
HSD17B12	0.462525791	1.37795215	0.032970758
SUPT4H1	0.462756066	1.378172109	0.032970758
SPPL3	0.463048589	1.378451578	0.026344429
ZBTB24	0.463274376	1.378667327	0.001456447

STYX	0.463280839	1.378673503	0.029509206
ERMAP	0.463811578	1.379180784	0.026344429
COA5	0.464048979	1.379407751	0.023457892
PON2	0.46443674	1.379778552	0.011041353
PSMB9	0.465428764	1.38072764	0.040853946
XPO7	0.465585141	1.380877308	0.012608351
ELMOD2	0.465815417	1.381097735	0.036746083
HNRNPD	0.465857522	1.381138043	0.009640554
PHF21A	0.465914817	1.381192894	0.045311299
EMC2	0.465992368	1.381267141	0.016298131
DPY19L1	0.466121576	1.381390853	0.036746083
NHSL1	0.467019568	1.382250955	0.001456447
RAD18	0.468502039	1.383672045	0.040853946
TBC1D8B	0.468625721	1.383790672	0.002070906
ZNF780A	0.46977868	1.384896998	0.032970758
ZDHHC20	0.470926122	1.38599891	0.045311299
SCAPER	0.472163629	1.387188294	0.005430149
MSC	0.472515556	1.387526721	0.045311299
PTGFRN	0.47322445	1.388208676	0.014355333
MFSD14B	0.473583319	1.388554034	0.00466565
SLC30A6	0.473687798	1.388654595	0.012608351
ITSN2	0.474282241	1.38922689	0.029509206
LPCAT3	0.474457774	1.389395928	0.045311299
ANKRD17	0.476435257	1.39130166	0.029509206
ASPN	0.477416169	1.39224795	0.014355333
MIR6805	0.47751723	1.392345482	0.018451648
RPL28	0.47751723	1.392345482	0.018451648
PHF20	0.47764069	1.392464638	0.00100707
ABCA5	0.477736234	1.392556859	0.001213644
UBR3	0.478810888	1.393594551	0.026344429
NEK4	0.479850618	1.394599257	0.020832926
WBP11	0.480347368	1.39507953	0.036746083
UBTD2	0.480390546	1.395121283	0.012608351
EPC1	0.480641361	1.395363848	0.002454436
TMA16	0.48078846	1.395506128	0.036746083
URI1	0.480794562	1.39551203	0.005430149
SEC61A2	0.480848932	1.395564624	0.026344429
MARCHF2	0.48087866	1.395593381	0.020832926
FN1	0.480930069	1.395643113	0.011041353
KIAA1586	0.480980865	1.395692253	0.036746083
C2CD2	0.481152598	1.395858401	0.007281815
ACP1	0.481434734	1.396131404	0.032970758
CERK	0.482091479	1.396767096	0.016298131
YPEL2	0.482463319	1.397127145	0.018451648
CARD16	0.482512854	1.397175116	0.012608351
CKAP2	0.482631294	1.397289824	0.012608351
EFCAB14	0.482701598	1.397357917	0.040853946

RPS14	0.483576241	1.398205331	0.026344429
CUL3	0.484188612	1.398798944	0.032970758
STK3	0.484370908	1.398975704	0.045311299
BUD31	0.484713644	1.399308093	0.029509206
SNX6	0.485112789	1.399695288	0.005430149
SLC35F6	0.485185469	1.399765804	0.003995217
CHP1	0.485338562	1.399914349	0.011041353
WTAP	0.485651208	1.400217758	0.007281815
CNOT4	0.48575577	1.400319244	0.012608351
S100A10	0.486644472	1.401182109	0.014355333
MGST2	0.486752899	1.40128742	0.029509206
ATP5PD	0.487031164	1.401557724	0.040853946
CALD1	0.487858881	1.40236207	0.003408791
TBC1D15	0.488321012	1.402811353	0.016298131
COBLL1	0.489763884	1.404215039	0.045311299
LYRM7	0.49010838	1.404550386	0.003995217
RTN4	0.491002085	1.405420732	0.045311299
RAD17	0.491061526	1.405478638	0.000831696
CPQ	0.491304657	1.405715517	0.029509206
KIF5B	0.491314387	1.405724997	0.001213644
HSPA4L	0.491432626	1.405840211	0.029509206
PNPLA3	0.492008985	1.406401959	0.045311299
ORMDL1	0.493316513	1.407677171	0.016298131
SLBP	0.494099194	1.408441062	0.036746083
AMD1	0.49414459	1.408485381	0.020832926
SRP19	0.494636874	1.408966074	0.011041353
SIL1	0.494829525	1.409154233	0.029509206
ANKHD1	0.49600347	1.410301352	0.009640554
ANKHD1- EIF4EBP3	0.49600347	1.410301352	0.009640554
EIF4EBP3	0.49600347	1.410301352	0.009640554
PPP6C	0.496411836	1.410700606	0.001213644
PIBF1	0.496448829	1.410736779	0.00466565
CARNMT1	0.49711065	1.411384088	0.005430149
ATP13A3	0.497979825	1.412234655	0.020832926
PDP1	0.498421342	1.412666916	0.014355333
CTDSPL2	0.498872	1.413108263	0.032970758
MXI1	0.498905406	1.413140984	0.040853946
RIN2	0.499024181	1.413257332	0.002070906
FRS2	0.499046568	1.413279262	0.003995217
YBX1	0.499117917	1.413349158	0.045311299
ADPRM	0.499328981	1.413555943	0.002070906
BCAP29	0.499565396	1.413787602	0.008391519
OXR1	0.499838231	1.414054996	0.000455291
ATG3	0.499998913	1.414212497	0.032970758
ZHX1	0.500911002	1.415106862	0.016298131
ATP5MPL	0.501359257	1.415546613	0.020832926
			0.00000000

LSMEM1 0.501792921 1.4	0.005430149
	41597218 0.029509206
LYPLA1 0.501793779 1.4	0.016298131
NUP88 0.501846439 1.4	0.000237495
STT3B 0.502168677 1.4	0.045311299
ARL17A 0.502618058 1.4	0.014355333
ARL17B 0.502618058 1.4	0.014355333
PLAA 0.503015511 1.4	0.009640554
TNFAIP1 0.503317139 1.4	0.00466565
NIPAL2 0.503516047 1.	.4176644 0.045311299
DOCK7 0.504162327 1.4	0.005430149
NECTIN1 0.504467359 1.4	0.023457892
RAB11A 0.504742756 1.4	18870338 0.032970758
CHURC1- FNTB 0.505105608 1.4	0.045311299
UBB 0.505183745 1.4	41930411 0.032970758
RNF220 0.505382398 1.4	0.007281815
PSMG2 0.505734286 1.4	0.029509206
SERINC3 0.505933597 1.4	0.005430149
CCDC90B 0.505943591 1.4	0.045311299
CUL1 0.50637317 1.4	0.009640554
MS4A7 0.506888714 1.4	20982427 0.018451648
WEE1 0.507119415 1.4	.21209675 0.020832926
AGFG1 0.507163553 1.4	0.040853946
MIR5703 0.507163553 1.4	21253156 0.040853946
RNF149 0.507264582 1.4	21352687 0.011041353
ATP5PO 0.508325273 1.4	0.045311299
KLF10 0.508332079 1.4	0.026344429
	42381769 0.009640554
DUSP3 0.509764431 1.4	
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4	25822375 0.011041353
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4	25822375 0.011041353 25867522 0.026344429
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4	25822375 0.011041353 25867522 0.026344429 26680637 0.003995217
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4	225822375 0.011041353 25867522 0.026344429 26680637 0.003995217 42716873 0.023457892 225511599 0.006298355
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 227758048 0.00466565
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 227758048 0.00466565 227844177 0.045311299
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.514627564 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 227758048 0.00466565 227844177 0.045311299 228625288 0.016298131
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.514627564 1.4 TNS3 0.515085735 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 227758048 0.00466565 227844177 0.045311299 228625288 0.016298131 229079063 0.026344429
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.514627564 1.4 TNS3 0.515085735 1.4 ARPC1A 0.515230406 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 227758048 0.00466565 227844177 0.045311299 228625288 0.016298131 229079063 0.026344429 22922376 0.008391519
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.515085735 1.4 ARPC1A 0.515230406 1.4 RFX3 0.515311186 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 22758048 0.00466565 27844177 0.045311299 228625288 0.016298131 29079063 0.026344429 29222376 0.008391519 29302404 0.032970758
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.515085735 1.4 ARPC1A 0.515230406 1.4 RFX3 0.515311186 1.4 SLC11A2 0.515647365 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 227758048 0.00466565 227844177 0.045311299 228625288 0.016298131 229079063 0.026344429 229222376 0.008391519 229302404 0.032970758 229635501 0.002070906
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.515085735 1.4 ARPC1A 0.515230406 1.4 RFX3 0.515311186 1.4 SLC11A2 0.515647365 1.4 CDK4 0.516134567 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 22758048 0.00466565 27844177 0.045311299 228625288 0.016298131 29079063 0.026344429 29222376 0.008391519 29302404 0.032970758 29635501 0.002070906 30118374 0.018451648
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 SYNRG 0.5133502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.514627564 1.4 TNS3 0.515085735 1.4 ARPC1A 0.515230406 1.4 RFX3 0.515311186 1.4 CDK4 0.516134567 1.4 ORC3 0.516244789 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 227758048 0.00466565 227844177 0.045311299 228625288 0.016298131 229079063 0.026344429 22922376 0.008391519 229635501 0.002070906 30118374 0.018451648
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.515085735 1.4 ARPC1A 0.515230406 1.4 RFX3 0.515311186 1.4 SLC11A2 0.515647365 1.4 ORC3 0.516244789 1.4 PPIP5K2 0.516583406 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 22758048 0.00466565 27844177 0.045311299 228625288 0.016298131 29079063 0.026344429 29222376 0.008391519 29302404 0.032970758 29635501 0.002070906 30118374 0.018451648 43056337 0.012608351
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 TAB3 0.513502468 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.514627564 1.4 TNS3 0.515085735 1.4 ARPC1A 0.515230406 1.4 RFX3 0.515647365 1.4 ORC3 0.516134567 1.4 ORC3 0.516244789 1.4 PPIP5K2 0.516583406 1.4 RNF11 0.516798747 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 22758048 0.00466565 227844177 0.045311299 228625288 0.016298131 229079063 0.026344429 229302404 0.032970758 229635501 0.002070906 30118374 0.018451648 30227639 0.012608351 30776915 0.000237495
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 SYNRG 0.51315591 1.4 C5orf24 0.513751516 1.4 GNG5 0.513838544 1.4 ZDHHC4 0.514627564 1.4 TNS3 0.515085735 1.4 ARPC1A 0.515230406 1.4 RFX3 0.515311186 1.4 QRC3 0.51647365 1.4 ORC3 0.516244789 1.4 PPIP5K2 0.516583406 1.4 RNF11 0.516798747 1.4 PRKAG1 0.517063006 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 227758048 0.00466565 227844177 0.045311299 228625288 0.016298131 29079063 0.026344429 29222376 0.008391519 29302404 0.032970758 29635501 0.002070906 30118374 0.018451648 43056337 0.012608351 300776915 0.000237495 31039016 0.007281815
DUSP3 0.509764431 1.4 NRP2 0.511794266 1.4 THRA 0.511839946 1.4 PDCD1LG2 0.512662423 1.4 SYNRG 0.51315591 1.4 SYNRG 0.51315591 1.4 C5orf24 0.513751516 1.4 GNG5 0.513751516 1.4 ZDHHC4 0.514627564 1.4 TNS3 0.515085735 1.4 ARPC1A 0.515230406 1.4 RFX3 0.515647365 1.4 ORC3 0.516134567 1.4 ORC3 0.516244789 1.4 PPIP5K2 0.516583406 1.4 PNF11 0.517063006 1.4 PRKAG1 0.517063006 1.4 TMED2 0.517277023 1.4	225822375 0.011041353 225867522 0.026344429 226680637 0.003995217 42716873 0.023457892 227511599 0.006298355 22758048 0.00466565 227844177 0.045311299 228625288 0.016298131 229079063 0.026344429 229022376 0.008391519 229302404 0.032970758 229635501 0.002070906 30118374 0.018451648 30227639 0.018451648 300227639 0.012608351 30776915 0.000237495 31039016 0.007281815 43125132 0.040853946

USP33	0.517976335	1.431945252	0.002898085
PIAS1	0.51940015	1.433359156	0.018451648
RPS16	0.519499092	1.433457461	0.032970758
GPBP1	0.519513338	1.433471616	0.012608351
NOA1	0.520300961	1.434254417	0.023457892
FBXO7	0.521065494	1.435014679	0.016298131
TIA1	0.521596285	1.435542741	0.006298355
GLUD1	0.521714503	1.435660378	0.032970758
TNRC6B	0.521767569	1.435713186	0.002070906
NDUFA4	0.522140018	1.43608388	0.023457892
GOLIM4	0.522524952	1.436467101	0.009640554
CCDC14	0.522758778	1.436699937	0.045311299
RGPD5	0.523100604	1.437040383	0.036746083
RGPD8	0.523100604	1.437040383	0.036746083
NT5C3B	0.523307567	1.437246549	0.036746083
CHCHD3	0.523551879	1.437489959	0.023457892
CCDC58	0.52443545	1.438370612	0.018451648
TRIM24	0.524837571	1.438771584	0.029509206
INO80	0.525710791	1.439642693	0.023457892
LRRC37A3	0.526430925	1.440361482	0.018451648
UBE2L3	0.527109076	1.441038695	0.026344429
EBLN2	0.527290753	1.441220176	0.00466565
AP2B1	0.527307842	1.441237247	0.036746083
ARRDC3	0.52760645	1.441535584	0.045311299
AGAP4	0.527674615	1.441603696	0.045311299
RGL1	0.528382639	1.442311357	0.020832926
HSD17B4	0.529222586	1.443151326	0.032970758
MAP3K7	0.52984813	1.443777204	0.014355333
SCARB1	0.53057313	1.44450293	0.020832926
TMEM50A	0.531232261	1.445163038	0.016298131
MYL6	0.531269991	1.445200833	0.032970758
PLXDC2	0.531377243	1.445308275	0.012608351
TIMM23	0.531573847	1.445505248	0.005430149
TRIM2	0.532904469	1.446839078	0.012608351
PSAP	0.53315329	1.447088634	0.014355333
ZDHHC3	0.533177532	1.447112951	0.012608351
GMFG	0.533793329	1.447730765	0.032970758
HSPB11	0.534072166	1.448010602	0.011041353
TGOLN2	0.535262469	1.449205784	0.011041353
GRHPR	0.537415799	1.451370447	0.005430149
RPA3	0.537458421	1.451413326	0.032970758
TXNRD2	0.537568156	1.451523728	0.023457892
EDNRA	0.538852332	1.452816338	0.029509206
RBM5	0.538943497	1.452908146	0.029509206
TSSK3	0.539493029	1.453461673	0.009640554
GSR	0.539678129	1.453648166	0.029509206
ADAM1A	0.540485535	1.45446193	0.020832926

MAPKAPK5	0.540485535	1.45446193	0.020832926
NR1H4	0.54089211	1.454871879	0.000368536
RNF213	0.541179454	1.455161677	0.020832926
RAP1A	0.541493764	1.455478737	0.045311299
STX8	0.543087185	1.457087166	0.003995217
RASAL2	0.543147403	1.457147986	0.002454436
RUFY2	0.543481395	1.457485363	0.040853946
DKK3	0.544220067	1.458231799	0.011041353
SHOC2	0.544225573	1.458237364	0.016298131
YBEY	0.544515563	1.458530507	0.023457892
TGIF1	0.544525521	1.458540575	0.009640554
PABPN1	0.544877633	1.458896598	0.045311299
LSM12	0.544901117	1.458920346	0.020832926
WDR33	0.545088107	1.459109451	0.011041353
PCM1	0.54514597	1.459167974	0.011041353
CDC42SE2	0.54551459	1.45954085	0.016298131
RPL3	0.545809068	1.459838797	0.012608351
SNORD139	0.545809068	1.459838797	0.012608351
SNORD43	0.545809068	1.459838797	0.012608351
SNORD83B	0.545809068	1.459838797	0.012608351
FMO3	0.546409088	1.460446074	0.029509206
KIAA1551	0.546440019	1.460477386	0.023457892
RPS7	0.547121418	1.461167346	0.016298131
PPP1CC	0.547218431	1.461265605	0.040853946
OSGIN2	0.547805468	1.461860319	0.014355333
LINC01578	0.548046756	1.462104833	0.045311299
RBM27	0.549175698	1.463249411	0.026344429
CD58	0.549893702	1.463977825	0.008391519
APOL2	0.550370552	1.46446179	0.009640554
SYMPK	0.550779371	1.464876836	0.014355333
GSK3B	0.551772905	1.465885993	0.040853946
DNAJB9	0.551851811	1.46596617	0.026344429
ZNF302	0.552333809	1.466456025	0.045311299
CFL1	0.552588624	1.46671506	0.040853946
SBDS	0.552635608	1.466762826	0.020832926
C7orf31	0.553921657	1.468070913	0.011041353
GPAM	0.554608403	1.468769905	0.029509206
SYNPO	0.554851425	1.46901734	0.016298131
MIR3658	0.555043633	1.469213067	0.040853946
UCK2	0.555043633	1.469213067	0.040853946
APOBEC3D	0.555251928	1.469425206	0.012608351
SCAF8	0.55532362	1.469498228	0.026344429
RPL22	0.55600458	1.470192004	0.032970758
IMPACT	0.556203919	1.470395156	0.006298355
SDCBP	0.557250696	1.471462419	0.014355333
JCAD	0.558234015	1.472465687	0.005430149
DHX36	0.558987964	1.473235395	0.014355333

BNIP3L	0.559274148	1.473527666	0.029509206
PRPF38A	0.559341566	1.473596526	0.026344429
IDI1	0.559946531	1.474214579	0.020832926
DENND1B	0.560468858	1.474748415	0.040853946
SP1	0.561409282	1.475710046	0.009640554
CALR	0.561630283	1.475936122	0.032970758
VEZF1	0.561985677	1.476299749	0.006298355
RPL37A	0.561991224	1.476305425	0.040853946
CALU	0.562172991	1.476491439	0.020832926
SAMD9L	0.562327473	1.476649547	0.006298355
NUP153	0.562371907	1.476695028	0.020832926
TAGLN2	0.56396294	1.478324455	0.029509206
SMYD2	0.5643415	1.478712415	0.012608351
PSME1	0.564872845	1.479257126	0.029509206
LMAN1	0.564950347	1.479336594	0.023457892
ORC4	0.565397474	1.479795148	0.045311299
CDV3	0.56550808	1.479908603	0.029509206
ARF3	0.565797004	1.480205009	0.040853946
FKBP11	0.565797004	1.480205009	0.040853946
ARHGAP12	0.566121461	1.480537939	0.000455291
IRF1	0.5667741	1.48120785	0.029509206
SGCB	0.567172489	1.48161693	0.009640554
DYRK1A	0.56868398	1.483170012	0.011041353
CYTH1	0.569296877	1.483800238	0.018451648
ADD1	0.56955679	1.484067581	0.009640554
CDC27	0.569647026	1.484160407	0.026344429
UBE2B	0.571624112	1.486195712	0.008391519
TDRD3	0.571779384	1.486355675	0.005430149
PDZK1	0.572017965	1.486601496	0.023457892
CD36	0.572045109	1.486629467	0.002454436
WIPI2	0.572083128	1.486668644	0.002898085
ARV1	0.573794689	1.48843342	0.008391519
DALRD3	0.573795485	1.488434241	0.020832926
СНКВ	0.573801143	1.488440078	0.005430149
SKIL	0.573997775	1.488642959	0.006298355
RPL11	0.575055063	1.48973432	0.045311299
PALMD	0.57541589	1.490106959	0.032970758
ARHGAP35	0.575573982	1.490270255	0.006298355
FAM107B	0.575629975	1.490328096	0.00100707
MYO9A	0.575797701	1.49050137	0.0000414
CPLANE1	0.576177121	1.490893413	0.002070906
QSER1	0.576701656	1.491435572	0.045311299
ZSWIM6	0.57772944	1.492498457	0.003408791
SNX25	0.578398385	1.493190656	0.018451648
SLC39A8	0.57867846	1.493480561	0.002070906
EVI2A	0.578792421	1.493598538	0.023457892
EVI2B	0.578792421	1.493598538	0.023457892

LPGAT1	0.579496091	1.494327214	0.026344429
LEPR	0.580478791	1.49534543	0.040853946
LEPROT	0.580478791	1.49534543	0.040853946
MRPS15	0.581066637	1.495954853	0.032970758
RGPD6	0.582629114	1.49757589	0.029509206
EEF1A1	0.582677064	1.497625665	0.012608351
RPL32	0.58314727	1.498113853	0.012608351
SNORA7A	0.58314727	1.498113853	0.012608351
FGD4	0.583421724	1.498398877	0.014355333
UBE2D1	0.583892049	1.498887442	0.018451648
ACOT13	0.584989799	1.500028383	0.045311299
NGDN	0.585371711	1.500425525	0.029509206
DGAT1	0.585372828	1.500426687	0.023457892
MIR6848	0.585372828	1.500426687	0.023457892
ATP5F1B	0.585771077	1.500840929	0.045311299
TAPBPL	0.585945683	1.501022583	0.040853946
SAMM50	0.587302927	1.502435365	0.036746083
USP16	0.587862561	1.503018286	0.040853946
TRMO	0.589834375	1.505073951	0.023457892
UQCR10	0.589881369	1.505122978	0.029509206
CASK	0.590965847	1.506254809	0.029509206
ANAPC15	0.591226158	1.506526612	0.012608351
ZNF268	0.59172313	1.507045662	0.016298131
FAM117B	0.591900953	1.507231428	0.007281815
ZCCHC10	0.592841575	1.508214448	0.00466565
PPAT	0.593815689	1.509233145	0.045311299
BANF1	0.595160806	1.510640956	0.036746083
KAT2B	0.595796453	1.511306686	0.00466565
SETBP1	0.59595844	1.511476386	0.009640554
PRC1-AS1	0.596453431	1.511995065	0.036746083
CDK9	0.596543081	1.512089024	0.008391519
GAPDH	0.597422501	1.513011026	0.036746083
TMA7	0.597709942	1.513312506	0.040853946
FARP1	0.598351478	1.513985594	0.002070906
MIR3170	0.598351478	1.513985594	0.002070906
UBN2	0.599381149	1.515066532	0.029509206
CS	0.599602984	1.515299513	0.012608351
EPRS	0.600092907	1.515814179	0.032970758
ENPP1	0.602498192	1.518343478	0.032970758
SMG1	0.602808376	1.518669961	0.003995217
HSPA8	0.605070123	1.521052683	0.029509206
SNORD14C	0.605070123	1.521052683	0.029509206
SNORD14D	0.605070123	1.521052683	0.029509206
A1CF	0.605994531	1.522027611	0.016298131
CACUL1	0.606034516	1.522069796	0.029509206
MRAP2	0.606581708	1.522647203	0.029509206
PIK3AP1	0.607373826	1.523483448	0.001456447

EIF2AK2	0.60742331	1.523535704	0.029509206
SEC62	0.60851031	1.524684046	0.014355333
TFG	0.608580645	1.52475838	0.023457892
RPS20	0.608800695	1.524990965	0.023457892
SNORD54	0.608800695	1.524990965	0.023457892
SEC24A	0.608987359	1.525188289	0.00100707
MRPS7	0.609580528	1.525815505	0.032970758
INHBA	0.609780398	1.526026905	0.011041353
PPIL4	0.609828063	1.526077324	0.014355333
USP14	0.61092679	1.527239995	0.026344429
NGLY1	0.611380868	1.527720759	0.016298131
BCLAF1	0.611471991	1.527817256	0.026344429
COQ5	0.612065273	1.528445672	0.000683798
EFEMP1	0.612323581	1.528719358	0.003995217
CHRNA10	0.61269078	1.529108502	0.045311299
NUP98	0.61269078	1.529108502	0.045311299
HNRNPK	0.61284847	1.529275646	0.011041353
MIR7-1	0.61284847	1.529275646	0.011041353
RNF128	0.613010447	1.529447353	0.003408791
CLINT1	0.613129168	1.529573219	0.018451648
NEK9	0.615225016	1.531796892	0.014355333
PSME4	0.615382087	1.531963673	0.018451648
ALG2	0.615403379	1.531986282	0.045311299
NUP214	0.615605671	1.532201109	0.007281815
VPS26A	0.616831472	1.533503513	0.040853946
FTH1	0.617483104	1.534196318	0.026344429
PPIA	0.617967124	1.534711123	0.018451648
CTR9	0.618084521	1.534836012	0.006298355
SRRM1	0.618385822	1.53515659	0.032970758
POLR3C	0.619033332	1.535845753	0.032970758
AASDHPPT	0.619453838	1.536293475	0.023457892
EPS15	0.619659941	1.536512966	0.012608351
NCOR1	0.62010418	1.536986166	0.016298131
MAP3K4	0.621939143	1.538942302	0.003995217
RPL31	0.622142173	1.539158891	0.023457892
TXNDC11	0.623393385	1.540494343	0.029509206
FAM114A2	0.624669868	1.541857961	0.029509206
CYP3A7 CYP3A7-	0.62645502	1.543766996	0.045311299
CYP3A51P	0.62645502	1.543766996	0.045311299
RPS6	0.62703289	1.544385474	0.014355333
ACAP2	0.627255844	1.544624161	0.003995217
EZH1	0.627625008	1.545019459	0.020832926
GPR65	0.627858463	1.545269492	0.007281815
NR2C1	0.628212555	1.545648806	0.002898085
UQCRH	0.628899512	1.54638496	0.045311299
VDAC2	0.632110468	1.549830529	0.016298131
SEPSECS	0.632728357	1.550494444	0.007281815

RDX	0.633479267	1.551301673	0.023457892
PAG1	0.633544494	1.551371812	0.036746083
FCGR3B	0.633587854	1.551418439	0.014355333
LARS	0.634209135	1.552086684	0.018451648
HSP90AA1	0.635470153	1.553443912	0.040853946
HMGN3	0.635883663	1.553889229	0.016298131
UBE2E1	0.636566111	1.55462445	0.023457892
GTF3C6	0.637220931	1.555330233	0.006298355
RBPJ	0.638206731	1.556393361	0.040853946
HECTD2	0.638432655	1.556637108	0.006298355
MOSPD2	0.638714657	1.556941413	0.000149389
UBE2D3	0.640287689	1.558639938	0.036746083
AGAP5	0.640331833	1.558687631	0.026344429
FAF1	0.640885859	1.559286316	0.036746083
RFX5	0.641023426	1.559435006	0.036746083
SYNCRIP	0.641136913	1.559557682	0.026344429
RAB2A	0.641608315	1.560067352	0.045311299
RNF43	0.641657039	1.56012004	0.011041353
DROSHA	0.642135174	1.560637178	0.005430149
WASL	0.643207079	1.561797144	0.018451648
DOCK11	0.64333379	1.561934321	0.007281815
SRI	0.644274709	1.562953339	0.011041353
EIF2AK1	0.64440996	1.563099872	0.023457892
CFAP97	0.644954054	1.563689486	0.007281815
NR5A2	0.645575957	1.564363691	0.001740183
PSMA2	0.646120295	1.564954047	0.016298131
RPS3A	0.64694181	1.565845434	0.002070906
SNORD73A	0.64694181	1.565845434	0.002070906
SNORA31	0.646955023	1.565859775	0.040853946
TPT1	0.646955023	1.565859775	0.040853946
TICAM2	0.647506592	1.566458547	0.040853946
TMED7	0.647506592	1.566458547	0.040853946
TICAM2	0.647506592	1.566458547	0.040853946
LANCL2	0.648884483	1.567955356	0.000368536
RFC1	0.649083057	1.568171186	0.014355333
ARL8A	0.64971064	1.568853501	0.001740183
MIR4523	0.650086761	1.569262566	0.011041353
TAOK1	0.650086761	1.569262566	0.011041353
FAM20A	0.650708962	1.569939499	0.018451648
PICALM	0.651707024	1.571025964	0.020832926
TRAPPC11	0.652052698	1.571402432	0.003408791
MRPL51	0.653359437	1.572826394	0.014355333
ARFGEF1	0.65450014	1.57407048	0.029509206
DHCR24	0.655831767	1.575524039	0.006298355
LAPTM4A	0.656200121	1.575926359	0.036746083
MIR6850	0.657196268	1.577014875	0.008391519
	0 657196268	1 577014875	0.008391519

SYVN1	0.659436222	1.579465278	0.045311299
SMLR1	0.659909078	1.579983047	0.005430149
DUSP6	0.660572614	1.580709893	0.014355333
FGL2	0.66166451	1.581906696	0.045311299
EIF5	0.663274076	1.583672562	0.012608351
LOC100506548	0.663712321	1.584153704	0.036746083
RPL37	0.663712321	1.584153704	0.036746083
AGAP9	0.664180646	1.584668032	0.032970758
BMS1P2	0.664180646	1.584668032	0.032970758
PPT1	0.664355278	1.584859861	0.032970758
MLEC	0.664680772	1.585217471	0.032970758
CCNI	0.665384568	1.585990982	0.020832926
RPS12	0.665787934	1.586434474	0.036746083
CSTA	0.667375392	1.588181056	0.014355333
PCTP	0.667464166	1.588278785	0.023457892
STAM	0.667918054	1.588778554	0.012608351
GPR34	0.66813293	1.589015205	0.023457892
PNISR	0.668899488	1.589859733	0.040853946
PGM1	0.669832315	1.590888047	0.005430149
UBE2J1	0.671458287	1.592682049	0.020832926
EEF1G	0.671913184	1.593184318	0.026344429
MIR3654	0.671913184	1.593184318	0.026344429
AMZ2	0.672807746	1.594172498	0.032970758
MED24	0.674326387	1.595851475	0.011041353
MIR6884	0.674326387	1.595851475	0.011041353
MIR4534	0.675724403	1.597398654	0.026344429
MIR6820	0.675724403	1.597398654	0.026344429
POLR2F	0.675724403	1.597398654	0.026344429
TLK2	0.677121304	1.598946097	0.012608351
TBCA	0.67758886	1.599464375	0.040853946
TTLL5	0.677902853	1.599812526	0.00100707
CYP4V2	0.67807753	1.600006238	0.014355333
MIR423	0.678703699	1.600700835	0.020832926
NSRP1	0.678703699	1.600700835	0.020832926
LPAR6	0.67950041	1.601585047	0.003995217
CCNK	0.680995161	1.603245281	0.012608351
CUL2	0.681112044	1.603375177	0.023457892
TCTEX1D2	0.683335851	1.605848567	0.020832926
SNAP29	0.68368625	1.606238639	0.011041353
RPL12	0.686735613	1.609637267	0.018451648
CD63	0.688184029	1.6112541	0.012608351
OLA1	0.691679453	1.615162649	0.045311299
MATR3	0.692667206	1.616268862	0.029509206
SNHG4	0.692667206	1.616268862	0.029509206
SNORA74A	0.692667206	1.616268862	0.029509206
GABARAP	0.695160892	1.619064984	0.018451648
RRAGD	0.695232055	1.619144849	0.029509206

UBE2K	0.696620559	1.620703924	0.026344429
UQCRC2	0.698146844	1.62241944	0.009640554
EIF4B	0.698350052	1.622647979	0.045311299
CLDN2	0.700821421	1.625429993	0.012608351
PIP5K1A	0.701293465	1.625961914	0.007281815
NUP50	0.702582784	1.627415667	0.005430149
C8orf44-SGK3	0.703243931	1.628161637	0.029509206
BIRC2	0.703529057	1.628483448	0.032970758
RNF38	0.704124304	1.62915549	0.026344429
RNF130	0.706499609	1.631839999	0.016298131
HEBP2	0.707560267	1.633040157	0.020832926
ENY2	0.709293451	1.63500319	0.029509206
ZFR	0.709701884	1.635466132	0.012608351
PKN2	0.709986678	1.635789012	0.008391519
TCERG1	0.711735315	1.637772893	0.002070906
DYNC1LI2	0.712073905	1.638157312	0.026344429
THOC7	0.712767429	1.638944987	0.011041353
EVI5	0.714907804	1.641378321	0.020832926
TSC22D1	0.716075531	1.642707402	0.014355333
CD47	0.717404781	1.644221634	0.009640554
COX6C	0.717534206	1.644369144	0.045311299
CD164	0.719718291	1.646860428	0.040853946
CEP70	0.720021729	1.647206844	0.029509206
DEPDC5	0.721366535	1.648743001	0.036746083
PLCB1	0.722481871	1.650018124	0.045311299
CSNK1A1	0.722769692	1.650347339	0.032970758
HSDL2	0.722797263	1.650378879	0.003408791
CDC26	0.725171161	1.653096748	0.006298355
ARNT	0.72729007	1.655526461	0.018451648
RPS27L	0.730109198	1.65876464	0.032970758
CD302	0.73030519	1.65899	0.005430149
LY75	0.73030519	1.65899	0.005430149
LY75-CD302	0.73030519	1.65899	0.005430149
LRRC37A4P	0.731791377	1.660699883	0.008391519
ETV1	0.735184689	1.664610554	0.040853946
CCNT2	0.736608054	1.666253671	0.009640554
MEIS2	0.737599131	1.667398718	0.018451648
MS4A6A	0.738968101	1.668981659	0.023457892
NDUFA6	0.73928302	1.669346014	0.014355333
GLUL	0.739538166	1.669641269	0.040853946
DENND4A	0.740731672	1.671023093	0.016298131
NSA2	0.743605222	1.674354743	0.040853946
ZC3H7A	0.743977329	1.674786656	0.040853946
UBE2V2	0.744907326	1.675866614	0.001456447
WASHC3	0.746075856	1.677224554	0.007281815
ME2	0.747784806	1.679212494	0.014355333
ODF2L	0.749121665	1.680769241	0.040853946

AIF1	0.749809949	1.681571297	0.029509206
TAX1BP1	0.750887899	1.6828282	0.001456447
PCNX1	0.752202512	1.684362325	0.032970758
ANTXR1	0.753056095	1.685359188	0.005430149
OGFRL1	0.755490851	1.688205876	0.040853946
DBI	0.757589004	1.690662869	0.003995217
VAPA	0.759094606	1.692428172	0.016298131
PDS5A	0.760232218	1.693763233	0.014355333
CNOT9	0.762029171	1.695874219	0.045311299
NADK2	0.763435268	1.697527878	0.020832926
EWSR1	0.763969938	1.698157108	0.006298355
NNT	0.764427749	1.698696069	0.026344429
TAF2	0.764900359	1.699252634	0.016298131
SRP72	0.765072958	1.699455938	0.016298131
RNPS1	0.769661163	1.704869324	0.001213644
B2M	0.769901778	1.705153689	0.011041353
TPM3	0.770960016	1.706404902	0.009640554
THADA	0.771454477	1.706989847	0.036746083
TRAM1	0.771507964	1.707053133	0.032970758
DYNLT1	0.772705889	1.708471154	0.020832926
PLPPR1	0.774094742	1.710116655	0.029509206
PLEK	0.774822918	1.710980026	0.036746083
FAM200B	0.775252903	1.711490047	0.029509206
SGK3	0.780075993	1.717221324	0.008391519
MAX	0.780124397	1.717278939	0.020832926
SELENOW	0.781635384	1.71907845	0.026344429
BST2	0.782625447	1.720258589	0.020832926
RPL14	0.782630541	1.720264663	0.020832926
DOK2	0.783100106	1.720824662	0.029509206
PARP9	0.783129798	1.720860079	0.032970758
TMEM14C	0.785113971	1.723228446	0.029509206
ACACA	0.785724	1.72395725	0.000559323
GOLGA7	0.787792424	1.726430699	0.029509206
VSTM4	0.789494684	1.728468946	0.011041353
PSMB4	0.789625934	1.728626201	0.008391519
RGS10	0.791553367	1.730937181	0.026344429
ZHX2	0.79194372	1.731405588	0.001213644
RAB1A	0.792779199	1.732408551	0.001740183
DYNLL2	0.794475831	1.73444709	0.0000708
MIR4709	0.795089685	1.735185239	0.045311299
NPC2	0.795089685	1.735185239	0.045311299
PARK7	0.795644398	1.735852542	0.032970758
ATF7IP	0.796636868	1.737047093	0.005430149
CBX3	0.796982003	1.737462696	0.026344429
GAB1	0.799051466	1.739956775	0.032970758
UBC	0.801985134	1.743498514	0.005430149
TP53BP1	0.802156921	1.74370613	0.002070906
YWHAZ	0.802445727	1.74405523	0.009640554
----------	-------------	-------------	-------------
BHLHE41	0.802778021	1.744456981	0.016298131
SLC22A3	0.803505648	1.745337024	0.040853946
SLAMF7	0.805922847	1.748263744	0.026344429
UBE2D2	0.807103854	1.749695478	0.023457892
HLA-F	0.807503441	1.750180163	0.023457892
INTS8	0.807693501	1.750410746	0.023457892
PALLD	0.808425636	1.751299266	0.018451648
JMJD1C	0.81070496	1.754068343	0.018451648
GTF2I	0.817200011	1.761983008	0.009640554
IFNAR2	0.818259662	1.763277649	0.032970758
MKLN1	0.818746604	1.763872896	0.018451648
ATRAID	0.820217342	1.765671972	0.023457892
GNB1	0.820232173	1.765690123	0.020832926
HLA-DMB	0.822159909	1.768051023	0.036746083
PAPOLA	0.822230619	1.768137682	0.036746083
MIR7703	0.822406287	1.76835299	0.026344429
PSME2	0.822406287	1.76835299	0.026344429
SECISBP2	0.822494516	1.768461138	0.007281815
RRM2B	0.823320192	1.769473545	0.009640554
HLA-DMA	0.824138077	1.77047697	0.014355333
HADH	0.824292395	1.770666358	0.020832926
METTL23	0.828055227	1.775290632	0.036746083
UBE2H	0.829579122	1.777166833	0.003995217
NUS1	0.83052717	1.778335058	0.029509206
CCDC91	0.831386774	1.779394963	0.045311299
CUX1	0.831660656	1.779732796	0.000683798
MTO1	0.833451359	1.78194321	0.002898085
RPS8	0.834097542	1.78274152	0.045311299
SNORD38A	0.834097542	1.78274152	0.045311299
SNORD38B	0.834097542	1.78274152	0.045311299
SNORD46	0.834097542	1.78274152	0.045311299
SNORD55	0.834097542	1.78274152	0.045311299
ZNF706	0.834635279	1.783406128	0.001456447
RELN	0.836609806	1.785848635	0.012608351
ZNF143	0.83738378	1.786806961	0.026344429
ARL8B	0.837479688	1.786925749	0.002070906
SELENOT	0.840712982	1.790935006	0.016298131
GNAI1	0.843335137	1.794193061	0.032970758
R3HDM1	0.845101689	1.796391361	0.003995217
POM121C	0.846923317	1.798661018	0.006298355
CSTB	0.847096863	1.798877397	0.020832926
IQGAP1	0.847941526	1.799930905	0.029509206
UBXN4	0.848575997	1.800722656	0.036746083
KDELR2	0.848755986	1.800947326	0.036746083
SLC2A14	0.848836057	1.801047283	0.026344429
PGRMC2	0.849363721	1.801706134	0.009640554

	SELENOF	0.849493448	1.801868151	0.040853946
	LMBRD1	0.851481621	1.804353011	0.011041353
	CRYZ	0.851590986	1.804489797	0.00466565
	PTP4A2	0.851866796	1.804834807	0.029509206
	SAT1	0.854038496	1.807553685	0.045311299
	TSPAN5	0.854766175	1.808465624	0.040853946
	BMP2K	0.854926732	1.808666898	0.001740183
	DDAH1	0.85561437	1.809529176	0.001456447
	DDX17	0.85888426	1.813635153	0.023457892
	LIMA1	0.860236396	1.815335743	0.0000414
	TMEM123	0.861213706	1.816565902	0.005430149
_	DR1	0.86373573	1.81974428	0.002454436
	ITGB1	0.864373702	1.820549165	0.032970758
_	TMSB10	0.866787826	1.823598119	0.045311299
	IK	0.868098644	1.825255774	0.032970758
_	MIR3655	0.868098644	1.825255774	0.032970758
	BLOC1S1	0.869150518	1.826587059	0.003995217
_	ASAH1	0.870729438	1.828587215	0.002070906
	TOM1	0.872183536	1.830431185	0.00100707
_	AFTPH	0.873014181	1.831485375	0.001740183
	CEMIP2	0.874855969	1.833824998	0.011041353
	NCF1	0.87563558	1.834816237	0.006298355
	RPL23A	0.878418415	1.838358857	0.026344429
_	SNORD42A	0.878418415	1.838358857	0.026344429
	SNORD42B	0.878418415	1.838358857	0.026344429
	SNORD4B	0.878418415	1.838358857	0.026344429
	LRRC37A	0.880344703	1.840815075	0.016298131
_	NPIPA2	0.882868654	1.844038343	0.023457892
	NPIPA3	0.882868654	1.844038343	0.023457892
	LAP3	0.88290986	1.844091013	0.023457892
	DHX8	0.88402001	1.845510582	0.005430149
	CD3D	0.88552108	1.847431766	0.023457892
	WAC	0.888714699	1.85152586	0.040853946
	UBE2D4	0.890219093	1.853457576	0.012608351
	CPVL	0.891639213	1.855282929	0.001456447
	HLA-DQA1	0.892372045	1.856225578	0.001456447
	ARPC2	0.894045976	1.858380571	0.026344429
_	BPTF	0.895903552	1.860774913	0.007281815
	PREX1	0.897207899	1.86245801	0.016298131
	ATF2	0.901382403	1.867854921	0.012608351
	DRG1	0.901439566	1.867928931	0.029509206
	ACSM3	0.907008823	1.875153661	0.018451648
	RIOK3	0.907461377	1.875741964	0.032970758
	AOX1	0.909414031	1.878282455	0.029509206
	RCN1	0.912592769	1.8824255	0.005430149
_	EFR3A	0.913336358	1.883395984	0.003995217
	PPWD1	0.914642002	1.885101235	0.002070906

PHACTR2	0.918354462	1.889958376	0.000831696
ITM2C	0.92099716	1.893423535	0.029509206
NOP10	0.921497736	1.894080616	0.020832926
SOD2	0.922738621	1.895710446	0.006298355
SOD2-OT1	0.922738621	1.895710446	0.006298355
S100A11	0.926187859	1.900248188	0.026344429
ATXN10	0.932741691	1.908900216	0.005430149
MEF2A	0.934640374	1.91141411	0.020832926
TFEC	0.936105257	1.913355907	0.002454436
SPTBN1	0.939837089	1.918311608	0.011041353
UTP6	0.943124648	1.922687969	0.014355333
ETV5	0.948343836	1.929656208	0.026344429
PARP14	0.954813011	1.93832839	0.026344429
PRDM1	0.955665271	1.939473779	0.012608351
CUL5	0.959860874	1.945122309	0.011041353
GOSR1	0.961425097	1.947232425	0.014355333
LENG8	0.963383047	1.9498769	0.032970758
SCD	0.963505252	1.950042075	0.002070906
MAL2	0.965381755	1.95258013	0.032970758
QKI	0.967998235	1.956124554	0.003995217
ATP5MF	0.977324515	1.968810852	0.018451648
UTRN	0.977646429	1.96925021	0.014355333
HLA-DRB1	0.983673848	1.977494728	0.032970758
WARS	0.985900212	1.980548749	0.036746083
HBS1L	0.988555129	1.984196806	0.007281815
GBP5	0.988821302	1.984562918	0.00466565
CASD1	0.989236574	1.985134246	0.00466565
TMEM230	0.989877813	1.98601678	0.012608351
LIPA	0.991476868	1.988219263	0.011041353
FAM91A1	0.991646779	1.988453436	0.029509206
SEC63	0.993728455	1.991324663	0.005430149
CD74	0.99430097	1.99211505	0.020832926
GLT8D1	0.999336606	1.999080552	0.018451648
RPL30	1.006824467	2.009483132	0.026344429
AHR	1.012046373	2.016769735	0.036746083
EIF4A2	1.014271665	2.019882911	0.014355333
MIR1248	1.014271665	2.019882911	0.014355333
SNORA4	1.014271665	2.019882911	0.014355333
SNORA63	1.014271665	2.019882911	0.014355333
SNORA81	1.014271665	2.019882911	0.014355333
SNORD2	1.014271665	2.019882911	0.014355333
EPB41	1.016726595	2.023322926	0.007281815
UBE2Q1	1.018068806	2.0252062	0.023457892
ELOC	1.027248833	2.038133896	0.036746083
ECPAS	1.037983321	2.053355352	0.002898085
ATM	1.039205566	2.055095683	0.023457892
SDHAF2	1.039690014	2.055785887	0.005430149

FABP5	1.049845517	2.070308148	0.020832926
SUB1	1.055290644	2.078136824	0.020832926
COPS3	1.055499441	2.078437609	0.003995217
MIR3614	1.057322983	2.081066379	0.002454436
TRIM25	1.057322983	2.081066379	0.002454436
HEXB	1.068572685	2.097357342	0.00466565
ASAP1	1.07237142	2.102887135	0.007281815
ASAP1-IT2	1.07237142	2.102887135	0.007281815
FNDC3B	1.074594425	2.106129907	0.023457892
NT5E	1.076822872	2.109385637	0.005430149
TAB2	1.083171409	2.118688379	0.000296775
ATG7	1.086149586	2.123066537	0.016298131
PGM3	1.087162353	2.124557446	0.009640554
TXNL4A	1.101141861	2.145244166	0.008391519
STK10	1.116453618	2.168133539	0.011041353
CTSS	1.124857292	2.180799736	0.002454436
KRIT1	1.135147204	2.196409725	0.011041353
HLA-DRA	1.137393158	2.199831707	0.008391519
CASP4	1.143170907	2.208659324	0.006298355
HSPE1	1.177562022	2.261942134	0.032970758
KCNRG	1.17926042	2.264606551	0.001740183
TRIM13	1.17926042	2.264606551	0.001740183
MBD2	1.182357756	2.269473679	0.036746083
FCER1G	1.182741253	2.27007703	0.008391519
SAMHD1	1.189232692	2.280314307	0.002454436
ANKRD12	1.195699642	2.29055887	0.001456447
EPSTI1	1.213880104	2.319606529	0.000559323
HLA-DRB5	1.268893187	2.409766212	0.00100707
ATP5PF	1.271918934	2.414825489	0.007281815
GBP1	1.2719597	2.414893725	0.003408791
ROBO1	1.284714757	2.436338778	0.002454436
DAD1	1.340464468	2.532328325	0.005430149
EPB41L2	1.554489572	2.937297862	0.002898085
TNFAIP3	1.679064586	3.202202595	0.045311299
STAT1	1.681927515	3.208563455	0.000189018
CXCL9	1.74870221	3.360561276	0.009640554

Table S5: GSEA between responding and non-responding patients treated in frontline

NAME	SIZE	ES	NES	NOM p- val	FDR q-val	FWER p- val	RANK AT MAX	LEADING EDGE
HALLMARK_ADIPOGENES	198	-0.40265	-1.7275	0	0.002	0.029	4121	tags=34%, list=20%, signal=43%
HALLMARK_ALLOGRAFT_ REJECTION	196	-0.49353	-2.1355	0	0.000	0	4701	tags=39%, list=23%, signal=51%
HALLMARK_ANDROGEN_ RESPONSE	99	-0.53868	-2.1358	0	0.000	0	3816	tags=41%, list=19%, signal=51%
HALLMARK_ANGIOGENE SIS	36	-0.18875	-0.6225	0.94876	0.991	1	6857	tags=50%, list=34%, signal=75%
HALLMARK_APICAL_JUN CTION	200	-0.27231	-1.1787	0.14158	0.207	1	4694	- tags=29%, list=23%, signal=37%
HALLMARK_APICAL_SUR FACE	44	-0.22084	-0.7671	0.8319	0.963	1	5852	tags=32%, list=29%, signal=45%
HALLMARK_APOPTOSIS	160	-0.44949	-1.9037	0	0.000	0.003	4284	tags=35%, list=21%, signal=44%
HALLMARK_BILE_ACID_M ETABOLISM	112	-0.24113	-0.9805	0.51449	0.587		4104	tags=24%, list=20%, signal=30%
HALLMARK_CHOLESTER OL_HOMEOSTASIS	73	-0.47837	-1.8141	0	0.000	0.006	3215	tags=36%, list=16%, signal=42%
HALLMARK_COAGULATIO	138	-0.29409	-1.2213	0.13876	0.165	0.998	4491	tags=28%, list=22%, signal=36%
HALLMARK_COMPLEMEN T	200	-0.45723	-1.9821	0	0.000	0	4524	tags=39%, list=22%, signal=50%
HALLMARK_DNA_REPAIR	150	-0.48858	-2.0518	0	0.000	0	4850	tags=43%, list=24%, signal=56%
HALLMARK_E2F_TARGET S	198	-0.35215	-1.51	0	0.013	0.263	5121	tags=38%, list=25%, signal=50%
HALLMARK_EPITHELIAL_ MESENCHYMAL_TRANSIT ION	198	-0.30748	-1.3262	0.03737	0.079	0.891	2472	tags=16%, list=12%, signal=18%
HALLMARK_ESTROGEN_ RESPONSE_EARLY	198	-0.16878	-0.7314	0.96334	0.959	1	4472	tags=20%, list=22%, signal=25%
HALLMARK_ESTROGEN_ RESPONSE_LATE	198	-0.28077	-1.2098	0.12358	0.176	0.998	3884	tags=24%, list=19%, signal=30%
HALLMARK_FATTY_ACID _METABOLISM	156	-0.42036	-1.7512	0	0.001	0.021	4068	tags=35%, list=20%, signal=44%
HALLMARK_G2M_CHECK POINT	195	-0.46318	-1.991	0	0.000	0	5101	tags=46%, list=25%, signal=61%
HALLMARK_GLYCOLYSIS	199	-0.2836	-1.2243	0.10274	0.165	0.998	4876	tags=30%, list=24%, signal=39%
HALLMARK_HEDGEHOG_ SIGNALING	36	-0.37613	-1.2497	0.14977	0.144	0.99	4989	tags=39%, list=25%, signal=51%
HALLMARK_HEME_META BOLISM	194	-0.43083	-1.8578	0	0.000	0.003	3098	tags=30%, list=15%, signal=35%
HALLMARK HYPOXIA	197	-0.30602	-1.3149	0.03819	0.085	0.916	3891	tags=25%, list=19%, signal=31%
HALLMARK_IL2_STAT5_SI GNALING	199	-0.36663	-1.5834	0.00111	0.007	0.129	5580	tags=39%, list=28%, signal=54%
HALLMARK_IL6_JAK_STA T3_SIGNALING	87	-0.40655	-1.5744	0.00379	0.007	0.14	2960	tags=23%, list=15%, signal=27%
HALLMARK_INFLAMMATO RY_RESPONSE	200	-0.34134	-1.4793	0	0.018	0.368	4504	tags=29%, list=22%, signal=37%
HALLMARK_INTERFERON _ALPHA_RESPONSE	96	-0.63697	-2.5177	0	0.000	0	3700	tags=50%, list=18%, signal=61%
HALLMARK_INTERFERON _GAMMA_RESPONSE	199	-0.58403	-2.4995	0	0.000	0	3750	tags=43%, list=19%, signal=52%
HALLMARK_KRAS_SIGNA LING UP	199	-0.36915	-1.5912	0.00113	0.006	0.119	4895	tags=34%, list=24%, signal=45%
HALLMARK_MITOTIC_SPI	198	-0.49911	-2.1748	0	0.000	0	4087	tags=39%, list=20%, signal=48%
HALLMARK_MTORC1_SIG NALING	197	-0.51467	-2.2067	0	0.000	0	4547	tags=47%, list=22%, signal=60%
HALLMARK_MYC_TARGE TS_V1	196	-0.55225	-2.3766	0	0.000	0	4743	tags=51%, list=23%, signal=65%

HALLMARK_MYC_TARGE TS_V2	58	-0.25618	-0.9186	0.61872	0.714	1	4327	tags=28%, list=21%, signal=35%
HALLMARK_NOTCH_SIGN ALING	32	-0.22266	-0.735	0.86217	0.978	1	4543	tags=28%, list=22%, signal=36%
HALLMARK_OXIDATIVE_P HOSPHORYLATION	200	-0.51833	-2.2424	0	0.000	0	4454	tags=46%, list=22%, signal=58%
HALLMARK_P53_PATHWA Y	195	-0.20345	-0.8742	0.73513	0.793	1	4694	tags=25%, list=23%, signal=32%
HALLMARK_PEROXISOM E	104	-0.36857	-1.47	0.00899	0.020	0.409	4085	tags=31%, list=20%, signal=38%
HALLMARK_PI3K_AKT_M TOR_SIGNALING	104	-0.50055	-2.0053	0	0.000	0	4890	tags=48%, list=24%, signal=63%
HALLMARK_PROTEIN_SE CRETION	96	-0.59667	-2.3656	0	0.000	0	4392	tags=57%, list=22%, signal=73%
XYGEN_SPECIES_PATHW AY	49	-0.42209	-1.5	0.02532	0.015	0.291	4876	tags=47%, list=24%, signal=62%
HALLMARK_TGF_BETA_S IGNALING	54	-0.4792	-1.7509	0.00137	0.001	0.021	4916	tags=44%, list=24%, signal=59%
HALLMARK_TNFA_SIGNA LING_VIA_NFKB	199	-0.27737	-1.2044	0.12306	0.178	0.999	4992	tags=30%, list=25%, signal=40%
HALLMARK_UNFOLDED_ PROTEIN_RESPONSE	110	-0.52227	-2.0883	0	0.000	0	4429	tags=46%, list=22%, signal=59%
HALLMARK_UV_RESPON SE_DN	143	-0.43616	-1.824	0	0.000	0.006	5020	tags=43%, list=25%, signal=56%
HALLMARK_UV_RESPON SE_UP	156	-0.37222	-1.5766	0.00115	0.007	0.135	4525	tags=33%, list=22%, signal=42%
HALLMARK_WNT_BETA_ CATENIN_SIGNALING	42	-0.41789	-1.4334	0.0493	0.029	0.544	1323	tags=19%, list=7%, signal=20%
HALLMARK_XENOBIOTIC _METABOLISM	198	-0.28525	-1.2283	0.10421	0.165	0.998	4876	tags=32%, list=24%, signal=41%
ERS	44	-0.2888	-0.9978	0.4625	0.564	1	4107	signal=34%
KEGG_ACUTE_MYELOID_		0.01170	1 1001	0.0000.4	0.000		5004	tags=33%, list=26%,
KEGG_ADHERENS_JUNC TION	57 73	-0.31179	-1.1361	0.26694	0.362	0.01	5294 3713	signal=45% tags=40%, list=18%, signal=48%
KEGG_ADIPOCYTOKINE_ SIGNALING_PATHWAY	67	-0.2599	-0.9748	0.49204	0.605	1	4752	tags=31%, list=23%, signal=41%
KEGG ALANINE ASPART								
ATE_AND_GLUTAMATE_ METABOLISM	30	-0.37348	-1.1961	0.21045	0.299	1	2163	tags=23%, list=11%, signal=26%
KEGG_ALLOGRAFT_REJE	35	-0.60716	-2 0141	0	0.000	0.002	4800	tags=51%, list=24%, signal=67%
KEGG_ALZHEIMERS_DIS	157	-0.46504	-1 9668	0	0.001	0.007	1121	tags=39%, list=22%,
KEGG_AMINO_SUGAR_A	157	-0.40304	-1.9000	0	0.001	0.007	4421	signal=4370
ND_NUCLEOTIDE_SUGAR METABOLISM	43	-0.41438	-1.4476	0.04661	0.091	0.992	3980	tags=28%, list=20%, signal=35%
KEGG_AMINOACYL_TRN A_BIOSYNTHESIS	22	-0.25833	-0.7678	0.76508	0.900	1	3922	tags=27%, list=19%, signal=34%
KEGG_AMYOTROPHIC_L ATERAL_SCLEROSIS_AL S	53	-0.33241	-1.1853	0.21526	0.311	1	4111	tags=28%, list=20%, signal=35%
KEGG_ANTIGEN_PROCE SSING_AND_PRESENTAT	85	-0.52481	-2.046	0	0.000	0.001	4370	tags=40%, list=22%, signal=51%
KEGG APOPTOSIS	87	-0.33635	-1.3202	0 07398	0 175	1	4626	tags=34%, list=23%, signal=44%
KEGG_ARGININE_AND_P ROLINE_METABOLISM	54	-0.28387	-1 0304	0 4148	0.518	1	3591	tags=22%, list=18%, signal=27%
KEGG_ASCORBATE_AND _ALDARATE_METABOLIS M	25	-0.62613	-1 9209	0.00146	0.002	0.026	6308	tags=84%, list=31%, signal=122%
KEGG ASTHMA	28	-0.67627	-2 1111	0.00140	0.002	0.001	476	tags=29%, list=2%,
KEGG_AUTOIMMUNE_TH	50	-0.51988	-1 8223	0	0.005	0.104	4492	tags=42%, list=22%,
	129	-0 24852	-1 0201	0 42822	0.533	1	4420	tags=28%, list=22%, signal=35%
RECO_MON_CONDANCE	123	0.24002	1.0201	0.42022	0.000		7720	signal=0070

KEGG_B_CELL_RECEPTO R_SIGNALING_PATHWAY	75	-0.35906	-1.3636	0.05828	0.138	1	5925	tags=41%, list=29%, signal=58%
KEGG_BASAL_TRANSCRI PTION_FACTORS	35	-0.49651	-1.6233	0.01114	0.029	0.67	5640	tags=51%, list=28%, signal=71%
KEGG_BASE_EXCISION_ REPAIR	33	-0.36148	-1.1913	0.22831	0.304	1	4558	tags=30%, list=22%, signal=39%
KEGG_BETA_ALANINE_M ETABOLISM	22	-0.41158	-1.2355	0.19545	0.254	1	5536	tags=45%, list=27%, signal=62%
KEGG_BIOSYNTHESIS_O F_UNSATURATED_FATTY _ACIDS	22	-0.4136	-1.2457	0.18731	0.242	1	2644	tags=23%, list=13%, signal=26%
KEGG_BUTANOATE_MET ABOLISM	34	-0.38807	-1.2712	0.15892	0.218	1	5453	tags=41%, list=27%, signal=56%
KEGG_CARDIAC_MUSCL E_CONTRACTION	73	-0.31954	-1.2019	0.15817	0.299	1	3361	tags=27%, list=17%, signal=33%
KEGG_CELL_ADHESION_ MOLECULES_CAMS	131	-0.37158	-1.5316	0.00735	0.056	0.916	1586	tags=16%, list=8%, signal=17%
KEGG_CELL_CYCLE	124	-0.45566	-1.8544	0	0.003	0.063	5354	tags=48%, list=26%, signal=65%
KEGG_CHEMOKINE_SIGN ALING_PATHWAY	188	-0.34355	-1.4592	0.00794	0.086	0.991	4796	tags=31%, list=24%, signal=40%
KEGG_CHRONIC_MYELOI D_LEUKEMIA	73	-0.41478	-1.5699	0.00661	0.042	0.842	5199	tags=44%, list=26%, signal=59%
KEGG_CITRATE_CYCLE_ TCA_CYCLE	30	-0.41891	-1.3309	0.11259	0.165	1	3614	tags=33%, list=18%, signal=41%
KEGG_COLORECTAL_CA	62	-0.4778	-1.7453	0.00136	0.011	0.251	4752	tags=45%, list=23%, signal=59%
KEGG_COMPLEMENT_AN D_COAGULATION_CASCA DES	69	-0.39101	-1.4595	0.02696	0.087	0.991	4705	tags=39%, list=23%, signal=51%
KEGG_CYSTEINE_AND_M ETHIONINE_METABOLISM	34	-0.32083	-1.0743	0.37113	0.453	1	3718	tags=32%, list=18%, signal=40%
KEGG_CYTOKINE_CYTOK INE_RECEPTOR_INTERA CTION	264	-0.18624	-0.8313	0.84358	0.816	1	4707	tags=21%, list=23%, signal=27%
KEGG_CYTOSOLIC_DNA_								tags=30%, list=24%,
SENSING_PATHWAY KEGG_DNA_REPLICATIO	54	-0.26764	-0.9713	0.51499	0.597	1	4818	signal=39% tags=25%, list=16%,
Ν	36	-0.37951	-1.2726	0.13083	0.218	1	3276	signal=30%
KEGG_DRUG_METABOLI SM_CYTOCHROME_P450	71	-0.29985	-1.146	0.25752	0.352	1	2231	tags=21%, list=11%, signal=24%
KEGG_DRUG_METABOLI SM_OTHER_ENZYMES	51	-0.33428	-1.1846	0.22253	0.309	1	1954	tags=25%, list=10%, signal=28% tags=29%_list=18%
KEGG_ENDOCYTOSIS	181	-0.39809	-1.6948	0	0.018	0.402	3550	signal=35%
KEGG_ENDOMETRIAL_C ANCER	52	-0.393	-1.3964	0.064	0.117	1	4626	tags=37%, list=23%, signal=47%
SIGNALING_IN_HELICOB ACTER_PYLORI_INFECTI	68	-0 38734	-1 4503	0.03846	0.091	0.991	35/0	tags=31%, list=18%,
KEGG_ERBB_SIGNALING	87	-0 34168	-1 3318	0.08601	0.166	1	4796	tags=36%, list=24%,
KEGG_ETHER_LIPID_MET	33	-0 24544	-0.8022	0.76358	0.859	1	4924	tags=30%, list=24%, signal=40%
KEGG_FC_EPSILON_RI_S IGNALING_PATHWAY	79	-0.28861	-1.1171	0.26512	0.389	1	6019	tags=41%, list=30%, signal=57%
KEGG_FC_GAMMA_R_ME DIATED_PHAGOCYTOSIS	95	-0.44252	-1.7649	0	0.009	0.207	4756	tags=41%, list=23%, signal=53%
KEGG_FOCAL_ADHESION	199	-0.27473	-1.1843	0.1352	0.306	1	6145	tags=41%, list=30%, signal=58%
KEGG_FRUCTOSE_AND_ MANNOSE_METABOLISM	33	-0.21857	-0.7104	0.88174	0.945	1	4050	tags=24%, list=20%, signal=30%
KEGG_GALACTOSE_MET ABOLISM	26	-0.36385	-1.1167	0.31921	0.386	1	5515	tags=38%, list=27%, signal=53%
KEGG_GAP_JUNCTION	89	-0.20365	-0.7944	0.8075	0.866	1	5132	tags=28%, list=25%, signal=37%
KEGG_GLIOMA	65	-0.26061	-0.973	0.50524	0.599	1	5088	tags=32%, list=25%, signal=43%

KEGG_GLUTATHIONE_M ETABOLISM	49	-0.26696	-0.9375	0.56125	0.649	1	4915	tags=29%, list=24%, signal=38%
KEGG_GLYCEROPHOSPH OLIPID_METABOLISM	77	-0.25662	-0.9689	0.51337	0.597	1	2564	tags=14%, list=13%, signal=16%
KEGG_GLYCOLYSIS_GLU CONEOGENESIS	62	-0.19657	-0.7239	0.9028	0.937	1	5574	tags=29%, list=28%, signal=40%
KEGG_GLYCOSAMINOGL YCAN_DEGRADATION	21	-0.28259	-0.8412	0.67236	0.805	1	1810	tags=14%, list=9%, signal=16%
KEGG_GLYCOSPHINGOLI PID_BIOSYNTHESIS_GAN GLIO_SERIES	15	-0.23119	-0.6282	0.91009	0.976	1	5254	tags=33%, list=26%, signal=45%
KEGG_GLYOXYLATE_AN D_DICARBOXYLATE_MET ABOLISM	16	-0.55335	-1.5207	0.04252	0.061	0.933	3687	tags=44%, list=18%, signal=53%
KEGG_GNRH_SIGNALING _PATHWAY	101	-0.17633	-0.6995	0.95107	0.942	1	2653	tags=13%, list=13%, signal=15%
KEGG_GRAFT_VERSUS_ HOST_DISEASE	38	-0.60566	-2.0494	0	0.000	0.001	3269	tags=34%, list=16%, signal=41%
KEGG_HEMATOPOIETIC_ CELL_LINEAGE	85	-0.38728	-1.5028	0.01675	0.065	0.959	960	tags=13%, list=5%, signal=14%
KEGG_HOMOLOGOUS_R ECOMBINATION	28	-0.219	-0.7008	0.88355	0.947	1	4871	tags=29%, list=24%, signal=38%
KEGG_HUNTINGTONS_DI SEASE	172	-0.51741	-2.1923	0	0.000	0	4421	tags=44%, list=22%, signal=56%
KEGG_HYPERTROPHIC_ CARDIOMYOPATHY_HCM	83	-0.2259	-0.8796	0.67588	0.751	1	3521	tags=22%, list=17%, signal=26%
KEGG_INOSITOL_PHOSP HATE_METABOLISM	54	-0.38163	-1.3842	0.06098	0.123	1	4298	tags=31%, list=21%, signal=40%
KEGG_INSULIN_SIGNALI NG_PATHWAY	137	-0.27593	-1.1498	0.20813	0.349	1	5925	tags=42%, list=29%, signal=59%
KEGG_INTESTINAL_IMMU NE_NETWORK_FOR_IGA_ PRODUCTION	46	-0.50919	-1.8065	0.00281	0.006	0.126	1163	tags=20%, list=6%, signal=21%
			· · · · · · · · · · · · · · · · · · ·					
KEGG_JAK_STAT_SIGNA LING PATHWAY	155	-0.30065	-1.2503	0.10409	0.244	1	4965	tags=32%, list=24%, signal=42%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION	155 70	-0.30065	-1.2503	0.10409	0.244	1	4965 3038	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION	155 70 116	-0.30065 -0.56675 -0.3475	-1.2503 -2.1204 -1.4062	0.10409 0 0.03776	0.244 0.000 0.115	1 0.001 1	4965 3038 4535	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=34%, list=22%, signal=43%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM	155 70 116 29	-0.30065 -0.56675 -0.3475 -0.24138	-1.2503 -2.1204 -1.4062 -0.7666	0.10409 0 0.03776 0.8218	0.244 0.000 0.115 0.896	1 0.001 1 1	4965 3038 4535 4345	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=34%, list=22%, signal=43% tags=24%, list=21%, signal=31%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP RESSION	155 70 116 29 70	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302	0.10409 0 0.03776 0.8218 0.26418	0.244 0.000 0.115 0.896 0.369	1 0.001 1 1 1	4965 3038 4535 4345 5132	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=34%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=31%, list=25%, signal=42%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP RESSION KEGG_LONG_TERM_POT KEGG_LONG_TERM_POT	155 70 116 29 70 70	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1679	0.10409 0 0.03776 0.8218 0.26418 0.21974	0.244 0.000 0.115 0.896 0.369 0.330	1 0.001 1 1 1 1	4965 3038 4535 4345 5132 4310	tags=32%, list=24%, signal=42% tags=33%, list=15%, tags=34%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=31%, list=25%, signal=42% tags=29%, list=21%, signal=36%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP REGG_LONG_TERM_POT ENTIATION KEGG_LYSINE_DEGRADA	155 70 116 29 70 70 70 44	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576 -0.40199	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1679 -1.3744	0.10409 0 0.03776 0.8218 0.26418 0.21974	0.244 0.000 0.115 0.896 0.369 0.330 0.130	1 0.001 1 1 1 1 1 1 1	4965 3038 4535 4345 5132 4310 5448	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=34%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=31%, list=25%, signal=42% tags=29%, list=21%, signal=36% tags=45%, list=27%, signal=62%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP RESSION KEGG_LONG_TERM_POT ENTIATION KEGG_LYSINE_DEGRADA TION	155 70 116 29 70 70 44 121	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576 -0.40199 -0.47686	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1679 -1.3744 -1.9464	0.10409 0 0.03776 0.8218 0.26418 0.21974 0.06999 0	0.244 0.000 0.115 0.896 0.369 0.330 0.130 0.001	1 0.001 1 1 1 1 1 1 1 0.014	4965 3038 4535 4345 5132 4310 5448 3593	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=34%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=31%, list=25%, signal=42% tags=29%, list=21%, signal=36% tags=45%, list=27%, signal=62% tags=35%, list=18%, signal=42%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP RESSION KEGG_LONG_TERM_POT ENTIATION KEGG_LYSINE_DEGRADA TION KEGG_LYSOSOME KEGG_MAPK_SIGNALING	155 70 116 29 70 70 70 44 121 267	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576 -0.40199 -0.47686 -0.24816	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1679 -1.3744 -1.9464 -1.094	0.10409 0 0.03776 0.8218 0.26418 0.21974 0.06999 0 0.26172	0.244 0.000 0.115 0.896 0.369 0.330 0.130 0.001 0.420	1 0.001 1 1 1 1 1 1 0.014 1	4965 3038 4535 4345 5132 4310 5448 3593 4777	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=34%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=31%, list=25%, signal=42% tags=29%, list=21%, signal=36% tags=45%, list=27%, signal=62% tags=35%, list=18%, signal=42% tags=26%, list=24%, signal=34%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP RESSION KEGG_LONG_TERM_POT ENTIATION KEGG_LYSINE_DEGRADA TION KEGG_LYSOSOME KEGG_MAPK_SIGNALING _PATHWAY KEGG_MELANOMA	155 70 116 29 70 70 70 44 121 267 71	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576 -0.40199 -0.47686 -0.24816 -0.24816 -0.17303	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1679 -1.3744 -1.9464 -1.094 -0.6472	0.10409 0 0.03776 0.8218 0.26418 0.21974 0.06999 0 0.26172 0.968	0.244 0.000 0.115 0.896 0.369 0.330 0.130 0.011 0.420 0.973	1 0.001 1 1 1 1 1 1 0.014 1 1	4965 3038 4535 4345 5132 4310 5448 3593 4777 5112	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=34%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=21%, list=25%, signal=42% tags=29%, list=21%, signal=36% tags=45%, list=27%, signal=62% tags=35%, list=18%, signal=42% tags=26%, list=24%, signal=42% tags=26%, list=25%, signal=42%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP RESSION KEGG_LONG_TERM_POT ENTIATION KEGG_LYSINE_DEGRADA TION KEGG_MAPK_SIGNALING _PATHWAY KEGG_METABOLISM_OF_ XENOBIOTICS_BY_CYTO	155 70 116 29 70 70 70 44 121 267 71	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576 -0.40199 -0.47686 -0.24816 -0.17303	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1679 -1.3744 -1.9464 -1.094 -0.6472	0.10409 0 0.03776 0.8218 0.26418 0.21974 0.06999 0 0.26172 0.968	0.244 0.000 0.115 0.896 0.369 0.330 0.130 0.001 0.420 0.973	1 0.001 1 1 1 1 1 1 0.014 1 1	4965 3038 4535 4345 5132 4310 5448 3593 4777 5112	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=24%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=24%, list=25%, signal=42% tags=29%, list=21%, signal=36% tags=29%, list=27%, signal=62% tags=35%, list=27%, signal=42% tags=26%, list=27%, signal=34% tags=26%, list=25%, signal=34% tags=25%, list=25%, signal=34% tags=20%, list=11%, signal=34%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP RESSION KEGG_LONG_TERM_POT ENTIATION KEGG_LYSINE_DEGRADA TION KEGG_LYSOSOME KEGG_MAPK_SIGNALING _PATHWAY KEGG_MELANOMA KEGG_MISMATCH_REPAI	155 70 116 29 70 70 44 121 267 71 69	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576 -0.40199 -0.47686 -0.24816 -0.24816 -0.17303 -0.33414	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1679 -1.3744 -1.9464 -1.094 -0.6472 -1.246	0.10409 0 0.03776 0.8218 0.26418 0.21974 0.06999 0 0.26172 0.968 0.14726	0.244 0.000 0.115 0.896 0.369 0.330 0.130 0.001 0.420 0.973	1 0.001 1 1 1 1 1 1 0.014 1 1 1 1 1 1	4965 3038 4535 4345 5132 4310 5448 3593 4777 5112	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=34%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=31%, list=25%, signal=42% tags=29%, list=21%, signal=36% tags=45%, list=27%, signal=62% tags=26%, list=24%, signal=42% tags=26%, list=24%, signal=34% tags=25%, list=25%, signal=34% tags=20%, list=11%, signal=23% tags=52%, list=23%, list=23%, list=23%, list=23%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP RESSION KEGG_LONG_TERM_POT ENTIATION KEGG_LYSINE_DEGRADA TION KEGG_MEXSOME KEGG_MELANOMA KEGG_MISMATCH_REPAI R KEGG_MISMATCH_REPAI R KEGG_MTOR_SIGNALING	155 70 116 29 70 70 70 44 121 267 71 69 23 52	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576 -0.40199 -0.47686 -0.47686 -0.24816 -0.17303 -0.33414 -0.49518 -0.40593	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1302 -1.1679 -1.3744 -1.9464 -1.094 -0.6472 -1.246 -1.5117 -1.4421	0.10409 0 0.03776 0.8218 0.26418 0.21974 0.06999 0 0.26172 0.968 0.14726 0.04893 0.04425	0.244 0.000 0.115 0.896 0.369 0.330 0.130 0.001 0.420 0.973 0.244 0.063	1 0.001 1 1 1 1 1 1 0.014 1 1 1 0.014 1 1 0.942	4965 3038 4535 4345 5132 4310 5448 3593 4777 5112 2231 4584	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=24%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=24%, list=25%, signal=42% tags=29%, list=21%, signal=62% tags=35%, list=27%, signal=62% tags=26%, list=24%, signal=34% tags=26%, list=25%, signal=34% tags=20%, list=11%, signal=23% tags=52%, list=23%, signal=67%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP RESSION KEGG_LONG_TERM_POT ENTIATION KEGG_LYSINE_DEGRADA TION KEGG_MEXSOME KEGG_MELANOMA KEGG_MISMATCH_REPAI R KEGG_MTOR_SIGNALING R KEGG_MTOR_SIGNALING R KEGG_MTOR_SIGNALING R KEGG_MTOR_SIGNALING NTHESIS	155 70 116 29 70 70 70 44 121 267 71 69 23 52 52	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576 -0.40199 -0.47686 -0.47686 -0.24816 -0.17303 -0.33414 -0.49518 -0.40693 -0.46034	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1679 -1.3744 -1.9464 -1.094 -0.6472 -1.246 -1.5117 -1.4431 -1.6320	0.10409 0 0.03776 0.8218 0.26418 0.21974 0.06999 0 0.26172 0.968 0.14726 0.04893 0.04485 0.0122	0.244 0.000 0.115 0.896 0.369 0.330 0.130 0.001 0.420 0.973 0.244 0.063 0.091 0.028	1 0.001 1 1 1 1 1 1 0.014 1 1 1 0.014 1 1 0.942 0.993	4965 3038 4535 4345 5132 4310 5448 3593 4777 5112 2231 4584 5834	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=24%, list=22%, signal=43% tags=24%, list=21%, signal=31% tags=24%, list=21%, signal=31% tags=21%, list=25%, signal=42% tags=29%, list=21%, signal=36% tags=25%, list=27%, signal=62% tags=25%, list=27%, signal=42% tags=26%, list=27%, signal=42% tags=25%, list=25%, signal=42% tags=26%, list=25%, signal=42% tags=26%, list=24%, signal=42% tags=26%, list=25%, signal=67% tags=20%, list=25%, signal=67% tags=48%, list=29%, signal=67% tags=37%, list=21%, signal=46%
KEGG_JAK_STAT_SIGNA LING_PATHWAY KEGG_LEISHMANIA_INFE CTION KEGG_LEUKOCYTE_TRA NSENDOTHELIAL_MIGRA TION KEGG_LINOLEIC_ACID_M ETABOLISM KEGG_LONG_TERM_DEP REGG_LONG_TERM_POT ENTIATION KEGG_LYSINE_DEGRADA TION KEGG_MAPK_SIGNALING _PATHWAY KEGG_METABOLISM_OF_ XEGG_METABOLISM_OF_ XEGG_MISMATCH_REPAI R KEGG_N_GLYCAN_BIOSY NTHESIS KEGG_NATURAL_KILLER _CELL_MEDIATED_CYTO	155 70 116 29 70 70 70 44 121 267 71 69 23 52 46	-0.30065 -0.56675 -0.3475 -0.24138 -0.29581 -0.30576 -0.40199 -0.47686 -0.47686 -0.24816 -0.17303 -0.33414 -0.49518 -0.49518 -0.40693 -0.40693 -0.46034	-1.2503 -2.1204 -1.4062 -0.7666 -1.1302 -1.1679 -1.3744 -1.9464 -1.094 -0.6472 -1.246 -1.5117 -1.4431 -1.6329 -1.4000	0.10409 0 0.03776 0.8218 0.26418 0.21974 0.06999 0 0.26172 0.968 0.14726 0.04893 0.04485 0.0123	0.244 0.000 0.115 0.896 0.369 0.330 0.130 0.011 0.420 0.973 0.244 0.063 0.091 0.028	1 0.001 1 1 1 1 1 1 0.014 1 1 1 0.014 1 1 0.942 0.993 0.639	4965 3038 4535 4345 5132 4310 5448 3593 4777 5112 2231 4584 5834 4180	tags=32%, list=24%, signal=42% tags=33%, list=15%, signal=39% tags=34%, list=22%, signal=43% tags=24%, list=21%, tags=31%, list=25%, signal=42% tags=29%, list=21%, tags=29%, list=21%, signal=62% tags=35%, list=27%, signal=62% tags=26%, list=24%, signal=42% tags=25%, list=25%, signal=34% tags=25%, list=25%, signal=34% tags=26%, list=24%, signal=34% tags=26%, list=24%, signal=67% tags=52%, list=23%, signal=67% tags=37%, list=21%, signal=46% tags=27%, list=21%, signal=46%

KEGG_NEUROTROPHIN_ SIGNALING_PATHWAY	126	-0.28238	-1.1566	0.21403	0.340	1	4752	tags=31%, list=23%, signal=40%
KEGG_NICOTINATE_AND _NICOTINAMIDE_METAB OLISM	24	-0.5495	-1.6715	0.01791	0.021	0.49	3738	tags=42%, list=18%, signal=51%
TOR_SIGNALING_PATHW	62	-0.43503	-1.6065	0.01173	0.033	0.736	3275	tags=29%, list=16%, signal=35%
KEGG_NON_SMALL_CELL _LUNG_CANCER	54	-0.36355	-1.3047	0.09485	0.190	1	5088	tags=37%, list=25%, signal=49%
KEGG_NOTCH_SIGNALIN G_PATHWAY	47	-0.34695	-1.2018	0.21795	0.296	1	5299	tags=28%, list=26%, signal=37%
KEGG_NUCLEOTIDE_EXC ISION_REPAIR	44	-0.52517	-1.8039	0.00138	0.006	0.13	4960	tags=52%, list=24%, signal=69%
KEGG_ONE_CARBON_PO OL_BY_FOLATE	17	-0.31188	-0.8749	0.64465	0.754	1	4002	tags=29%, list=20%, signal=37%
KEGG_OOCYTE_MEIOSIS	112	-0.3492	-1.4061	0.03431	0.113	1	4636	tags=36%, list=23%, signal=46%
KEGG_OTHER_GLYCAN_ DEGRADATION	16	-0.46769	-1.2785	0.1633	0.213	1	3778	tags=38%, list=19%, signal=46%
KEGG_OXIDATIVE_PHOS PHORYLATION	116	-0.5411	-2.1906	0	0.000	0	4421	tags=50%, list=22%, signal=64%
KEGG_P53_SIGNALING_P ATHWAY	68	-0.35092	-1.2853	0.10861	0.209	Q	4264	tags=29%, list=21%, signal=37%
CER KEGG PANTOTHENATE	70	-0.41945	-1.5923	0.00652	0.034	0.782	4890	tags=41%, list=24%, signal=54%
AND_COA_BIOSYNTHESI S	16	-0.5986	-1.6729	0.02299	0.021	0.483	4868	tags=63%, list=24%, signal=82%
KEGG_PARKINSONS_DIS EASE	112	-0.56379	-2.2737	0	0.000	0	4421	tags=52%, list=22%, signal=66%
KEGG_PATHOGENIC_ES CHERICHIA_COLI_INFECT ION	54	-0.53056	-1.9199	0	0.001	0.026	4495	tags=52%, list=22%, signal=66%
KEGG_PATHWAYS_IN_CA	325	-0.33836	-1.5062	0	0.064	0.953	4918	tags=34%, list=24%, signal=44%
LUCURONATE_INTERCO NVERSIONS	28	-0.62163	-1.9391	0	0.001	0.015	4611	tags=57%, list=23%, signal=74%
KEGG_PENTOSE_PHOSP HATE_PATHWAY	27	-0.20109	-0.6208	0.94682	0.973	1	5248	tags=30%, list=26%, signal=40%
KEGG_PEROXISOME	78	-0.27906	-1.0623	0.36582	0.468	1	4104	tags=27%, list=20%, signal=34%
KEGG_PHOSPHATIDYLIN OSITOL_SIGNALING_SYS TEM	76	-0.26842	-1.0198	0.44162	0.529	1	4535	tags=26%, list=22%, signal=34%
KEGG_PORPHYRIN_AND _CHLOROPHYLL_METAB OLISM	40	-0.48657	-1.6537	0.00853	0.024	0.548	1217	tags=25%, list=6%, signal=27%
KEGG_PPAR_SIGNALING _PATHWAY	69	-0.33144	-1.2466	0.14304	0.246	1	4068	- tags=29%, list=20%, signal=36%
KEGG_PRIMARY_BILE_A CID_BIOSYNTHESIS	16	-0.51167	-1.4283	0.07753	0.099	0.997	2520	tags=38%, list=12%, signal=43%
KEGG_PRIMARY_IMMUN ODEFICIENCY	35	-0.43679	-1.4431	0.04499	0.093	0.993	2486	tags=20%, list=12%, signal=23%
KEGG_PRION_DISEASES	35	-0.38802	-1.2831	0.14204	0.209	1	4396	tags=31%, list=22%, signal=40%
KEGG_PROGESTERONE_ MEDIATED_OOCYTE_MA TURATION	85	-0.27738	-1.0712	0.35104	0.455	1	5120	tags=34%, list=25%, signal=45%
KEGG_PROPANOATE_ME TABOLISM	31	-0.4546	-1.472	0.04271	0.080	0.988	5250	tags=48%, list=26%, signal=65%
KEGG_PROSTATE_CANC ER	89	-0.25819	-1.0087	0.44183	0.547	1	4626	tags=27%, list=23%, signal=35%
KEGG_PROTEASOME	44	-0.52745	-1.8144	0.00138	0.006	0.119	3554	tags=36%, list=18%, signal=44%
KEGG_PROTEIN_EXPORT	23	-0.6857	-2.053	0	0.000	0.001	4410	tags=65%, list=22%, signal=83%
KEGG_PROXIMAL_TUBUL E_BICARBONATE_RECLA MATION	23	-0 28275	-0 874	0 62388	0 750	1	2919	tags=26%, list=14%, signal=30%
	20	-0.20275	0.074	0.02000	0.1.00			
KEGG_PURINE_METABOL	157	-0.33786	-1.3953	0.02712	0.116	1	3867	tags=27%, list=19%, signal=34%

KEGG_PYRUVATE_META BOLISM	40	-0.3634	-1.2333	0.16034	0.255	1	3693	tags=30%, list=18%, signal=37%
KEGG_REGULATION_OF_ ACTIN_CYTOSKELETON	211	-0.32121	-1.4001	0.01359	0.115	1	4721	tags=33%, list=23%, signal=43%
KEGG_REGULATION_OF_ AUTOPHAGY	35	-0.45759	-1.5166	0.03506	0.062	0.938	4179	tags=40%, list=21%, signal=50%
KEGG_RENAL_CELL_CAR CINOMA	70	-0.52037	-1.9767	0	0.000	0.005	4722	tags=49%, list=23%, signal=63%
KEGG_RENIN_ANGIOTEN SIN_SYSTEM	17	-0.35272	-0.9734	0.49534	0.603	1	3547	tags=29%, list=17%, signal=36%
KEGG_RETINOL_METABO	64	-0.29857	-1.1079	0.30476	0.398	1	1331	tags=17%, list=7%, signal=18%
KEGG_RIBOFLAVIN_MET ABOLISM	15	-0.35652	-0.9676	0.514	0.595	1	3861	tags=40%, list=19%, signal=49%
KEGG_RIBOSOME KEGG_RIG_I_LIKE_RECE	87	-0.66426	-2.57	0	0.000	0	4780	tags=74%, list=24%, signal=96%
PTOR_SIGNALING_PATH WAY	70	-0.29954	-1.139	0.24482	0.361	1 📞	4278	tags=31%, list=21%, signal=40%
KEGG_RNA_DEGRADATI ON	57	-0.50897	-1.8539	0.00137	0.003	0.063	4699	tags=46%, list=23%, signal=59%
KEGG_RNA_POLYMERAS E	29	-0.50017	-1.5962	0.01413	0.035	0.765	3867	tags=41%, list=19%, signal=51%
KEGG_SELENOAMINO_A								tags=16%, list=12%,
CID_METABOLISM	25	-0.23752	-0.7288	0.83094	0.938	_1	2436	signal=18%
G_CANCER	84	-0.40195	-1.5469	0.00624	0.051	0.896	4918	tags=42%, list=24%, signal=55%
KEGG_SNARE_INTERACT IONS_IN_VESICULAR_TR ANSPORT	38	-0.48152	-1.6424	0.01034	0.026	0.602	5811	tags=53%, list=29%, signal=74%
KEGG_SPHINGOLIPID_M ETABOLISM	39	-0.31061	-1.0586	0.36963	0.472	1	5094	tags=36%, list=25%, signal=48%
KEGG_SPLICEOSOME	126	-0.53365	-2.197	0	0.000	0	5945	tags=57%, list=29%, signal=80%
KEGG_STARCH_AND_SU CROSE_METABOLISM	52	-0.40963	-1.438	0.03787	0.094	0.996	3025	tags=37%, list=15%, signal=43%
KEGG_STEROID_BIOSYN THESIS	17	-0.56953	-1.594	0.024	0.035	0.774	3883	tags=41%, list=19%, signal=51%
KEGG_STEROID_HORMO NE_BIOSYNTHESIS	55	-0.43817	-1.5965	0.00652	0.035	0.765	6181	tags=53%, list=30%, signal=76%
KEGG_SYSTEMIC_LUPUS _ERYTHEMATOSUS	55	-0.61312	-2.2088	0	0.000	0	3990	tags=45%, list=20%, signal=56%
KEGG_T_CELL_RECEPTO R_SIGNALING_PATHWAY	108	-0.40486	-1.6193	0.00124	0.030	0.69	4800	tags=34%, list=24%, signal=45%
KEGG_TERPENOID_BACK BONE_BIOSYNTHESIS	15	-0.60446	-1.6555	0.01958	0.024	0.545	3546	tags=53%, list=17%, signal=65%
KEGG_TGF_BETA_SIGNA LING_PATHWAY	85	-0.29985	-1.1657	0.1972	0.328	1	3625	tags=26%, list=18%, signal=31%
KEGG_THYROID_CANCE	29	-0.40751	-1.3004	0.15015	0.192	1	2992	tags=31%, list=15%, signal=36%
KEGG TIGHT JUNCTION	132	-0.33781	-1.3862	0.02722	0.122	1	4021	tags=33%, list=20%, signal=40%
KEGG_TOLL_LIKE_RECE PTOR_SIGNALING_PATH WAY	102	-0 41003	-1 638	0.00127	0.027	0.622	4752	tags=38%, list=23%, signal=50%
KEGG_TRYPTOPHAN_ME TABOLISM	39	-0.34653	-1.1664	0.23521	0.330	1	5980	tags=49%, list=30%, signal=69%
KEGG_TYPE_I_DIABETES _MELLITUS	41	-0.52989	-1.8283	0	0.005	0.096	3269	tags=34%, list=16%, signal=41%
KEGG_UBIQUITIN_MEDIA TED_PROTEOLYSIS	134	-0.54703	-2.2679	0	0.000	0	3356	tags=39%, list=17%, signal=46%
KEGG_VALINE_LEUCINE_ AND_ISOLEUCINE_DEGR ADATION	43	-0.40803	-1.4018	0.07876	0.115	1	5763	tags=49%, list=28%, signal=68%
KEGG_VASCULAR_SMOO TH_MUSCLE_CONTRACTI ON	114	-0.23104	-0.9297	0.60025	0.659	1	4420	tags=24%, list=22%, signal=30%
KEGG_VASOPRESSIN_RE GULATED_WATER_REAB SORPTION	44	-0.42694	-1.4902	0.03017	0.071	0.975	3913	tags=39%, list=19%, signal=48%

KEGG_VEGF_SIGNALING _PATHWAY	76	-0.27439	-1.0543	0.36435	0.476	1	4626	tags=30%, list=23%, signal=39%
KEGG_VIBRIO_CHOLERA	54	-0.46293	-1.6779	0.00268	0.020	0.46	4107	tags=44%, list=20%, signal=56%
KEGG_VIRAL_MYOCARDI TIS	68	-0.45514	-1.7101	0.00387	0.016	0.352	4545	tags=44%, list=22%, signal=57%
KEGG_WNT_SIGNALING_ PATHWAY	150	-0.32398	-1.3596	0.03529	0.140	1	4420	tags=31%, list=22%, signal=40%
REACTOME_A_TETRASA CCHARIDE_LINKER_SEQ UENCE_IS_REQUIRED_F OR GAG SYNTHESIS	26	-0.22272	-0.685	0.89808	0.945	1	1922	tags=15%, list=9%, signal=17%
REACTOME_ABC_FAMILY _PROTEINS_MEDIATED_T RANSPORT	103	-0.48203	-1.9039	0.00122	0.002	0.25	4255	tags=39%, list=21%, signal=49%
REACTOME_ABC_TRANS PORTER DISORDERS	77	-0.54918	-2.0725	0	0.000	0.021	4255	- tags=45%, list=21%, signal=57%
REACTOME_ABERRANT_ REGULATION_OF_MITOTI C_EXIT_IN_CANCER_DUE	20	0.07775	4.0400	•	0.004	Ó	1001	tags=35%, list=10%,
REACTOME_ABERRANT_ REGULATION_OF_MITOTI C_G1_S_TRANSITION_IN_ CANCER_DUE_TO_RB1	20	-0.67775	-1.9422	0	0.001	0.15	1991	tags=65%, list=33%,
DEFECTS	17	-0.49708	-1.3604	0.09934	0.117	1	6786	signal=97%
REACTOME_ABORTIVE_E LONGATION_OF_HIV_1_T RANSCRIPT_IN_THE_ABS ENCE_OF_TAT	23	-0.63922	-1.9197	0.00157	0.001	0.202	4452	tags=57%, list=22%, signal=72%
REACTOME_ACTIVATED_ NOTCH1_TRANSMITS_SI GNAL_TO_THE_NUCLEUS	31	-0.39334	-1.2618	0.16788	0.194	1	3760	tags=29%, list=19%, signal=36%
REACTOME_ACTIVATED_ TAK1_MEDIATES_P38_MA	22	0.61108	1.0520	0.00200	0.000	0.400	2250	tags=52%, list=17%,
REACTOME_ACTIVATION _OF_AMPK_DOWNSTREA M_OF_NMDARS	23	-0.29693	-0.9357	0.54985	0.637	1	2359	tags=21%, list=12%, signal=24%
REACTOME_ACTIVATION _OF_ANTERIOR_HOX_GE NES_IN_HINDBRAIN_DEV ELOPMENT_DURING_EA		5						tags=35%, list=15%,
RLY_EMBRYOGENESIS REACTOME_ACTIVATION _OF_ATR_IN_RESPONSE _TO_REPLICATION_STRE	62	-0.47134	-1.7264	0.00271	0.009	0.918	3029	signal=42% tags=43%, list=22%,
SS REACTOME_ACTIVATION _OF_BAD_AND_TRANSLO CATION_TO_MITOCHOND	37	-0.42519	-1.4189	0.07255	0.085	1	4525	signal=56% tags=53%, list=23%,
RIA_ REACTOME_ACTIVATION _OF_BH3_ONLY_PROTEI	15	-0.51138	-1.3857	0.09641	0.101	1	4626	tags=47%, list=24%,
NS REACTOME_ACTIVATION _OF_GENE_EXPRESSION _BV_SPERE_SPERD	30	-0.47382	-1.5322	0.03683	0.042	0.008	4890	signal=61% tags=48%, list=19%,
REACTOME_ACTIVATION _OF_IRF3_IRF7_MEDIATE D_BY_TBK1_IKK_EPSILO N	17	-0.52601	-1.4818	0.04603	0.058	1	3558	tags=47%, list=18%, signal=57%
REACTOME_ACTIVATION _OF_KAINATE_RECEPTO RS_UPON_GLUTAMATE_ BINDING	30	-0.39815	-1.2775	0.14353	0.181	1	2772	tags=27%, list=14%, signal=31%
REACTOME_ACTIVATION _OF_SMO	18	-0.26025	-0.7466	0.81064	0.893	1	768	tags=11%, list=4%, signal=12%

REACTOME_ACTIVATION _OF_THE_MRNA_UPON_ BINDING_OF_THE_CAP_B INDING_COMPLEX_AND_ EIFS_AND_SUBSEQUENT BINDING_TO_43S	60	-0 63269	-2 3078	0	0.000	0.001	5503	tags=77%, list=27%,	
REACTOME_ACTIVATION _OF_THE_PRE_REPLICAT	22	0.36510	1 1040	0 21875	0.264	1	5529	tags=45%, list=27%,	
REACTOME_ACYL_CHAIN	00	-0.30319	0.624	0.04254	0.204	1	000	tags=8%, list=4%,	
REACTOME_ACYL_CHAIN	20	-0.20493	-0.634	0.94351	0.972	1	020	tags=29%, list=28%,	
_REMODELLING_OF_PE REACTOME ACYL CHAIN	24	-0.18854	-0.5687	0.96626	0.987	1	5637	signal=40% tags=19%, list=12%,	
_REMODELLING_OF_PS REACTOME_ADHERENS_	21	-0.30841	-0.9046	0.58859	0.686	1	2416	signal=22%	
NS	33	-0.31701	-1.0391	0.39972	0.476	1	1238	signal=16%	
REACTOME_ADP_SIGNAL LING_THROUGH_P2Y_PU RINOCEPTOR_1	25	-0.37888	-1.1731	0.26617	0.288	1	3496	tags=32%, list=17%, signal=39%	
REACTOME_ADP_SIGNAL LING_THROUGH_P2Y_PU RINOCEPTOR 12	22	-0 52921	-1 6001	0.03053	0.026	Q	2462	tags=36%, list=12%, signal=41%	
REACTOME_ADRENALIN E_NORADRENALINE_INHI		0.0202.					2.02		
N REACTOME AGGREPHA	28	-0.37528	-1.1777	0.2381	0.283	1	2462	tags=25%, list=12%, signal=28% tags=47%, list=21%.	
GY	43	-0.4992	-1.7386	0.00668	0.008	0.888	4217	signal=59%	
REACTOME_AMINO_ACID S_REGULATE_MTORC1	55	-0.46114	-1.6699	0.00282	0.015	0.988	3218	tags=35%, list=16%, signal=41%	
REACTOME_AMYLOID_FI BER_FORMATION	51	-0.47845	-1.6806	0.00274	0.013	0.982	3760	tags=39%, list=19%, signal=48%	
REACTOME_ANCHORING _OF_THE_BASAL_BODY_ TO_THE_PLASMA_MEMB								tags=37%, list=23%,	
RANE	95	-0.4695	-1.8524	0	0.003	0.429	4582	signal=47%	
REACTOME_ANTIGEN_A CTIVATES_B_CELL_RECE PTOR_BCR_LEADING_TO _GENERATION_OF_SECO	00	0.00051		0.00007	0.000		0.400	tags=23%, list=12%,	
ND_MESSENGERS	30	-0.36351	-1.1/11	0.22907	0.290	1	2483	signal=27%	
REACTOMIE_ANTIGEN_F RESENTATION_FOLDING _ASSEMBLY_AND_PEPTI DE_LOADING_OF_CLASS		5					10-0	tags=68%, list=22%,	
_I_MHC	25	-0.68731	-2.1028	0	0.000	0.009	4370	signal=87%	
REACTOME_ANTIGEN_P ROCESSING_CROSS_PR ESENTATION	99	-0.53807	-2.1284	0	0.000	0.005	3269	tags=35%, list=16%, signal=42%	
REACTOME_ANTIGEN_P ROCESSING_UBIQUITINA TION_PROTEASOME_DE	208	0 40770	1 0007	0	0.002	0.33	2256	tags=31%, list=17%,	
GRADATION	300	-0.42772	-1.9097	0	0.002	0.23	3330	signal=3076	
REACTOME_ANTIVIRAL_ MECHANISM_BY_IFN_STI MULATED_GENES	80	-0.62805	-2.4149	0	0.000	0	4388	tags=54%, list=22%, signal=68%	
REACTOME_APC_C_CDC 20_MEDIATED_DEGRADA TION_OF_CYCLIN_B	24	-0.68752	-2 1045	0	0.000	0 009	3235	tags=46%, list=16%, signal=54%	
REACTOME_APC_C_CDH 1_MEDIATED_DEGRADAT ION_OF_CDC20_AND_OT HER_APC_C_CDH1_TAR	21	0.00102	2.1010	0	0.000	0.000	0200	olghaileo 170	
GETED PROTEINS IN LA								tags=38%. list=16%.	
GETED_PROTEINS_IN_LA TE_MITOSIS_EARLY_G1 REACTOME_APC_C_MED	74	-0.5702	-2.1748	0	0.000	0.002	3235	tags=38%, list=16%, signal=45%	

REACTOME_APC_CDC20 _MEDIATED_DEGRADATI ON_OF_NEK2A	26	-0.69584	-2.1911	0	0.000	0.002	3264	tags=50%, list=16%, signal=60%
REACTOME_APOPTOTIC_ CLEAVAGE_OF_CELLULA R_PROTEINS	38	-0.41698	-1.4019	0.06745	0.094	1	3972	tags=37%, list=20%, signal=46%
REACTOME_APOPTOTIC_ EXECUTION_PHASE	46	-0.39835	-1.3932	0.05172	0.097	1	3972	tags=35%, list=20%, signal=43%
REACTOME_APOPTOTIC_ FACTOR_MEDIATED_RES PONSE	17	-0.5432	-1.515	0.05651	0.047	1	4241	tags=47%, list=21%, signal=59%
REACTOME_AQUAPORIN _MEDIATED_TRANSPORT	52	-0.29464	-1.054	0.37052	0.455	1	2496	tags=21%, list=12%, signal=24%
REACTOME_ASPARAGIN E_N_LINKED_GLYCOSYL ATION	302	-0.45972	-2.0503	0	0.000	0.035	4255	tags=37%, list=21%, signal=46%
REACTOME_ASSEMBLY_ OF_ACTIVE_LPL_AND_LI PC_LIPASE_COMPLEXES	19	-0.27129	-0.7692	0.77977	0.870	1	3724	tags=32%, list=18%, signal=39%
REACTOME_ASSEMBLY_ OF_COLLAGEN_FIBRILS_ AND_OTHER_MULTIMERI C_STRUCTURES	61	-0 24679	-0 9196	0 59615	0.665	0	1752	tags=11%, list=9%, signal=13%
REACTOME_ASSEMBLY_ OF_THE_HIV_VIRION	16	-0.62906	-1.7368	0.00985	0.008	0.891	3113	tags=44%, list=15%, signal=52%
REACTOME_ASSEMBLY_ OF_THE_PRE_REPLICATI VE_COMPLEX	68	-0.49089	-1.816	0.00133	0.004	0.575	5555	tags=53%, list=27%, signal=73%
REACTOME_ASSOCIATIO N_OF_TRIC_CCT_WITH_T ARGET_PROTEINS_DURI NG_BIOSYNTHESIS	39	-0 43957	-1 4797	0.03953	0.059	1	4977	tags=46%, list=25%,
REACTOME_ASYMMETRI C_LOCALIZATION_OF_PC P_PROTEINS	64	-0.49832	-1.8499	0	0.003	0.442	3178	tags=33%, list=16%, signal=39%
REACTOME_ATF4_ACTIV ATES_GENES_IN_RESPO NSE_TO_ENDOPLASMIC_ RETICULUM STRESS	27	-0.4834	-1.5184	0.04056	0.046	1	4699	tags=52%, list=23%, signal=67%
REACTOME_ATTENUATIO	28	-0.50192	-1.5922	0.01368	0.028	1	5241	tags=46%, list=26%, signal=63%
REACTOME_AUF1_HNRN P_D0_BINDS_AND_DEST	55	-0 53415	-1 9358	0	0.001	0 158	3178	tags=38%, list=16%,
REACTOME_AURKA_ACTI	71	-0 51491	-1 9437	0	0.001	0.147	4264	tags=41%, list=21%,
REACTOME_AUTOPHAGY	150	-0.50549	-2.1061	0	0.000	0.009	3942	tags=43%, list=19%, signal=53%
REACTOME_B_WICH_CO MPLEX_POSITIVELY_REG ULATES_RRNA_EXPRESS ION	31	-0.48344	-1.561	0.01493	0.035	1	4580	tags=52%, list=23%, signal=67%
REACTOME_BASE_EXCIS ION_REPAIR	44	-0.41343	-1.4379	0.04871	0.076	1	4558	tags=32%, list=22%, signal=41%
ION_REPAIR_AP_SITE_F ORMATION	17	-0.19949	-0.5618	0.96849	0.988	1	16230	tags=100%, list=80%, signal=501%
REACTOME_BASIGIN_INT ERACTIONS	25	-0.46794	-1.4388	0.06366	0.075	1	4630	tags=48%, list=23%, signal=62%
REACTOME_BBSOME_ME DIATED_CARGO_TARGET ING_TO_CILIUM	23	-0.42784	-1.2824	0.14619	0.176	1	3253	tags=30%, list=16%, signal=36%
REACTOME_BETA_CATE NIN_INDEPENDENT_WNT _SIGNALING	146	-0.43542	-1.8174	0	0.004	0.57	4124	tags=35%, list=20%, signal=44%

REACTOME_BETA_CATE NIN_PHOSPHORYLATION	17	-0 62156	-1 7247	0.00483	0.009	0 919	4021	tags=59%, list=20%,
REACTOME_BILE_ACID_A ND_BILE_SALT_METABOL	17	0.02130	1 1 4 5 4	0.00485	0.225	0.919	4021	tags=35%, list=21%,
REACTOME_BINDING_AN D_UPTAKE_OF_LIGANDS	43	-0.3307	-1.1434	0.26135	0.325		4294	Signal=44%
_BY_SCAVENGER_RECE PTORS	42	-0.48918	-1.6917	0.00283	0.012	0.971	5215	tags=40%, list=26%, signal=54%
REACTOME_BIOLOGICAL _OXIDATIONS	216	-0.22132	-0.9567	0.58929	0.606	1	5076	tags=27%, list=25%, signal=36%
SIS_OF_SPECIALIZED_PR ORESOLVING_MEDIATOR	40	0 0000 4	0.0704	0.0450	0.700	4	4074	tags=32%, list=21%,
S_SPMS_	19	-0.30284	-0.8724	0.6458	0.733	1	4274	signal=40%
SIS_OF_THE_N_GLYCAN _PRECURSOR_DOLICHO L_LIPID_LINKED_OLIGOS ACCHARIDE_LLO_AND_T RANSEER_TO_A_NASCE								tags=22% list=19%
NT_PROTEIN REACTOME_BMAL1_CLO	77	-0.30964	-1.1758	0.19433	0.284	1	3815	signal=27%
CK_NPAS2_ACTIVATES_ CIRCADIAN_GENE_EXPR ESSION	27	-0.3573	-1.1203	0.29762	0.358		2013	tags=19%, list=10%, signal=21%
REACTOME_BRANCHED_ CHAIN_AMINO_ACID_CAT ABOLISM	21	-0.17582	-0.5181	0.98033	0.994	1	5335	tags=33%, list=26%, signal=45%
REACTOME_BUDDING_A ND_MATURATION_OF_HI V VIRION	28	-0.49905	-1.5615	0.02481	0.035	1	3550	tags=43%, list=18%, signal=52%
REACTOME_BUTYRATE_ RESPONSE_FACTOR_1_B				0				
BILIZES_MRNA REACTOME_C_TYPE_LE	17	-0.54446	-1.524	0.03616	0.044	1	4699	tags=59%, list=23%, signal=77%
CTIN_RECEPTORS_CLRS	140	-0.46198	-1.9103	0	0.002	0.228	3356	tags=30%, list=17%, signal=36% tags=34% list=20%
AY	62	-0.40132	-1.4878	0.02513	0.056	1	4038	signal=42%
ALRETICULIN_CYCLE REACTOME_CARGO_CO_	25	-0.66285	-2.0191	0	0.000	0.05	5873	tags=/2%, list=29%, signal=101%
RCENTRATION_IN_THE_E	33	-0.49389	-1.6155	0.00846	0.024	1	5783	tags=58%, list=29%, signal=80%
OGNITION_FOR_CLATHRI	405	0 45054	4 7005	0	0.005	0.050	4400	tags=38%, list=22%,
REACTOME CARGO TRA	105	-0.45054	-1.7985	0	0.005	0.658	4483	signal=49%
FFICKING_TO_THE_PERI CILIARY_MEMBRANE	51	-0.37614	-1.3431	0.09877	0.128	1	3285	tags=25%, list=16%, signal=30%
REACTOME_CASPASE_A CTIVATION_VIA_DEATH_								
RECEPTORS_IN_THE_PR ESENCE_OF_LIGAND	16	-0.46203	-1.2752	0.1504	0.182	1	4188	tags=44%, list=21%, signal=55%
REACTOME_CASPASE_A CTIVATION_VIA_EXTRINS IC APOPTOTIC SIGNALLI								taos=31%, list=21%,
NG_PATHWAY	26	-0.32434	-1.0041	0.45399	0.533	1	4188	signal=39%
IGN_SIGNALING	21	-0.4176	-1.2325	0.20313	0.221	1	6940	lags=62%, list=34%, signal=94%
REACTOME_CD28_CO_S TIMULATION REACTOME_CD28_DEPE	33	-0.31031	-1.0119	0.4344	0.521	1	4626	tags=39%, list=23%, signal=51%
NDENT_PI3K_AKT_SIGNA LING	22	-0.27711	-0.8198	0.7394	0.810	1	4626	tags=36%, list=23%, signal=47%
REACTOME_CELL_CELL_ COMMUNICATION REACTOME_CELL_CELL_	130	-0.31038	-1.2866	0.07942	0.173	1	3064	tags=23%, list=15%, signal=27%
JUNCTION_ORGANIZATIO	65	-0.26982	-1.0075	0.45103	0.528	1	1586	tags=15%, list=8%, signal=17%
REACTOME_CELL_CYCL E_CHECKPOINTS	258	-0.49176	-2.1813	0	0.000	0.002	4729	tags=43%, list=23%, signal=55%

REACTOME_CELL_CYCL E_MITOTIC	497	-0.46799	-2.1365	0	0.000	0.005	5041	tags=43%, list=25%, signal=56%
REACTOME_CELL_DEAT H_SIGNALLING_VIA_NRA GE_NRIF_AND_NADE	76	-0.33239	-1.2754	0.12278	0.182	1	3760	tags=29%, list=19%, signal=35%
REACTOME_CELL_EXTR ACELLULAR_MATRIX_INT ERACTIONS	18	-0.43658	-1.2318	0.20099	0.222	1	3713	tags=33%, list=18%, signal=41%
REACTOME_CELL_JUNCT ION_ORGANIZATION	92	-0.28159	-1.1011	0.29498	0.385	1	2005	tags=17%, list=10%, signal=19%
REACTOME_CELL_SURF ACE_INTERACTIONS_AT_ THE_VASCULAR_WALL	137	-0.32622	-1.3483	0.04028	0.125	1	4765	tags=32%, list=24%, signal=42%
RESPONSE_TO_HEAT_ST RESS	100	-0.5653	-2.2585	0	0.000	0.002	5086	tags=54%, list=25%, signal=72%
REACTOME_CELLULAR_ RESPONSE_TO_HYPOXIA	75	-0.58676	-2.2235	0	0.000	0.002	3625	tags=43%, list=18%, signal=52%
REACTOME_CELLULAR_ SENESCENCE	130	-0.37869	-1.5649	0.00573	0.034	1	4957	tags=36%, list=24%, signal=48%
REACTOME_CHAPERONE _MEDIATED_AUTOPHAGY REACTOME_CHEMOKINE	22	-0.59627	-1.7871	0.00466	0.005	0.701	4217	tags=59%, list=21%, signal=75%
_RECEPTORS_BIND_CHE MOKINES	58	-0.23782	-0.8749	0.68895	0.730	1	2940	tags=14%, list=15%, signal=16%
REACTOME_CHOLESTER OL_BIOSYNTHESIS	25	-0.57052	-1.7386	0.00613	0.008	0.888	3883	tags=44%, list=19%, signal=54%
REACTOME_CHONDROITI N_SULFATE_DERMATAN_ SULFATE_METABOLISM	50	-0.24821	-0.8729	0.66529	0.733	1	1922	tags=16%, list=9%, signal=18%
REACTOME_CHROMATIN _MODIFYING_ENZYMES	207	-0.44551	-1.927	0	0.001	0.179	5041	tags=43%, list=25%, signal=57%
REACTOME_CHROMOSO ME_MAINTENANCE	92	-0.39111	-1.5338	0.01161	0.042	1	5171	tags=39%, list=26%, signal=52%
REACTOME_CILIUM_ASS EMBLY	199	-0.39805	-1.722	0	0.009	0.923	4283	tags=32%, list=21%, signal=40%
REACTOME_CIRCADIAN_ CLOCK	70	-0.40663	-1.5264	0.01289	0.044	1	5443	tags=46%, list=27%, signal=62%
REACTOME_CITRIC_ACID _CYCLE_TCA_CYCLE_ REACTOME_CLASS_L_MH	22	-0.52701	-1.5786	0.03135	0.031	1	3614	tags=36%, list=18%, signal=44%
C_MEDIATED_ANTIGEN_ PROCESSING_PRESENT ATION	370	-0.44897	-2.0305	0	0.000	0.045	3356	tags=32%, list=17%, signal=38%
REACTOME_CLATHRIN_ MEDIATED_ENDOCYTOSI S	144	-0.47236	-1.9597	0	0.001	0.111	4483	tags=42%, list=22%, signal=53%
REACTOME_CLEC7A_DE CTIN_1_SIGNALING	100	-0.5433	-2.1651	0	0.000	0.002	3554	tags=38%, list=18%, signal=46%
REACTOME_COBALAMIN _CBL_VITAMIN_B12_TRA NSPORT_AND_METABOLI SM	19	-0.35457	-1.0184	0.44704	0.511	1	4233	tags=37%, list=21%, signal=47%
REACTOME_COLLAGEN_ FORMATION	90	-0.22954	-0.9025	0.65461	0.689	1	1752	tags=10%, list=9%, signal=11%
REACTOME_COMMON_P ATHWAY_OF_FIBRIN_CL OT_FORMATION	22	-0.20805	-0.6251	0.93274	0.975	1	4279	tags=23%, list=21%, signal=29%
REACTOME_COMPLEME NT_CASCADE	58	-0.38053	-1.4028	0.05665	0.094	1	6161	tags=50%, list=30%, signal=72%
REACTOME_COMPLEX_I_ BIOGENESIS REACTOME_CONSTITUTI	49	-0.53503	-1.8748	0	0.002	0.335	4646	tags=51%, list=23%, signal=66%
VE SIGNALING BY EGFR								

REACTOME_CONSTITUTI VE_SIGNALING_BY_LIGA ND_RESPONSIVE_EGFR_ CANCER_VARIANTS	19	-0 70973	-2 0575	0	0.000	0.03	4222	tags=68%, list=21%,
REACTOME_CONVERSIO N_FROM_APC_C_CDC20_ TO_APC_C_CDH1_IN_LAT	13	-0.10313	-2.0013	0	0.000	0.03	7222	tags=30%, list=7%,
E_ANAPHASE	20	-0.66094	-1.9149	0.00156	0.001	0.216	1394	signal=32%
REACTOME_COOPERATI ON_OF_PDCL_PHLP1_AN D_TRIC_CCT_IN_G_PROT								tags=40%, list=17%,
EIN_BETA_FOLDING	42	-0.51639	-1.7863	0.00142	0.005	0.703	3496	signal=49%
REACTOME_COOPERATI ON_OF_PREFOLDIN_AND _TRIC_CCT_IN_ACTIN_AN	00	0.00704	4 000 4	0.05454	0.440		4000	tags=36%, list=22%,
	33	-0.33724	-1.0804	0.35451	0.412	1	4380	signal=46%
REACTOME_COPI_DEPE NDENT_GOLGI_TO_ER_R ETROGRADE_TRAFFIC	99	-0.38607	-1.534	0.00862	0.042	1	4169	tags=35%, list=21%, signal=44%
REACTOME_COPI_INDEP ENDENT_GOLGI_TO_ER_ RETROGRADE TRAFFIC	52	-0.45857	-1.635	0.00541	0.020	0.999	4053	tags=38%, list=20%, signal=48%
REACTOME_COPI_MEDIA TED_ANTEROGRADE_TR								tags=40%, list=16%,
ANSPORT REACTOME_COPII_MEDI ATED VESICLE TRANSP	101	-0.52325	-2.0783	0	0.000	0.019	3185	signal=47% tags=37%, list=17%,
ORT REACTOME_COSTIMULA	68	-0.52062	-1.9414	0	0.001	0.15	3413	signal=44%
TION_BY_THE_CD28_FA MILY	67	-0.53716	-2.0143	0	0.000	0.052	4722	tags=49%, list=23%, signal=64%
REACTOME_CRISTAE_FO RMATION	27	-0.66434	-2.0953	0	0.000	0.013	3868	tags=56%, list=19%, signal=69%
REACTOME CROSS PRE								
SENTATION_OF_SOLUBL E_EXOGENOUS_ANTIGE	50	-0.46638	-1 6498	0.00277	0.018	0.994	3554	tags=32%, list=18%,
REACTOME_CROSSLINKI NG_OF_COLLAGEN_FIBRI	50	-0.40000	-1.0430	0.00277	0.010	0.004		tags=11%, list=9%,
	18	-0.25567	-0.7294	0.83333	0.907	1	1752	signal=12%
ITORY_SIGNALING	21	-0.56516	-1.6906	0.0126	0.012	0.973	4722	signal=81%
1_B2_ASSOCIATED_EVE NTS_DURING_G2_M_TRA NSITION	25	-0.52666	-1.6015	0.01385	0.026	1	5101	tags=48%, list=25%, signal=64%
REACTOME_CYCLIN_A_C								
DK2_ASSOCIATED_EVEN TS_AT_S_PHASE_ENTRY	85	-0.5132	-2.0173	0	0.000	0.05	5555	tags=53%, list=27%, signal=73%
SSOCIATED_EVENTS_IN_ G1	47	-0.5349	-1.8676	0.00134	0.002	0.367	4062	tags=49%, list=20%, signal=61%
REACTOME_CYTOCHRO								0
ME_P450_ARRANGED_BY _SUBSTRATE_TYPE	64	-0.23612	-0.8754	0.69419	0.731	1	1184	tags=11%, list=6%, signal=12%
REACTOME_CYTOSOLIC_ SENSORS_OF_PATHOGE N_ASSOCIATED_DNA_	62	-0.4141	-1.5271	0.02937	0.044	1	4188	tags=34%, list=21%, signal=43%
REACTOME_DAP12_INTE RACTIONS	45	-0.23529	-0.8156	0.74826	0.815	1	5399	tags=36%, list=27%, signal=48%
REACTOME_DAP12_SIGN ALING	29	-0.3642	-1.1497	0.28125	0.319	1	5399	tags=48%, list=27%, signal=66%
REACTOME_DARPP_32_E	24	-0.36433	-1 1275	0.27217	0.349	1	4038	tags=38%, list=20%,
REACTOME_DDX58_IFIH1 _MEDIATED_INDUCTION_ OF_INTERFERON_ALPHA	27	0.00400	1.1275	0.27217	0.070	I	+000	tags=42%, list=21%,
_BETA	78	-0.47488	-1.8249	0.00131	0.004	0.549	4278	signal=53%

REACTOME_DEACTIVATI ON_OF_THE_BETA_CATE NIN_TRANSACTIVATING_ COMPLEX	42	-0.3765	-1 2983	0 14794	0 163	1	4989	tags=43%, list=25%, signal=57%
REACTOME_DEADENYLA TION_DEPENDENT_MRN A_DECAY	56	-0.52328	-1.8952	0	0.002	0.276	4790	tags=46%, list=24%, signal=61%
REACTOME_DEADENYLA TION_OF_MRNA	25	-0.50459	-1.5728	0.01502	0.033	1	2576	tags=28%, list=13%, signal=32%
REACTOME_DEATH_REC EPTOR_SIGNALLING	141	-0.36709	-1.5193	0.01061	0.046	1	5299	tags=40%, list=26%, signal=54%
REACTOME_DECTIN_1_M EDIATED_NONCANONICA L_NF_KB_SIGNALING	62	-0.55075	-2.0426	0	0.000	0.037	3178	tags=35%, list=16%, signal=42%
REACTOME_DECTIN_2_F AMILY	26	-0.25649	-0.7827	0.78681	0.855	1	1691	tags=12%, list=8%, signal=13%
REACTOME_DEFECTIVE_ B4GALT7_CAUSES_EDS_ PROGEROID_TYPE	20	-0.30817	-0.8955	0.60938	0.700	1 6	1922	tags=20%, list=9%, signal=22%
REACTOME_DEFECTIVE_ CFTR_CAUSES_CYSTIC_ FIBROSIS	61	-0.60114	-2.2206	0	0.000	0.002	4255	tags=51%, list=21%, signal=64%
REACTOME_DEFECTS_IN _VITAMIN_AND_COFACT OR_METABOLISM	20	-0.40262	-1.1941	0.24057	0.264		4233	tags=35%, list=21%, signal=44%
REACTOME_DEGRADATI ON_OF_AXIN	55	-0.55866	-2.0279	0	0.000	0.046	3178	tags=38%, list=16%, signal=45%
REACTOME_DEGRADATI ON_OF_BETA_CATENIN_ BY_THE_DESTRUCTION_ COMPLEX	84	-0.52808	-2.0691	0	0.000	0.021	4124	tags=43%, list=20%, signal=54%
REACTOME_DEGRADATI ON_OF_DVL	57	-0.55032	-2.0048	0	0.000	0.054	3625	tags=40%, list=18%, signal=49%
REACTOME_DEGRADATI ON_OF_GLI1_BY_THE_PR OTEASOME	60	-0.56071	-2.0559	0	0.000	0.03	3625	tags=42%, list=18%, signal=51%
REACTOME_DEPOLYMER ISATION_OF_THE_NUCLE AR LAMINA	15	-0.27438	-0.738	0.8273	0.901	1	6775	tags=60%, list=33%, signal=90%
REACTOME_DEPOSITION _OF_NEW_CENPA_CONT AINING_NUCLEOSOMES_	00	6	4 0000	0.00005	0.000		0450	tags=54%, list=30%,
REACTOME_DETOXIFICA	28	-0.43359	-1.3966	0.09385	0.096	1	6150	signal=//%
	37	-0.58291	-1.9739	0	0.001	0.086	4111	tags=43%, list=20%, signal=54%
NATION	263	-0.42375	-1.8675	0	0.002	0.367	4658	signal=51%
LY_OF_THE_DESTRUCTI ON_COMPLEX_AND_REC RUITMENT_OF_AXIN_TO_ THE_MEMBRANE	31	-0.39112	-1.2595	0.17034	0.195	1	4545	tags=42%, list=22%, signal=54%
REACTOME_DISEASES_A SSOCIATED_WITH_GLYC OSAMINOGLYCAN_META	11	0 23387	0 7056	0.81003	0.840	1	1022	tags=15%, list=9%,
REACTOME_DISEASES_A SSOCIATED_WITH_GLYC OSYLATION_PRECURSO	-11	-0.2000	-0.7330	0.01035	0.040		1322	tags=56%, list=30%,
R_BIOSYNTHESIS REACTOME_DISEASES_A SSOCIATED_WITH_N_GL YCOSYLATION_OF_PROT	18	-0.49427	-1.3942	0.08903	0.097	1	6107	signal=79% tags=24%, list=19%,
EINS REACTOME DISEASES O	17	-0.346	-0.9474	0.55869	0.620	1	3815	signal=29%
F_CARBOHYDRATE_MET ABOLISM	34	-0.30479	-1.0005	0.45545	0.536	1	5071	tags=35%, list=25%, signal=47%
REACTOME_DISEASES_O F_GLYCOSYLATION	142	-0.1868	-0.7815	0.89252	0.855	1	3104	tags=15%, list=15%, signal=18%

REACTOME_DISEASES_O F_IMMUNE_SYSTEM	24	-0.32845	-1.0012	0.4584	0.536	1	3558	tags=25%, list=18%, signal=30%
REACTOME_DISEASES_O F_METABOLISM	243	-0.21166	-0.9252	0.64074	0.656	1	3870	tags=20%, list=19%, signal=24%
REACTOME_DISEASES_O F_MITOTIC_CELL_CYCLE REACTOME_DISEASES_O	36	-0.52637	-1.7839	0.00147	0.005	0.713	4895	tags=39%, list=24%, signal=51%
F_PROGRAMMED_CELL_ DEATH	24	-0.41105	-1.2543	0.17451	0.200	1	3644	tags=29%, list=18%, signal=36%
REACTOME_DISEASES_O F_SIGNAL_TRANSDUCTI ON_BY_GROWTH_FACTO R_RECEPTORS_AND_SE COND_MESSENGERS	385	-0.40538	-1.8404	0	0.003	0.481	4737	tags=37%, list=23%, signal=48%
REACTOME_DISORDERS _OF_TRANSMEMBRANE_ TRANSPORTERS	175	-0.46598	-1.9761	0	0.001	0.082	4729	tags=42%, list=23%, signal=54%
REACTOME_DNA_DAMAG E_BYPASS REACTOME_DNA_DAMAG	48	-0.56592	-1.9913	0	0.001	0.066	5120	tags=60%, list=25%, signal=81%
E_RECOGNITION_IN_GG_ NER	38	-0.53078	-1.7671	0	0.006	0.789	5097	tags=53%, list=25%, signal=70%
REACTOME_DNA_DAMAG E_TELOMERE_STRESS_I NDUCED_SENESCENCE	28	-0.38359	-1.202	0.21557	0.255	1	6786	tags=54%, list=33%, signal=80%
REACTOME_DNA_DOUBL E_STRAND_BREAK_REPA IR	132	-0.43764	-1.8112	0.00118	0.004	0.592	4940	tags=41%, list=24%, signal=54%
REACTOME_DNA_DOUBL E_STRAND_BREAK_RESP ONSE REACTOME_DNA_REPAI	43	-0.5145	-1.7833	0	0.005	0.716	4710	tags=49%, list=23%, signal=63%
R	284	-0.45044	-1.9815	0	0.001	0.078	5120	signal=58%
REACTOME_DNA_REPLIC ATION	128	-0.47709	-1.9575	0	0.001	0.121	5555	tags=48%, list=27%, signal=65%
REACTOME_DNA_REPLIC ATION_PRE_INITIATION	85	-0.47582	-1.8757	0	0.002	0.332	5555	tags=51%, list=27%, signal=69%
REACTOME_DNA_STRAN D_ELONGATION REACTOME_DOWNREGU	32	-0.3073	-0.9912	0.47669	0.548	1	5538	tags=38%, list=27%, signal=52%
LATION_OF_ERBB2_SIGN ALING	29	-0.39079	-1.2371	0.17262	0.218	1	4626	tags=34%, list=23%, signal=45%
LATION_OF_SMAD2_3_S MAD4_TRANSCRIPTIONA L_ACTIVITY	23	-0.65938	-1.9462	0	0.001	0.14	3244	tags=61%, list=16%, signal=72%
REACTOME_DOWNREGU	26	0.52206	1 6256	0.01080	0.020	0.000	2225	tags=42%, list=16%,
REACTOME_DOWNSTRE AM_SIGNAL_TRANSDUCT	20	-0.55290	-1.0350	0.01089	0.020	0.999	50.40	tags=55%, list=26%,
REACTOME_DOWNSTRE AM_SIGNALING_EVENTS _OF_B_CELL_RECEPTOR	29	-0.46762	-1.4675	0.04208	0.056		5349	tags=52%, list=27%,
BCR REACTOME_DOWNSTRE AM_SIGNALING_OF_ACTI	81	-0.51325	-1.98	0 33101	0.001	0.079	2525	tags=19%, list=12%,
REACTOME_DOWNSTRE AM_SIGNALING_OF_ACTI	30	-0.26864	-0.8506	0.68971	0.360	1	2525	tags=17%, list=12%,
REACTOME_DOWNSTRE AM_SIGNALING_OF_ACTI	25	-0 31497	-0 984	0.48372	0.561	1	5088	tags=36%, list=25%,
REACTOME_DOWNSTRE AM_SIGNALING_OF_ACTI	23	0.04070	0.0070	0.45000	0.540		5000	tags=33%, list=25%,
	21	-0.31873	-0.9972	0.45092	0.001	0.078	2088	signal=44% tags=56%, list=24%,
UN_IN_GG_NER	41	-0.30707	-1.9015	0	0.001	0.078	4900	signal=14%

REACTOME_DUAL_INCISI ON_IN_TC_NER	65	-0.55469	-2.0468	0	0.000	0.035	4960	tags=54%, list=24%, signal=71%	
REACTOME_E2F_MEDIAT ED_REGULATION_OF_DN A_REPLICATION	22	-0.53208	-1.5862	0.01917	0.030	1	5170	tags=59%, list=26%, signal=79%	
REACTOME_E3_UBIQUITI N_LIGASES_UBIQUITINAT E_TARGET_PROTEINS	44	-0.63318	-2.1991	0	0.000	0.002	3951	tags=61%, list=19%, signal=76%	
REACTOME_EGFR_DOW NREGULATION	31	-0.46756	-1.5022	0.04296	0.051	1	4698	tags=45%, list=23%, signal=59%	
REACTOME_EGR2_AND_ SOX10_MEDIATED_INITIA TION_OF_SCHWANN_CEL	29	-0 42068	-1 3235	0 13112	0 142	1	4146	tags=45%, list=20%,	
REACTOME_ELASTIC_FIB	45	0.07075	0.0476	0.52224	0.001		0171	tags=13%, list=11%,	
REACTOME_ENDOGENO	40	-0.27075	-0.9476	0.53324	0.021	\$	2171	tags=27%, list=11%,	
US_STEROLS REACTOME_ENDOSOMA L_SORTING_COMPLEX_R EQUIRED_FOR_TRANSP	26	-0.5489	-1.7201	0.00939	0.010	0.926	2185	signal=30% tags=42%, list=18%,	
ORT_ESCRT_ REACTOME_ENERGY_DE	31	-0.56942	-1.8397	0	0.003	0.483	3550	signal=51%	
OF_MTOR_BY_LKB1_AMP	29	-0.59239	-1.8959	0	0.002	0.276	2613	tags=41%, list=13%, signal=47%	
REACTOME_EPH_EPHRI N_MEDIATED_REPULSIO N_OF_CELLS	51	-0.18899	-0.6762	0.94519	0.949	1	4464	tags=24%, list=22%, signal=30%	
REACTOME_EPH_EPHRI N_SIGNALING	91	-0.39948	-1.5709	0.0051	0.033	1	4495	tags=40%, list=22%, signal=51%	
REACTOME_EPHB_MEDI ATED_FORWARD_SIGNA LING	41	-0.56942	-1.9657	0	0.001	0.099	4495	tags=56%, list=22%, signal=72%	
REACTOME_EPHRIN_SIG NALING	19	-0.36044	-1.0392	0.42857	0.477	1	6826	tags=68%, list=34%, signal=103%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE EVDESSION	19	-0.36044	-1.0392	0.42857	0.477	1	6826	tags=68%, list=34%, signal=103% tags=43%, list=23%,	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME ER QUALITY	19 88	-0.36044 -0.46969	-1.0392 -1.8278	0.42857	0.477	1 0.539	6826 4580	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ED_TO_COL	19 88 20	-0.36044 -0.46969 -0.66579	-1.0392 -1.8278 -1.9353	0.42857	0.477	1 0.539 0.161	6826 4580 5162	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT	19 88 20 154	-0.36044 -0.46969 -0.66579 -0.4974	-1.0392 -1.8278 -1.9353 -2.0842	0.42857	0.477 0.004 0.001 0.000	1 0.539 0.161 0.018	6826 4580 5162 3413	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TWELV_REGULATE_RRN	19 88 20 154	-0.36044 -0.46969 -0.66579 -0.4974	-1.0392 -1.8278 -1.9353 -2.0842	0.42857	0.477 0.004 0.001 0.000	1 0.539 0.161 0.018	6826 4580 5162 3413	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQ_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TIVELY_REGULATE_RRN A_EXPRESSION	19 88 20 154 16	-0.36044 -0.46969 -0.66579 -0.4974 -0.42057	-1.0392 -1.8278 -1.9353 -2.0842 -1.1794	0.42857 0 0 0 0 0 0 0.25402	0.477 0.004 0.001 0.000 0.281	1 0.539 0.161 0.018 1	6826 4580 5162 3413 6646	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44% tags=56%, list=33%, signal=84%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TIVELY_REGULATE_RRN A_EXPRESSION REACTOME_ERK_MAPK_ TARGETS	19 88 20 154 16 22	-0.36044 -0.46969 -0.66579 -0.4974 -0.42057 -0.58206	-1.0392 -1.8278 -1.9353 -2.0842 -1.1794 -1.7316	0.42857 0 0 0 0 0.25402 0.0077	0.477 0.004 0.001 0.000 0.281 0.009	1 0.539 0.161 0.018 1 0.903	6826 4580 5162 3413 6646 4362	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44% tags=56%, list=33%, signal=84% tags=50%, list=22%, signal=64%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TIVELY_REGULATE_RRN A_EXPRESSION REACTOME_ERK_MAPK_ TARGETS REACTOME_ESR_MEDIA TED_SIGNALING	19 88 20 154 16 22 161	-0.36044 -0.46969 -0.66579 -0.4974 -0.42057 -0.58206 -0.46945	-1.0392 -1.8278 -1.9353 -2.0842 -1.1794 -1.7316 -1.9772	0.42857 0 0 0 0 0 0.25402 0.0077 0	0.477 0.004 0.001 0.000 0.281 0.009 0.001	1 0.539 0.161 0.018 1 0.903 0.08	6826 4580 5162 3413 6646 4362 5137	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44% tags=56%, list=33%, signal=84% tags=50%, list=22%, signal=64%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TIVELY_REGULATE_RRN A_EXPRESSION REACTOME_ERK_MAPK_ TARGETS REACTOME_ESR_MEDIA TED_SIGNALING REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION	19 88 20 154 16 22 161 90	-0.36044 -0.46969 -0.66579 -0.4974 -0.42057 -0.58206 -0.46945 -0.53851	-1.0392 -1.8278 -1.9353 -2.0842 -1.1794 -1.7316 -1.9772 -2.1174	0.42857 0 0 0 0 0 0.25402 0.0077 0	0.477 0.004 0.001 0.000 0.281 0.009 0.001 0.000	1 0.539 0.161 0.018 1 0.903 0.08 0.007	6826 4580 5162 3413 6646 4362 5137 3858	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44% tags=56%, list=33%, signal=84% tags=45%, list=22%, signal=64% tags=43%, list=25%, signal=64%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TIVELY_REGULATE_RRN A_EXPRESSION REACTOME_ERK_MAPK_ TARGETS REACTOME_ESR_MEDIA TED_SIGNALING REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_NUCLEAR_ EVENTS_DOWNSTREAM_ OF_ESR_MEMBRANE_SI	19 88 20 154 16 22 161 90	-0.36044 -0.46969 -0.66579 -0.4974 -0.42057 -0.58206 -0.46945 -0.53851	-1.0392 -1.8278 -1.9353 -2.0842 -1.1794 -1.7316 -1.9772 -2.1174	0.42857 0 0 0 0 0 0 0.25402 0.0077 0 0	0.477 0.004 0.001 0.000 0.281 0.009 0.001 0.000	1 0.539 0.161 0.018 1 0.903 0.08 0.007	6826 4580 5162 3413 6646 4362 5137 3858	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44% tags=56%, list=33%, signal=84% tags=50%, list=22%, signal=64% tags=48%, list=25%, signal=64% tags=43%, list=19%, signal=53%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TIVELY_REGULATE_RRN A_EXPRESSION REACTOME_ERK_MAPK_ TARGETS REACTOME_ERK_MAPK_ TARGETS REACTOME_ESR_MEDIA TED_SIGNALING REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_NUCLEAR_ EVENTS_DOWNSTREAM_ OF_ESR_MEMBRANE_SI GNALING REACTOME_EUKARYOTI C_TRANSI ATION_ELONG	19 88 20 154 16 22 161 90 24	-0.36044 -0.46969 -0.66579 -0.4974 -0.42057 -0.58206 -0.46945 -0.53851 -0.53851	-1.0392 -1.8278 -1.9353 -2.0842 -1.1794 -1.7316 -1.9772 -2.1174 -0.6227	0.42857 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.477 0.004 0.001 0.000 0.281 0.009 0.001 0.000 0.000	1 0.539 0.161 0.018 1 0.903 0.08 0.007	6826 4580 5162 3413 6646 4362 5137 3858 4643	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44% tags=56%, list=33%, signal=64% tags=48%, list=22%, signal=64% tags=48%, list=25%, signal=64% tags=43%, list=19%, signal=53% tags=29%, list=23%, signal=38%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TIVELY_REGULATE_RRN A_EXPRESSION REACTOME_ERK_MAPK_ TARGETS REACTOME_ERK_MAPK_ TARGETS REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_NUCLEAR_ EVENTS_DOWNSTREAM_ OF_ESR_MEMBRANE_SI GNALING REACTOME_EUKARYOTI C_TRANSLATION_ELONG ATION REACTOME_EUKARYOTI	19 88 20 154 16 22 161 90 24 24 94	-0.36044 -0.46969 -0.66579 -0.4974 -0.42057 -0.58206 -0.46945 -0.53851 -0.53851 -0.20344 -0.20344	-1.0392 -1.8278 -1.9353 -2.0842 -1.1794 -1.7316 -1.9772 -2.1174 -0.6227 -2.6288	0.42857 0 0 0 0 0.25402 0.0077 0 0 0 0 0 0 0 0 0 0 0 0 0	0.477 0.004 0.001 0.000 0.281 0.009 0.001 0.000 0.974 0.000	1 0.539 0.161 0.018 1 0.903 0.08 0.007 1 1 0	6826 4580 5162 3413 6646 4362 5137 3858 4643 4643	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44% tags=56%, list=33%, signal=64% tags=48%, list=22%, signal=64% tags=43%, list=25%, signal=64% tags=43%, list=19%, signal=53% tags=29%, list=23%, signal=38% tags=73%, list=24%, signal=96%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TIVELY_REGULATE_RRN A_EXPRESSION REACTOME_ERK_MAPK_ TARGETS REACTOME_ERK_MAPK_ TARGETS REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_NUCLEAR_ EVENTS_DOWNSTREAM_ OF_ESR_MEMBRANE_SI GNALING REACTOME_EUKARYOTI C_TRANSLATION_ELONG ATION REACTOME_EUKARYOTI C_TRANSLATION_INITIATI ON	19 88 20 154 16 22 161 90 24 94 120	-0.36044 -0.46969 -0.66579 -0.4974 -0.42057 -0.58206 -0.46945 -0.53851 -0.53851 -0.20344 -0.66761 -0.64501	-1.0392 -1.8278 -1.9353 -2.0842 -1.1794 -1.7316 -1.9772 -2.1174 -0.6227 -2.6288 -2.6051	0.42857 0 0 0 0 0 0 0 0 0 0 0 0 0	0.477 0.004 0.001 0.000 0.281 0.009 0.001 0.000 0.974 0.000 0.000	1 0.539 0.161 0.018 1 0.903 0.08 0.007 1 1 0 0	6826 4580 5162 3413 6646 4362 5137 3858 4643 4643 4780	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44% tags=56%, list=33%, signal=64% tags=48%, list=22%, signal=64% tags=43%, list=25%, signal=64% tags=43%, list=19%, signal=53% tags=29%, list=23%, signal=38% tags=73%, list=24%, signal=96% tags=72%, list=24%, signal=93%	
REACTOME_EPHRIN_SIG NALING REACTOME_EPIGENETIC _REGULATION_OF_GENE _EXPRESSION REACTOME_ER_QUALITY _CONTROL_COMPARTME NT_ERQC_ REACTOME_ER_TO_GOL GI_ANTEROGRADE_TRA NSPORT REACTOME_ERCC6_CSB _AND_EHMT2_G9A_POSI TIVELY_REGULATE_RRN A_EXPRESSION REACTOME_ERK_MAPK_ TARGETS REACTOME_ERK_MAPK_ TARGETS REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_ESTROGEN_ DEPENDENT_GENE_EXP RESSION REACTOME_EUKARYOTI C_TRANSLATION_ELONG ATION REACTOME_EUKARYOTI C_TRANSLATION_INITIATI ON REACTOME_EXPORT_OF _VIRAL_RIBONUCLEOPR OTEINS_FROM_NUCLEUS	19 88 20 154 16 22 161 90 24 94 120 32	-0.36044 -0.46969 -0.66579 -0.4974 -0.42057 -0.58206 -0.46945 -0.53851 -0.53851 -0.20344 -0.66761 -0.64501	-1.0392 -1.8278 -1.9353 -2.0842 -1.1794 -1.7316 -1.9772 -2.1174 -0.6227 -2.6288 -2.6051 -2.2246	0.42857 0 0 0 0 0 0 0 0 0 0 0 0 0	0.477 0.004 0.001 0.000 0.281 0.009 0.001 0.000 0.974 0.000 0.000	1 0.539 0.161 0.018 1 0.903 0.08 0.007 1 1 0 0 0	6826 4580 5162 3413 6646 4362 5137 3858 4643 4780 4795	tags=68%, list=34%, signal=103% tags=43%, list=23%, signal=56% tags=65%, list=25%, signal=87% tags=37%, list=17%, signal=44% tags=56%, list=33%, signal=64% tags=48%, list=22%, signal=64% tags=43%, list=25%, signal=64% tags=43%, list=19%, signal=53% tags=73%, list=24%, signal=96% tags=72%, list=24%, signal=93%	

REACTOME_EXTENSION_ OF_TELOMERES	51	-0.34009	-1.2255	0.16938	0.228	1	5171	tags=35%, list=26%, signal=47%
REACTOME_EXTRA_NUC LEAR_ESTROGEN_SIGNA LING	75	-0.36328	-1.3827	0.04193	0.103	1	5137	tags=43%, list=25%, signal=57%
REACTOME_EXTRACELL ULAR_MATRIX_ORGANIZ ATION	301	-0.17234	-0.7674	0.95156	0.870	1	2732	tags=12%, list=13%, signal=14%
REACTOME_FACTORS_IN VOLVED_IN_MEGAKARY OCYTE_DEVELOPMENT_								
AND_PLATELET_PRODUC TION	154	-0.30916	-1.2989	0.06139	0.162	1	4026	tags=29%, list=20%, signal=36%
REACTOME_FANCONI_A NEMIA_PATHWAY	39	-0.37534	-1.2651	0.13924	0.191	1	5444	tags=38%, list=27%, signal=52%
REACTOME_FATTY_ACID _METABOLISM	175	-0.3299	-1.3965	0.01732	0.096	1	4294	tags=31%, list=21%, signal=40%
REACTOME_FATTY_ACYL _COA_BIOSYNTHESIS	36	-0.41608	-1.3904	0.07937	0.099	1	4125	tags=39%, list=20%, signal=49%
REACTOME_FC_EPSILON _RECEPTOR_FCERI_SIG NALING	131	-0.49629	-2.047	0	0.000	0.035	4222	tags=40%, list=21%, signal=51%
REACTOME_FCERI_MEDI ATED_CA_2_MOBILIZATI ON	31	-0 43878	-1 4066	0 08423	0 092		4764	tags=48%, list=24%, signal=63%
REACTOME_FCERI_MEDI ATED_MAPK_ACTIVATIO	20	0.44000	4.4500	0.04000	0.007		5055	tags=53%, list=28%,
N REACTOME_FCERI_MEDI ATED_NF_KB_ACTIVATIO	32	-0.44692	-1.4586	0.04209	0.067	1	5655	tags=42%, list=18%,
	81	-0.58469	-2.2391	0	0.000	0.002	3554	signal=51%
RECEPTOR_FCGR_DEPE NDENT_PHAGOCYTOSIS	85	-0.47964	-1.8787	0	0.002	0.323	4495	tags=45%, list=22%, signal=57%
REACTOME_FCGR3A_ME DIATED_IL10_SYNTHESIS REACTOME_FGFR1_MUT	38	-0.24374	-0.8062	0.75444	0.826	1	3662	tags=21%, list=18%, signal=26%
ANT_RECEPTOR_ACTIVA TION	30	-0.52238	-1.6553	0.00913	0.017	0.992	3032	tags=33%, list=15%, signal=39%
REACTOME_FGFR2_ALTE RNATIVE_SPLICING	27	-0.58768	-1.8684	0	0.002	0.366	5293	tags=63%, list=26%, signal=85%
ANT_RECEPTOR_ACTIVA	33	-0.24147	-0.7857	0.80535	0.852	1	4412	tags=27%, list=22%, signal=35%
REACTOME_FLT3_SIGNA LING	292	-0.33132	-1.4731	0.00107	0.062	1	4238	tags=29%, list=21%, signal=36%
REACTOME_FORMATION _OF_ATP_BY_CHEMIOSM OTIC_COLIPLING	16	-0 71335	-1 9964	0	0.001	0.061	3476	tags=56%, list=17%, signal=68%
REACTOME_FORMATION		0.1.1000		C C	0.001		0110	
_OF_FIBRIN_CLOT_CLOT TING_CASCADE_	39	-0.2092	-0.7136	0.88099	0.924	1	4312	tags=28%, list=21%, signal=36%
REACTOME_FORMATION _OF_INCISION_COMPLEX _IN_GG_NER	43	-0.6594	-2.3036	0	0.000	0.001	3625	tags=60%, list=18%, signal=73%
REACTOME_FORMATION _OF_RNA_POL_II_ELONG ATION_COMPLEX_	58	-0.6352	-2.2741	0	0.000	0.002	4571	tags=57%, list=23%, signal=73%
REACTOME_FORMATION _OF_TC_NER_PRE_INCIS	53	0 57055	2 0806	0	0.000	0.018	5206	tags=60%, list=26%,
REACTOME_FORMATION _OF_THE_BETA_CATENI N_TCF_TRANSACTIVATIN	55	-0.37933	-2.0000	0	0.000	0.018	3290	tags=26%, list=15%,
	31	-0.37312	-1.1834	0.2311	0.276	1	3090	signal=30%
_OF_THE_EARLY_ELONG ATION_COMPLEX	33	-0.62119	-2.0582	0	0.000	0.029	4571	tags=58%, list=23%, signal=74%
REACTOME_FORMATION _OF_TUBULIN_FOLDING_ INTERMEDIATES_BY_CC T_TRIC	26	-0.30484	-0.9389	0.56203	0.632	1	4380	tags=35%, list=22%, signal=44%

REACTOME_FOXO_MEDI ATED_TRANSCRIPTION	66	-0.3256	-1.2045	0.16422	0.252	1	5199	tags=41%, list=26%, signal=55%
REACTOME_FOXO_MEDI ATED_TRANSCRIPTION_ OF CELL CYCLE GENES	17	-0.21039	-0.586	0.96135	0.983	1	5199	tags=35%, list=26%, signal=47%
REACTOME_FOXO_MEDI ATED_TRANSCRIPTION_	16	0 44683	1 2282	0 20712	0.225	1	4121	tags=38%, list=20%,
REACTOME_FRS_MEDIAT	22	-0.15584	-0.4584	1	0.225	1	2020	tags=9%, list=10%,
REACTOME_G_ALPHA_12 _13_SIGNALLING_EVENT	20	0.26502	1 0021	0 49724	0.535	1	2516	tags=24%, list=17%,
REACTOME_G_ALPHA_Z_ SIGNALLING_EVENTS	48	-0.20505	-1 2342	0.46721	0.555	1	2728	tags=25%, list=13%, signal=29%
REACTOME_G_BETA_GA MMA_SIGNALLING_THRO					0.220			tags=35%, list=12%,
UGH_CDC42 REACTOME G BETA GA	20	-0.47573	-1.4061	0.07583	0.092	1	2462	signal=40%
MMA_SIGNALLING_THRO UGH_PI3KGAMMA	25	-0.42245	-1.29	0.14832	0.170	1	5834	tags=56%, list=29%, signal=79%
REACTOME_G_PROTEIN_ ACTIVATION REACTOME_G_PROTEIN_	28	-0.44602	-1.4281	0.05689	0.081	1	2462	tags=29%, list=12%, signal=32%
BETA_GAMMA_SIGNALLI NG	32	-0.42563	-1.384	0.06942	0.102	1	4983	tags=44%, list=25%, signal=58%
REACTOME_G_PROTEIN_ MEDIATED_EVENTS	54	-0.23006	-0.8262	0.75653	0.803	1	2496	tags=15%, list=12%, signal=17%
REACTOME_G0_AND_EA RLY_G1	27	-0.49242	-1.5309	0.03835	0.043	1	4890	tags=44%, list=24%, signal=58%
REACTOME_G1_S_DNA_ DAMAGE_CHECKPOINTS	68	-0.53464	-2.0061	0	0.000	0.054	4124	tags=41%, list=20%, signal=52%
REACTOME_G1_S_SPECI FIC_TRANSCRIPTION	29	-0.35919	-1.1179	0.30588	0.360	1	6272	tags=55%, list=31%, signal=80%
REACTOME_G2_M_CHEC KPOINTS	134	-0.51576	-2.1254	0	0.000	0.005	4599	tags=45%, list=23%, signal=58%
REACTOME_G2_M_DNA_ DAMAGE_CHECKPOINT	61	-0.53212	-1.9602	0	0.001	0.109	4710	tags=48%, list=23%, signal=62%
REACTOME_GAB1_SIGNA LOSOME	17	-0.49614	-1.3897	0.10769	0.099	1	4722	tags=47%, list=23%, signal=61%
REACTOME_GABA_B_RE CEPTOR_ACTIVATION	43	-0.33603	-1.1793	0.22283	0.281	1	2462	tags=23%, list=12%, signal=26%
REACTOME_GABA_RECE PTOR_ACTIVATION	60	-0.27347	-1.0029	0.44583	0.534	1	2645	tags=20%, list=13%, signal=23%
REACTOME_GABA_SYNT HESIS_RELEASE_REUPT AKE_AND_DEGRADATION	19	-0.24169	-0.6881	0.87616	0.944	1	4788	tags=32%, list=24%, signal=41%
REACTOME_GAP_FILLIN G_DNA_REPAIR_SYNTHE SIS_AND_LIGATION_IN_G G_NER	25	-0 60345	-1 8559	0 00301	0.003	0.416	3276	tags=44%, list=16%, signal=52%
REACTOME_GASTRIN_C REB_SIGNALLING_PATH WAY_VIA_PKC_AND_MAP	20	0.00010	1.0000	0.00001	0.000		0210	tags=39%, list=25%,
K REACTOME_GENE_AND_ PROTEIN_EXPRESSION_ BY_JAK_STAT_SIGNALIN	18	-0.36852	-1.0177	0.42857	0.511	1	5088	signal=52%
G_AFTER_INTERLEUKIN_ 12_STIMULATION	38	-0.47954	-1.6496	0.01262	0.018	0.994	5655	tags=58%, list=28%, signal=80%
REACTOME_GENE_SILEN CING_BY_RNA	77	-0.53677	-2.0831	0	0.000	0.018	4102	tags=43%, list=20%, signal=54%
REACTOME_GENERATIO N_OF_SECOND_MESSEN GER_MOLECULES	32	-0.63967	-2.0821	0	0.000	0.018	4437	tags=50%, list=22%, signal=64%
REACTOME_GLOBAL_GE NOME_NUCLEOTIDE_EX CISION_REPAIR_GG_NER	84	-0 5706	-2 2312	0	0.000	0.002	3625	tags=45%, list=18%, signal=55%
-	04	-0.5706	-2.2312	U	0.000	0.002	3020	รเy⊓a≔วว%

REACTOME_GLUCAGON_ LIKE_PEPTIDE_1_GLP1_R EGULATES_INSULIN_SEC RETION	42	-0.42838	-1.4764	0.04848	0.060	1	2496	tags=29%, list=12%, signal=33%
REACTOME_GLUCAGON_ SIGNALING_IN_METABOL IC_REGULATION	33	-0.31596	-1.0222	0.43091	0.505	1	2496	tags=24%, list=12%, signal=28%
REACTOME_GLUCAGON_ TYPE_LIGAND_RECEPTO RS	33	-0.27629	-0.9057	0.61007	0.685	1	2462	tags=21%, list=12%, signal=24%
REACTOME_GLUCOSE_M ETABOLISM	91	-0.39437	-1.5463	0.01623	0.039	1	4102	tags=32%, list=20%, signal=40%
REACTOME_GLUCURONI DATION	25	-0.67741	-2.0878	0	0.000	0.016	5076	tags=72%, list=25%, signal=96%
OSPHOLIPID_BIOSYNTHE SIS	123	-0.30645	-1.2627	0.10291	0.193	1	5637	tags=37%, list=28%, signal=51%
REACTOME_GLYCOGEN_ METABOLISM	27	-0.39306	-1.2332	0.18667	0.221	1	3113	tags=33%, list=15%, signal=39%
REACTOME_GLYCOGEN_ STORAGE_DISEASES	16	-0.52868	-1.4594	0.0736	0.067	1	3113	tags=38%, list=15%, signal=44%
REACTOME_GLYCOGEN_ SYNTHESIS	16	-0.62601	-1.7117	0.0114	0.010	0.945	3113	tags=50%, list=15%, signal=59%
REACTOME_GLYCOLYSIS	71	-0.48385	-1.8138	0	0.004	0.58	4102	signal=49%
REACTOME_GLYCOSPHI NGOLIPID_METABOLISM	44	-0.44444	-1.5331	0.02361	0.042	1	4479	tags=36%, list=22%, signal=47%
REACTOME_GLYOXYLAT E_METABOLISM_AND_GL YCINE_DEGRADATION	31	-0.22551	-0.7359	0.84179	0.901	1	5207	tags=35%, list=26%, signal=48%
REACTOME_GOLGI_ASS OCIATED_VESICLE_BIOG ENESIS	56	-0.54197	-1.9475	0	0.001	0.136	3854	tags=54%, list=19%, signal=66%
REACTOME_GOLGI_TO_E R_RETROGRADE_TRANS PORT	133	-0.44666	-1.8327	0	0.003	0.519	4169	tags=39%, list=21%, signal=49%
REACTOME_GPVI_MEDIA TED_ACTIVATION_CASCA DE	35	-0.41655	-1.3603	0.09207	0.117	1	4722	tags=43%, list=23%, signal=56%
REACTOME_GRB2_SOS_ PROVIDES_LINKAGE_TO_ MAPK_SIGNALING_FOR_I		K						tags=67%, list=21%,
NTEGRINS_ REACTOME_GROWTH_H ORMONE_RECEPTOR_SI	15	-0.58317	-1.5479	0.02908	0.038	1	4185	signal=84% tags=33%, list=12%,
GNALING	24	-0.52406	-1.6217	0.0162	0.023	1	2483	signal=38%
YLATE_HISTONES	80	-0.52072	-2.0139	0	0.000	0.052	6243	signal=83%
Y_EVENTS REACTOME_HCMV_INFE	74	-0.52968	-2.013	0	0.000	0.053	4102	tags=43%, iist=20%, signal=54% tags=40%, list=20%,
CTION REACTOME HCMV LATE	98	-0.4946	-1.9328	0	0.001	0.168	4102	signal=50%
_EVENTS	53	-0.56424	-2.0425	0	0.000	0.037	4102	signal=57%
REACTOME_HDACS_DEA CETYLATE_HISTONES	32	-0.43371	-1.412	0.06637	0.089	1	4165	tags=41%, list=21%, signal=51%
REACTOME_HDMS_DEM ETHYLATE_HISTONES	23	-0.25573	-0.7577	0.79613	0.881	1	5041	tags=35%, list=25%, signal=46%
REACTOME_HDR_THROU GH_HOMOLOGOUS_REC OMBINATION_HRR_	67	-0.49113	-1.8425	0	0.003	0.471	4525	tags=42%, list=22%, signal=54%
REACTOME_HDR_THROU GH_SINGLE_STRAND_AN NEALING_SSA_	37	-0.47592	-1.5791	0.00971	0.031	1	4525	tags=41%, list=22%, signal=52%
REACTOME_HEDGEHOG _LIGAND_BIOGENESIS	65	-0.54181	-2.0283	0	0.000	0.045	3178	tags=38%, list=16%, signal=45%
REACTOME_HEDGEHOG _OFF_STATE	113	-0.42278	-1.7001	0	0.012	0.958	4217	tags=35%, list=21%, signal=43%
REACTOME_HEDGEHOG _ON_STATE	86	-0.4704	-1.845	0	0.003	0.459	3625	tags=35%, list=18%, signal=42%

REACTOME_HIV_ELONG								tage-61% list-22%
	33	-0.68017	-2.2301	0	0.000	0.002	4452	signal=78%
ON	230	-0.53769	-2.3351	0	0.000	0	4176	signal=53%
REACTOME_HIV_LIFE_CY CLE	148	-0.5596	-2.3466	0	0.000	0	4729	tags=49%, list=23%, signal=63%
REACTOME_HIV_TRANSC RIPTION_ELONGATION	43	-0.61874	-2.155	0	0.000	0.003	4571	tags=56%, list=23%, signal=72%
REACTOME_HIV_TRANSC RIPTION_INITIATION	47	-0.55472	-1.9439	0	0.001	0.147	5640	tags=57%, list=28%, signal=79%
REACTOME_HOMOLOGO US_DNA_PAIRING_AND_ STRAND_EXCHANGE	42	-0.42867	-1.4486	0.04762	0.072	1	4871	tags=40%, list=24%, signal=53%
REACTOME_HOMOLOGY	104	0 48527	1 0402	0	0.001	0 152	4525	tags=41%, list=22%,
REACTOME_HOST_INTER ACTIONS_OF_HIV_FACTO	130	-0.57664	-2.3655	0	0.000	0.132	4323	tags=45%, list=20%, signal=56%
REACTOME_HS_GAG_BI	31	-0 32311	-1 0459	0 40262	0.467	1	1922	tags=19%, list=9%, signal=21%
REACTOME_HS_GAG_DE	22	-0 27377	-0.8204	0.71293	0.810		1922	tags=18%, list=9%, signal=20%
REACTOME_HSF1_ACTIV	31	-0 55945	-1 7966	0	0.005	0.672	5241	tags=48%, list=26%, signal=65%
REACTOME_HSF1_DEPE NDENT_TRANSACTIVATI	29	0.30562	1 2280	0 1092	0.130	1	52/1	tags=39%, list=26%,
REACTOME_HSP90_CHA	50	-0.39302	-1.3209	0.1092	0.139	1	5241	signal=33 /6
TEROID_HORMONE_REC EPTORS_SHR_	56	-0.45532	-1.6423	0.00683	0.019	0.997	3942	tags=36%, list=19%, signal=44%
REACTOME_HYALURONA N_METABOLISM	17	-0.24133	-0.6743	0.8955	0.949	1	137	tags=6%, list=1%, signal=6%
REACTOME_IKK_COMPL EX_RECRUITMENT_MEDI ATED BY RIP1	23	-0.65744	-1.9736	0	0.001	0.086	3356	tags=61%, list=17%, signal=73%
REACTOME_IMMUNOREG			20					
S_BETWEEN_A_LYMPHOI D_AND_A_NON_LYMPHOI	101						1005	tags=9%, list=6%,
D_CELL	131	-0.26117	-1.0849	0.31535	0.405	1	1205	signal=10%
REACTOME_INCRETIN_S YNTHESIS_SECRETION_ AND_INACTIVATION	23	-0.27203	-0.8167	0.73016	0.814	1	3353	tags=26%, list=17%, signal=31%
REACTOME INFECTION		J						
WITH_MYCOBACTERIUM_ TUBERCULOSIS	27	-0.64784	-2.0577	0	0.000	0.03	3113	tags=37%, list=15%, signal=44%
REACTOME_INFLAMMAS	20	0 40400	4 0507	0 45704	0.204	4	5001	tags=50%, list=29%,
REACTOME_INFLUENZA_	20	-0.42420	-1.2307	0.15704	0.204	1	5901	tags=69%, list=24%,
INFECTION	156	-0.65766	-2.7805	0	0.000	0	4780	signal=89%
REACTOME_INHIBITION_ OF_DNA_RECOMBINATIO N AT TELOMERE	20	-0.55508	-1.6013	0.016	0.026	1	5085	tags=50%, list=25%, signal=67%
REACTOME_INHIBITION_ OF_THE_PROTEOLYTIC_ ACTIVITY_OF_APC_C_RE QUIRED_FOR_THE_ONSE T_OF_ANAPHASE_BY_MI								toga 200/ ligh 400/
OINT_COMPONENTS	21	-0.64062	-1.9147	0.0015	0.001	0.218	3264	signal=45%
GERING_OF_COMPLEME	23	-0.33453	-1.0118	0.46154	0.521	1	4639	tags=35%, list=23%, signal=45%
								- <u>-</u> / •
OF_NUCLEAR_ENVELOP E_NE_REFORMATION	19	-0.46475	-1.3446	0.12837	0.127	1	4264	tags=42%, list=21%, signal=53%
REACTOME_INLB_MEDIA TED_ENTRY_OF_LISTERI								
A_MONOCYTOGENES_IN TO HOST CELL	15	-0.64856	-1.7477	0.00503	0.008	0.863	4363	tags=67%, list=22%, signal=85%

REACTOME_INOSITOL_P HOSPHATE_METABOLIS M	48	-0.25503	-0.9058	0.62674	0.686	1	2595	tags=15%, list=13%, signal=17%
REACTOME_INSERTION_ OF_TAIL_ANCHORED_PR OTEINS_INTO_THE_END OPLASMIC_RETICULUM_			4 0000					tags=55%, list=30%,
REACTOME_INSULIN_PR	20	-0.35358	-1.0363	0.42974	0.481	1	6080	signal=78% tags=41%, list=25%,
OCESSING REACTOME_INSULIN_RE	27	-0.40324	-1.267	0.16962	0.189	1	5107	signal=54% tags=42%, list=16%,
CEPTOR_RECYCLING REACTOME_INTEGRATIO	26	-0.49845	-1.5324	0.025	0.042	1	3218	signal=50%
	108	-0.35121	-1.4302	0.03342	0.080	1	3742	signal=35%
REACTOME_INTEGRIN_SI GNALING	27	-0.47584	-1.5075	0.04812	0.049	1	4626	tags=48%, list=23%, signal=62%
REACTOME_INTERACTIO NS_OF_REV_WITH_HOST _CELLULAR_PROTEINS	36	-0.6608	-2.222	0	0.000	0.002	4729	tags=61%, list=23%, signal=80%
REACTOME_INTERACTIO NS_OF_VPR_WITH_HOST	36	-0 65491	-2 1963	0	0.000	0.002	4720	tags=58%, list=23%,
REACTOME_INTERCONV ERSION_OF_NUCLEOTID	50	-0.00+31	-2.1905	0	0.000	0.002	4723	
E_DI_AND_TRIPHOSPHAT ES PEACTOME_INTEREERO	29	-0.47525	-1.5273	0.03303	0.044	1	4098	tags=41%, list=20%, signal=52%
N_ALPHA_BETA_SIGNALI NG	70	-0.47171	-1.8024	0	0.004	0.64	4370	tags=39%, list=22%, signal=49%
REACTOME_INTERFERO N_GAMMA_SIGNALING	90	-0.54077	-2.1611	0	0.000	0.002	3990	tags=43%, list=20%, signal=54%
REACTOME_INTERFERO N_SIGNALING	198	-0.54223	-2.3278	0	0.000	0.001	4388	tags=45%, list=22%, signal=57%
REACTOME_INTERLEUKI N_1_FAMILY_SIGNALING	139	-0.4334	-1.7928	0	0.005	0.685	3748	tags=32%, list=18%, signal=39%
REACTOME_INTERLEUKI N_1_SIGNALING	102	-0.46617	-1.8466	0	0.003	0.456	4360	tags=37%, list=22%, signal=47%
REACTOME_INTERLEUKI N_10_SIGNALING	46	-0.3596	-1.267	0.13807	0.190	1	2940	tags=24%, list=15%, signal=28%
REACTOME_INTERLEUKI N_12_FAMILY_SIGNALING	57	-0.47805	-1.7198	0.00136	0.010	0.927	3686	tags=39%, list=18%, signal=47%
REACTOME_INTERLEUKI N_12_SIGNALING	47	-0.42944	-1.5074	0.02408	0.049	1	5655	tags=53%, list=28%, signal=74%
REACTOME_INTERLEUKI N_17_SIGNALING	71	-0.52604	-1.9884	0	0.001	0.07	3356	tags=38%, list=17%, signal=45%
REACTOME_INTERLEUKI N_2_FAMILY_SIGNALING	44	-0.39732	-1.3561	0.0765	0.120	1	4800	tags=41%, list=24%, signal=53%
REACTOME_INTERLEUKI N_3_INTERLEUKIN_5_AN D_GM_CSF_SIGNALING	48	-0.4962	-1.7392	0.00139	0.008	0.886	4800	tags=50%, list=24%, signal=65%
REACTOME_INTERLEUKI N_37_SIGNALING	21	-0.47407	-1.426	0.07098	0.081	1	3354	tags=38%, list=17%, signal=46%
REACTOME_INTERLEUKI N_4_AND_INTERLEUKIN_ 13_SIGNALING	108	-0.3306	-1.3279	0.06197	0.139	1	4773	tags=28%, list=24%, signal=36%
REACTOME_INTERLEUKI	24	-0.34541	-1.0437	0.41654	0.470	1	2751	tags=21%, list=14%, signal=24%
	23	-0.43102	-1 301	0 12894	0 161	1	4796	tags=43%, list=24%,
REACTOME_INTERLEUKI N_RECEPTOR_SHC_SIGN	20	0.40102	1.001	0.12004	0.101		4750	tags=48%, list=24%,
ALING	27	-0.42459	-1.3169	0.13077	0.147	1	4800	signal=63%
GI_AND_RETROGRADE_ GOLGI_TO_ER_TRAFFIC	202	-0.45606	-1.9643	0	0.001	0.102	4053	tags=36%, list=20%, signal=45%
REACTOME_INTRA_GOL GI_TRAFFIC	44	-0.58286	-2.0272	0	0.000	0.046	2925	tags=39%, list=14%, signal=45%

REACTOME_INTRACELLU LAR_SIGNALING_BY_SEC OND MESSENGERS	304	-0.29955	-1.3451	0.01197	0.127	1	5586	tags=37%, list=28%, signal=50%
_ REACTOME_INTRAFLAGE LLAR_TRANSPORT	54	-0.44542	-1.5855	0.0082	0.030	1	4235	tags=39%, list=21%, signal=49%
REACTOME_INTRINSIC_P ATHWAY_FOR_APOPTOS IS	52	-0.50143	-1.7784	0.00131	0.006	0.732	4241	tags=44%, list=21%, signal=56%
REACTOME_INWARDLY_ RECTIFYING_K_CHANNE LS	35	-0.32642	-1.0851	0.35139	0.405	1	2462	tags=23%, list=12%, signal=26%
REACTOME_ION_CHANN EL_TRANSPORT	184	-0.22147	-0.9434	0.59577	0.625	1	3298	tags=18%, list=16%, signal=22%
REACTOME_ION_HOMEO STASIS	54	-0.26519	-0.9615	0.53498	0.599	1	2696	tags=20%, list=13%, signal=23%
PORT_BY_P_TYPE_ATPA	55	-0.19585	-0.7135	0.91351	0.922	1	4851	tags=27%, list=24%, signal=36%
ACTIVATES_CHAPERONE S	50	-0.46114	-1.6409	0.00567	0.019	0.997	4891	tags=42%, list=24%, signal=55%
REACTOME_IRON_UPTA KE_AND_TRANSPORT	58	-0.59486	-2.1463	0	0.000	0.004	3517	tags=53%, list=17%, signal=64%
REACTOME_JNK_C_JUN_ KINASES_PHOSPHORYLA TION_AND_ACTIVATION_ MEDIATED_BY_ACTIVATE								tage_50% list_17%
D_HUMAN_TAK1	22	-0.64759	-1.9119	0	0.002	0.227	3356	signal=71% tags=25% list=20%
REACTOME_KINESINS	60	-0.21389	-0.7797	0.8293	0.857	1	4026	signal=31%
REACTOME_KSRP_KHSR P_BINDS_AND_DESTABIL IZES_MRNA	17	-0.51722	-1.4702	0.05449	0.063	1	4699	tags=47%, list=23%, signal=61%
REACTOME_L1CAM_INTE RACTIONS	120	-0.31285	-1.2769	0.08261	0.181	1	4005	tags=30%, list=20%, signal=37%
REACTOME_LAGGING_S TRAND_SYNTHESIS	20	-0.39867	-1.154	0.27129	0.314	1	5170	tags=40%, list=26%, signal=54%
REACTOME_LAMININ_INT ERACTIONS REACTOME LATE ENDO	30	-0.19905	-0.638	0.9289	0.971	1	5932	tags=33%, list=29%, signal=47%
SOMAL_MICROAUTOPHA GY	34	-0.47018	-1.5366	0.0225	0.042	1	4217	tags=41%, list=21%, signal=52%
REACTOME_LDL_CLEAR ANCE	19	-0.61684	-1.8152	0.00468	0.004	0.577	2670	tags=42%, list=13%, signal=48%
REACTOME_LEISHMANIA _INFECTION	248	-0.25573	-1.1262	0.21222	0.350	1	4495	tags=25%, list=22%, signal=32%
REACTOME_LISTERIA_M ONOCYTOGENES_ENTRY _INTO_HOST_CELLS	20	-0.60291	-1.7881	0.00472	0.005	0.698	4363	tags=65%, list=22%, signal=83%
REACTOME_LYSOSOME_ VESICLE_BIOGENESIS	35	-0.34324	-1.1279	0.30949	0.349	1	4771	tags=40%, list=24%, signal=52%
REACTOME_M_PHASE	353	-0.50002	-2.258	0	0.000	0.002	5075	tags=46%, list=25%, signal=60%
REACTOME_MAP2K_AND _MAPK_ACTIVATION	40	-0.48407	-1.6458	0.01156	0.018	0.995	5174	tags=45%, list=26%, signal=60%
REACTOME_MAP3K8_TPL 2_DEPENDENT_MAPK1_3 ACTIVATION	16	-0.63736	-1.7342	0.00503	0.008	0.898	3113	tags=44%, list=15%, signal=52%
REACTOME_MAPK_FAMIL Y_SIGNALING_CASCADE S	324	-0 33243	-1 4969	0 00107	0.053	1	4264	tags=29%, list=21%,
REACTOME_MAPK_TARG ETS_NUCLEAR_EVENTS_ MEDIATED_BY_MAP_KIN ASES	31	-0 59211	-1 9235	0.00148	0.001	0 187	4752	tags=55%, list=23%,
REACTOME_MAPK6_MAP	00	0.46929	1.0200	0	0.002	0.405	5700	tags=50%, list=28%,
REACTOME_MECP2_REG ULATES_NEURONAL_RE CEPTORS_AND_CHANNE	90	-0.40030	-1.0434	0	0.003	0.400	0129	tags=33%, list=15%,
	18	-0.39865	-1.1248	0.29708	0.352	1	3072	signal=39% tags=34%, list=25%,
REAUTOME_MEIUSIS	58	-0.34745	-1.2/16	0.1358	0.186	1	5085	signal=40%

REACTOME_MEIOTIC_RE COMBINATION	26	-0.4507	-1.4153	0.06785	0.087	1	4871	tags=42%, list=24%, signal=56%
REACTOME_MEIOTIC_SY NAPSIS	33	-0.2587	-0.8463	0.69152	0.774	1	6879	tags=45%, list=34%, signal=69%
REACTOME_MET_ACTIVA TES_PTK2_SIGNALING	30	-0.40401	-1.327	0.1021	0.140	1	5019	tags=43%, list=25%, signal=58%
REACTOME_MET_PROM OTES_CELL_MOTILITY	41	-0.49	-1.6634	0.00424	0.016	0.989	5019	tags=49%, list=25%, signal=65%
REACTOME_METABOLIC_ DISORDERS_OF_BIOLOGI CAL_OXIDATION_ENZYM ES	36	-0.2682	-0.894	0.62797	0.701	1	3728	tags=22%, list=18%, signal=27%
REACTOME_METABOLIS M_OF_AMINO_ACIDS_AN D_DERIVATIVES	365	-0.33989	-1.5447	0	0.039	1	5581	tags=42%, list=28%, signal=58%
REACTOME_METABOLIS M_OF_ANGIOTENSINOGE N_TO_ANGIOTENSINS	17	-0.33914	-0.9462	0.55296	0.621	1	6916	tags=59%, list=34%, signal=89%
REACTOME_METABOLIS M_OF_CARBOHYDRATES	292	-0.20556	-0.9221	0.66703	0.661	1	4815	tags=25%, list=24%, signal=32%
REACTOME_METABOLIS M_OF_COFACTORS REACTOME_METABOLIS	19	-0.45429	-1.315	0.15123	0.149	1	3542	tags=32%, list=17%, signal=38%
M_OF_FAT_SOLUBLE_VIT AMINS	48	-0.25943	-0.8953	0.64022	0.699	1	4622	tags=31%, list=23%, signal=40%
M_OF_NITRIC_OXIDE_NO S3_ACTIVATION_AND_RE GULATION	15	-0.62083	-1.6651	0.02284	0.016	0.988	1079	tags=33%, list=5%, signal=35%
REACTOME_METABOLIS M_OF_NUCLEOTIDES	97	-0.39343	-1.5582	0.00493	0.035	1	4111	tags=34%, list=20%, signal=42%
REACTOME_METABOLIS M_OF_POLYAMINES	59	-0.47017	-1.7233	0.00404	0.009	0.922	3178	tags=31%, list=16%, signal=36%
REACTOME_METABOLIS M_OF_PORPHYRINS	26	-0.40644	-1.2604	0.17798	0.195	1	5744	tags=46%, list=28%, signal=64%
REACTOME_METABOLIS M_OF_STEROIDS	151	-0.44803	-1.8805	0	0.002	0.314	4373	tags=38%, list=22%, signal=49%
REACTOME_METABOLIS M_OF_VITAMINS_AND_C OFACTORS	187	-0.33375	-1.4375	0.00575	0.076	1	4626	tags=31%, list=23%, signal=40%
REACTOME_METABOLIS M_OF_WATER_SOLUBLE _VITAMINS_AND_COFAC TORS	121	-0 35564	-1 4441	0.02068	0.073	1	1233	tags=29%, list=21%,
REACTOME_METAL_ION_	26	-0.56318	-1 7463	0.02000	0.008	0 868	3590	tags=50%, list=18%,
REACTOME_METALLOPR	20	-0.71132	-2.0676	0.00037	0.000	0.021	3113	tags=60%, list=15%,
REACTOME_MHC_CLASS _II_ANTIGEN_PRESENTA	123	-0.52773	-2 1694	0	0.000	0.002	4026	tags=45%, list=20%,
REACTOME_MICRORNA_	25	-0.51989	-1 6014	0.01695	0.026	1	4086	tags=52%, list=20%,
REACTOME_MISCELLANE OUS_TRANSPORT_AND_ BINDING_EVENTS	25	-0.28579	-0.8821	0.64706	0.720	1	741	tags=8%, list=4%,
REACTOME_MISMATCH_ REPAIR	15	-0.5156	-1.4071	0.10535	0.091	1	4584	tags=47%, list=23%, signal=60%
REACTOME_MITOCHOND RIAL_BIOGENESIS	90	-0.52501	-2.0711	0	0.000	0.021	4977	tags=46%, list=25%, signal=60%
RIAL_CALCIUM_ION_TRA	23	-0.56031	-1.6831	0.00602	0.013	0.982	4578	tags=65%, list=23%, signal=84%
REACTOME_MITOCHOND RIAL_FATTY_ACID_BETA _OXIDATION	36	-0.44808	-1.4758	0.03343	0.061	1	3396	tags=33%, list=17%, signal=40%
REACTOME_MITOCHOND RIAL_PROTEIN_IMPORT	65	-0.42351	-1.5749	0.00788	0.032	1	4266	tags=38%, list=21%, signal=49%

REACTOME_MITOCHOND RIAL_TRANSLATION	94	-0.36649	-1.4438	0.02471	0.073	1	4059	tags=30%, list=20%, signal=37%
REACTOME_MITOPHAGY REACTOME MITOTIC G1	29	-0.56602	-1.8006	0.00147	0.005	0.65	3934	tags=55%, list=19%, signal=68%
_PHASE_AND_G1_S_TRA NSITION	149	-0.47455	-2.0089	0	0.000	0.054	4124	tags=40%, list=20%, signal=50%
REACTOME_MITOTIC_G2 _G2_M_PHASES	198	-0.44266	-1.9138	0	0.002	0.223	4124	tags=34%, list=20%, signal=42%
TAPHASE_AND_ANAPHA SE	235	-0.45902	-2.0072	0	0.000	0.054	4997	tags=43%, list=25%, signal=56%
REACTOME_MITOTIC_PR OMETAPHASE	201	-0.43413	-1.8807	0	0.002	0.313	4997	tags=40%, list=25%, signal=52%
REACTOME_MITOTIC_PR OPHASE	81	-0.61267	-2.3665	0	0.000	0	5075	tags=60%, list=25%, signal=80%
REACTOME_MITOTIC_SPI NDLE_CHECKPOINT	111	-0.4633	-1.8499	0	0.003	0.442	4994	tags=41%, list=25%, signal=55%
REACTOME_MOLECULES								-
STIC_FIBRES	38	-0.20614	-0.685	0.91323	0.944	1	2171	signal=12%
REACTOME_MRNA_CAPP ING	29	-0.59564	-1.8688	0	0.002	0.366	4571	tags=59%, list=23%, signal=76%
REACTOME_MRNA_DECA						O		
V_BY_3_TO_5_EXORIBON	16	-0.57227	-1.5502	0.02782	0.038	1	4699	tags=56%, list=23%, signal=73%
REACTOME_MRNA_DECA								
Y_BY_5_TO_3_EXORIBON UCLEASE	15	-0.53943	-1.4596	0.07642	0.067	1	4529	tags=47%, list=22%, signal=60%
REACTOME_MRNA_SPLI CING	188	-0.55303	-2.3755	0	0.000	0	5296	tags=55%, list=26%, signal=74%
REACTOME_MRNA_SPLI CING_MINOR_PATHWAY	52	-0.57475	-2.0757	0	0.000	0.019	5293	tags=56%, list=26%, signal=75%
REACTOME_MTOR_SIGN ALLING	40	-0.52314	-1.784	0.00284	0.005	0.713	2774	tags=38%, list=14%, signal=43%
REACTOME_MTORC1_ME			0					tags=61%, list=27%,
REACTOME_MYD88_INDE	23	-0.52457	-1.5736	0.02065	0.033	1	5561	signal=84%
E_ REACTOME MYOGENESI	97	-0.5097	-2.0463	0	0.000	0.036	4021	signal=52% tags=59%, list=31%,
S	29	-0.4756	-1.511	0.02655	0.048	1	6275	signal=85%
REACTOME_N_GLYCAN_	15	-0 24457	-0 6517	0 91558	0 964	1	6818	tags=47%, list=34%, signal=70%
REACTOME_N_GLYCAN_	10		0.0011	0.01000	0.001	·	0010	olghai - ro /o
_IN_THE_MEDIAL_TRANS _GOLGI	26	-0.22582	-0.6922	0.87048	0.942	1	1845	tags=12%, list=9%, signal=13%
REACTOME_N_GLYCAN_ TRIMMING_IN_THE_ER_A ND_CALNEXIN_CALRETIC								tags=56% list=21%
ULIN_CYCLE	34	-0.67968	-2.245	0	0.000	0.002	4255	signal=71%
ON	234	-0.34389	-1.4947	0.00221	0.054	1	3400	signal=29%
REACTOME_NEF_MEDIAT ES_DOWN_MODULATION _OF_CELL_SURFACE_RE CEPTORS_BY_RECRUITI NG THEM TO CLATHRIN								taqs=33%. list=18%.
_ADAPTERS	21	-0.46523	-1.3981	0.0858	0.095	1	3565	signal=40%
REACTOME_NEGATIVE_E PIGENETIC_REGULATION	40	0.40000	4 7004	0.00075	0.000	0 707	4500	tags=47%, list=23%,
OLTUNATEVAKE99101N	49	-0.49038	-1.7001	0.00275	0.000	0.797	4000	รเฐาณ=00%
REACTOME_NEGATIVE_R EGULATION_OF_FGFR1_ SIGNALING	33	-0.44602	-1.4577	0.04155	0.068	1	3249	tags=33%, list=16%, signal=40%
REACTOME_NEGATIVE_R								-
SIGNALING	34	-0.40795	-1.3466	0.1016	0.126	1	3249	lags=32%, list=16%, signal=38%

REACTOME_NEGATIVE_R EGULATION_OF_FGFR3_ SIGNALING	29	-0.45598	-1.469	0.04348	0.063	1	3249	tags=38%, list=16%, signal=45%
REACTOME_NEGATIVE_R EGULATION_OF_FGFR4_ SIGNALING	31	-0.45939	-1.4951	0.04769	0.054	1	3249	tags=35%, list=16%, signal=42%
REACTOME_NEGATIVE_R EGULATION_OF_MAPK_P ATHWAY	43	-0.45738	-1.5651	0.01269	0.034	1	5174	tags=44%, list=26%, signal=59%
REACTOME_NEGATIVE_R EGULATION_OF_MET_AC TIVITY	21	-0.633	-1.8761	0	0.002	0.332	4363	tags=62%, list=22%, signal=79%
REACTOME_NEGATIVE_R EGULATION_OF_NOTCH4 _SIGNALING	54	-0.56299	-2.0214	0	0.000	0.049	5729	tags=59%, list=28%, signal=82%
REACTOME_NEGATIVE_R EGULATION_OF_THE_PI3 K_AKT_NETWORK	110	-0.24878	-0.9985	0.47292	0.538	1 6	4722	tags=30%, list=23%, signal=39%
REACTOME_NEGATIVE_R EGULATORS_OF_DDX58_	34	-0.66122	-2 176	0	0.000	0.002	3558	tags=62%, list=18%,
REACTOME_NEPHRIN_FA MILY_INTERACTIONS	23	-0.4803	-1.4512	0.05023	0.000	1	4003	tags=48%, list=20%, signal=60%
REACTOME_NETRIN_1_SI GNALING	50	-0.34275	-1.2217	0.19359	0.233	1	4722	tags=34%, list=23%, signal=44%
REACTOME_NEUTROPHI L_DEGRANULATION	475	-0.45552	-2.0888	0	0.000	0.014	4491	tags=39%, list=22%, signal=49%
REACTOME_NICOTINAMI DE_SALVAGING	19	-0.35602	-1.0248	0.44601	0.501	1	4436	tags=32%, list=22%, signal=40%
REACTOME_NICOTINATE _METABOLISM	31	-0.4431	-1.4243	0.06259	0.082	1	1973	tags=19%, list=10%, signal=21%
REACTOME_NOD1_2_SIG NALING_PATHWAY	36	-0.67901	-2.2298	0	0.000	0.002	3356	tags=56%, list=17%, signal=66%
REACTOME_NON_INTEG RIN_MEMBRANE_ECM_IN TERACTIONS	59	-0.21472	-0.7884	0.80079	0.849	1	5019	tags=29%, list=25%, signal=38%
REACTOME_NONHOMOL OGOUS_END_JOINING_N HEJ_	35	-0.50377	-1.6613	0.00576	0.016	0.99	4940	tags=43%, list=24%, signal=57%
REACTOME_NONSENSE_	116	-0 63384	-2 5071	0	0.000	0	5581	tags=74%, list=28%,
REACTOME_NOTCH_HLH _TRANSCRIPTION_PATH	28	-0.42036	-1.3/17	0 10557	0.000	1	1782	tags=18%, list=9%,
REACTOME_NOTCH1_INT RACELLULAR_DOMAIN_R EGULATES_TRANSCRIPTI	20	0.12000	1.0111	0.10001	0.120		TTOL	tags=44%, list=26%,
ON REACTOME_NOTCH2_AC TIVATION_AND_TRANSMI	48	-0.40575	-1.4446	0.04237	0.073	1	5351	signal=59%
REACTOME_NOTCH3_AC	22	-0.40893	-1.2209	0.20934	0.233	1	3760	tags=32%, list=19%, signal=39%
SSION_OF_SIGNAL_TO_T HE_NUCLEUS	25	-0.32315	-0.9964	0.47786	0.541	1	3760	tags=28%, list=19%, signal=34%
REACTOME_NOTCH3_INT RACELLULAR_DOMAIN_R EGULATES_TRANSCRIPTI ON	25	-0.45405	-1.3957	0.09119	0.096	1	2465	tags=20%, list=12%, signal=23%
REACTOME_NOTCH4_INT RACELLULAR_DOMAIN_R EGULATES_TRANSCRIPTI	20	0.44000	4 0 4 7 4	0.45740	0.447	_	54.40	tags=30%, list=25%,
REACTOME_NR1H2_AND _NR1H3_MEDIATED_SIGN	20	-0.44962	-1.31/1	0.15712	0.147	1	5142	signai=40% tags=36%, list=19%,
ALING REACTOME_NR1H3_NR1 H2_REGULATE_GENE_EX	47	-0.41894	-1.4493	0.02991	0.071	1	3873	signal=45%
PRESSION_LINKED_TO_C HOLESTEROL_TRANSPO RT_AND_EFFLUX	37	-0.36861	-1.2524	0.14577	0.202	1	6335	tags=49%, list=31%, signal=71%

REACTOME_NRAGE_SIG NALS_DEATH_THROUGH _JNK	59	-0.23394	-0.8451	0.71486	0.774	1	2753	tags=17%, list=14%, signal=20%
REACTOME_NRIF_SIGNA LS_CELL_DEATH_FROM_ THE_NUCLEUS	16	-0.55185	-1.4885	0.04368	0.056	1	3760	tags=56%, list=19%, signal=69%
REACTOME_NS1_MEDIAT ED_EFFECTS_ON_HOST_ PATHWAYS	40	-0.62846	-2.0978	0	0.000	0.011	4729	tags=58%, list=23%, signal=75%
REACTOME_NUCLEAR_E NVELOPE_BREAKDOWN	52	-0.59973	-2.1399	0	0.000	0.004	4729	tags=58%, list=23%, signal=75%
REACTOME_NUCLEAR_E NVELOPE_NE_REASSEM BLY	75	-0.39912	-1.5344	0.00895	0.042	1	4811	tags=41%, list=24%, signal=54%
REACTOME_NUCLEAR_E VENTS_KINASE_AND_TR ANSCRIPTION_FACTOR_								tags=34%, list=22%,
ACTIVATION_ REACTOME_NUCLEAR_I MPORT_OF_REV_PROTEI	61	-0.3634	-1.3272	0.08784	0.140	1	4362	signal=44%
N	33	-0.67409	-2.2147	0	0.000	0.002	4729	signal=83%
REACTOME_NUCLEAR_P ORE_COMPLEX_NPC_DIS ASSEMBLY	35	-0.68924	-2.2595	0	0.000	0.002	4729	tags=66%, list=23%, signal=86%
REACTOME_NUCLEAR_R ECEPTOR_TRANSCRIPTI ON PATHWAY	53	-0.37767	-1.348	0.0762	0.125	1	2992	tags=23%, list=15%, signal=26%
REACTOME_NUCLEAR_SI GNALING_BY_ERBB4	32	-0.34026	-1.106	0.31399	0.378	1	3760	tags=25%, list=19%, signal=31%
REACTOME_NUCLEOBAS E_CATABOLISM	36	-0.42459	-1.434	0.05832	0.078	1	2341	tags=28%, list=12%, signal=31%
REACTOME_NUCLEOTID E_BINDING_DOMAIN_LEU CINE_RICH_REPEAT_CO NTAINING_RECEPTOR_N								
LR_SIGNALING_PATHWA YS	55	-0.58323	-2.142	0	0.000	0.004	3892	tags=45%, list=19%, signal=56%
REACTOME_NUCLEOTID E_EXCISION_REPAIR REACTOME_NUCLEOTID	110	-0.55445	-2.2623	0	0.000	0.002	3625	tags=44%, list=18%, signal=53%
E_LIKE_PURINERGIC_RE CEPTORS	16	-0.33616	-0.9172	0.59868	0.668	1	100	tags=6%, list=0%, signal=6%
REACTOME_ONCOGENE _INDUCED_SENESCENCE	34	-0.46502	-1.507	0.02774	0.049	1	3113	tags=38%, list=15%, signal=45%
REACTOME_ONCOGENIC _MAPK_SIGNALING	82	-0.4558	-1.7832	0	0.005	0.716	5174	tags=44%, list=26%, signal=59%
REACTOME_OPIOID_SIG NALLING	90	-0.26612	-1.0522	0.39272	0.458	1	4038	tags=26%, list=20%, signal=32%
REACTOME_ORC1_REMO VAL_FROM_CHROMATIN	71	-0.49279	-1.8671	0	0.002	0.368	5555	tags=52%, list=27%, signal=72%
REACTOME_ORGANELLE _BIOGENESIS_AND_MAIN TENANCE	289	-0.43927	-1.9336	0	0.001	0.166	4379	tags=35%, list=22%, signal=44%
REACTOME_OTHER_INTE RLEUKIN_SIGNALING	24	-0.32877	-0.9988	0.46606	0.539	1	5793	tags=42%, list=29%, signal=58%
REACTOME_OTHER_SEM APHORIN_INTERACTIONS REACTOME_OVARIAN_T	19	-0.44229	-1.2844	0.17863	0.175	1	2465	tags=21%, list=12%, signal=24%
UMOR_DOMAIN_PROTEA SES								tags=53%, list=22%,
REACTOME_OXIDATIVE_	38	-0.56226	-1.8736	0	0.002	0.34	4420	signal=07 %
STRESS_INDUCED_SENE SCENCE	38 65	-0.56226	-1.8736 -1.5875	0 0.01459	0.002	0.34	4420 3113	tags=32%, list=15%, signal=38%
STRESS_INDUCED_SENE SCENCE REACTOME_P130CAS_LI NKAGE_TO_MAPK_SIGNA	38 65 15	-0.56226 -0.43472	-1.8736 -1.5875 -1 4592	0	0.002	0.34	4420 3113	tags=32%, list=15%, signal=38% tags=53%, list=20%, signal=67%
STRESS_INDUCED_SENE SCENCE REACTOME_P130CAS_LI NKAGE_TO_MAPK_SIGNA LING_FOR_INTEGRINS REACTOME_P75_NTR_RE CEPTOR_MEDIATED_SIG NALLING	38 65 15 97	-0.56226 -0.43472 -0.53196	-1.8736 -1.5875 -1.4592	0 0.01459 0.06209	0.002	0.34	4420 3113 4090 3760	tags=32%, list=15%, signal=38% tags=53%, list=20%, signal=67% tags=27%, list=19%, signal=3%
STRESS_INDUCED_SENE SCENCE REACTOME_P130CAS_LI NKAGE_TO_MAPK_SIGNA LING_FOR_INTEGRINS REACTOME_P75_NTR_RE CEPTOR_MEDIATED_SIG NALLING REACTOME_P75NTR_SIG	38 65 15 97	-0.56226 -0.43472 -0.53196 -0.30618	-1.8736 -1.5875 -1.4592 -1.2207	0 0.01459 0.06209 0.14568	0.002 0.029 0.067 0.233	0.34	4420 3113 4090 3760	tags=32%, list=15%, signal=38% tags=53%, list=20%, signal=67% tags=27%, list=19%, signal=33% tags=38%, list=17%,

REACTOME_PARASITE_I NFECTION	58	-0.54263	-1.9967	0	0.001	0.06	4495	tags=52%, list=22%, signal=66%
REACTOME_PCNA_DEPE NDENT_LONG_PATCH_B ASE_EXCISION_REPAIR	21	-0.554	-1.6656	0.0181	0.016	0.988	4558	tags=52%, list=22%, signal=68%
REACTOME_PCP_CE_PA THWAY	92	-0.45637	-1.7695	0	0.006	0.778	4599	tags=38%, list=23%, signal=49%
REACTOME_PD_1_SIGNA LING	21	-0.75807	-2.2035	0	0.000	0.002	1070	tags=43%, list=5%, signal=45%
REACTOME_PEPTIDE_HO RMONE_METABOLISM	89	-0.27576	-1.0857	0.31959	0.405	1	3353	tags=21%, list=17%, signal=25%
LATES_GENE_EXPRESSI	32	-0.48593	-1.5778	0.01986	0.032	1	4911	tags=53%, list=24%, signal=70%
REACTOME_PEROXISOM AL_LIPID_METABOLISM	29	-0.34317	-1.0904	0.32799	0.400	1	3866	tags=28%, list=19%, signal=34%
REACTOME_PEROXISOM AL_PROTEIN_IMPORT	63	-0.38774	-1.4253	0.04768	0.082	1	4104	tags=35%, list=20%, signal=44%
REACTOME_PHASE_I_FU NCTIONALIZATION_OF_C OMPOLINDS	102	-0 2174	-0 8648	0 74969	0 744		2287	tags=13%, list=11%, signal=14%
REACTOME_PHASE_II_C ONJUGATION_OF_COMP OUNDS	107	-0.30511	-1.2298	0.14007	0.224		5076	tags=36%, list=25%, signal=47%
REACTOME_PHOSPHOLI PID_METABOLISM	206	-0.36678	-1.5886	0	0.029	1	5886	tags=44%, list=29%, signal=61%
REACTOME_PHOSPHOR YLATION_OF_THE_APC_ C	20	-0.64365	-1.8794	0	0.002	0.318	4264	tags=45%, list=21%, signal=57%
REACTOME_PHOSPHOR YLATION_SITE_MUTANTS _OF_CTNNB1_ARE_NOT_ TARGETED_TO_THE_PR OTEASOME BY THE DE				2 (((taos=67%. list=20%.
STRUCTION_COMPLEX	15	-0.71326	-1.9271	0	0.001	0.179	4021	signal=83%
REACTOME_PI_3K_CASC ADE_FGFR1	21	-0.32952	-0.9742	0.48237	0.578	1	2525	tags=19%, list=12%, signal=22%
REACTOME_PI_3K_CASC ADE_FGFR2	23	-0.28205	-0.8453	0.67647	0.775	1	2525	tags=17%, list=12%, signal=20%
REACTOME_PI_3K_CASC ADE_FGFR3	18	-0.3337	-0.9533	0.5084	0.611	1	2525	tags=22%, list=12%, signal=25%
REACTOME_PI_3K_CASC ADE_FGFR4	20	-0.33754	-0.9925	0.45455	0.547	1	2525	tags=20%, list=12%, signal=23%
ISM	84	-0.46696	-1.8142	0	0.004	0.58	4685	tags=43%, list=23%, signal=56%
REACTOME_PI3K_EVENT S_IN_ERBB2_SIGNALING	16	-0.33525	-0.9181	0.59242	0.667	1	2525	tags=19%, list=12%, signal=21%
REACTOME_PINK1_PRKN _MEDIATED_MITOPHAGY REACTOME_PIWL_INTER	22	-0.55539	-1.6334	0.00987	0.020	0.999	3934	tags=55%, list=19%, signal=68%
ACTING_RNA_PIRNA_BIO GENESIS	29	-0.41112	-1.3075	0.12329	0.155	1	2692	tags=24%, list=13%, signal=28%
REACTOME_PKMTS_MET HYLATE_HISTONE_LYSIN ES	44	-0.49011	-1.71	0.00297	0.010	0.948	4710	tags=48%, list=23%, signal=62%
REACTOME_PLASMA_LIP OPROTEIN_ASSEMBLY	19	-0.48595	-1.4006	0.08889	0.094	1	2496	tags=32%, list=12%, signal=36%
REACTOME_PLASMA_LIP OPROTEIN_ASSEMBLY_R EMODELING_AND_CLEAR ANCE	71	-0.4226	-1.6048	0.00133	0.026	1	2768	tags=28%, list=14%, signal=33%
REACTOME_PLASMA_LIP OPROTEIN_CLEARANCE	33	-0.48303	-1.5635	0.02458	0.034	1	2768	tags=30%, list=14%, signal=35%
REACTOME_PLASMA_LIP OPROTEIN_REMODELING	32	-0.24087	-0.8035	0.76117	0.830	1	3724	tags=25%, list=18%, signal=31%
REACTOME_PLATELET_A CTIVATION_SIGNALING_A ND_AGGREGATION	260	-0.37273	-1.6535	0	0.017	0.993	4722	tags=37%, list=23%, signal=48%

REACTOME_PLATELET_A DHESION_TO_EXPOSED_ COLLAGEN	15	-0.43609	-1.2161	0.22692	0.238	1	2440	tags=27%, list=12%, signal=30%
REACTOME_PLATELET_A GGREGATION_PLUG_FO RMATION_	39	-0.31993	-1.0913	0.34907	0.399	1	4626	tags=36%, list=23%, signal=46%
REACTOME_PLATELET_H OMEOSTASIS	85	-0.30443	-1.1767	0.19338	0.284	1	4983	tags=35%, list=25%, signal=47%
REACTOME_PLATELET_S ENSITIZATION_BY_LDL REACTOME_POLO_LIKE	17	-0.63337	-1.77	0.00319	0.006	0.776	4722	tags=59%, list=23%, signal=77%
KINASE_MEDIATED_EVE NTS	16	-0.3281	-0.9167	0.5616	0.668	1	4087	tags=25%, list=20%, signal=31%
E_SWITCHING_ON_THE_ C_STRAND_OF_THE_TEL	26	0.06450	0.8068	0 70247	0.000	4	E470	tags=35%, list=26%,
OMERE	20	-0.26159	-0.8068	0.76347	0.826	1	5170	signal=46%
REACTOME_POSITIVE_E PIGENETIC_REGULATION _OF_RRNA_EXPRESSION	46	-0.4553	-1.5989	0.00954	0.027	1	4580	tags=46%, list=23%, signal=59%
REACTOME_POSTMITOTI C_NUCLEAR_PORE_COM PLEX_NPC_REFORMATIO								tags=70%, list=31%,
N REACTOME DOTENTIAL	27	-0.59216	-1.8314	0.00157	0.003	0.523	6259	signal=102%
THERAPEUTICS_FOR_SA	37	-0.54415	-1.877	0	0.002	0.331	4749	tags=51%, list=23%, signal=67%
EXPRESSION_AND_PRO CESSING	49	-0.43284	-1.5213	0.02436	0.045	1	3060	tags=29%, list=15%, signal=34%
REACTOME_PRE_NOTCH _PROCESSING_IN_GOLGI	18	-0.48368	-1.3785	0.09524	0.105	1	3792	tags=39%, list=19%, signal=48%
REACTOME_PRESYNAPTI C_FUNCTION_OF_KAINAT F_RECEPTORS	21	-0 47454	-1 4114	0 10079	0.089	1	2462	tags=33%, list=12%, signal=38%
		0.11.101			0.000	·	1.01	
REACTOME_PROCESSIN G_OF_CAPPED_INTRON_ CONTAINING_PRE_MRNA	241	-0.56523	-2.4771	0	0.000	0	5454	tags=57%, list=27%, signal=77%
REACTOME_PROCESSIN G_OF_CAPPED_INTRONL	28	0.61221	1 003	0 00202	0.002	0.254	5203	tags=54%, list=26%,
ESS_FRE_WIRINA	20	-0.01221	-1.903	0.00292	0.002	0.234	5295	signal=72%
REACTOME_PROCESSIN G_OF_DNA_DOUBLE_ST RAND_BREAK_ENDS	64	-0.51262	-1 9257	0	0.001	0 182	4710	tags=47%, list=23%, signal=61%
REACTOME_PROCESSIN G_OF_INTRONLESS_PRE	10	-0.65637	-1 8779	0	0.002	0.326	5203	tags=58%, list=26%,
REACTOME PROCESSIN	15	0.00001	1.0775	Ū	0.002	0.020	0200	tags=69% list=22%
G_OF_SMDT1 REACTOME_PROCESSIV	16	-0.61223	-1.697	0.00954	0.012	0.96	4467	signal=88%
E_SYNTHESIS_ON_THE_ C_STRAND_OF_THE_TEL OMERE	19	-0.50796	-1.4526	0.05984	0.070	1	3112	tags=32%, list=15%, signal=37%
REACTOME_PROCESSIV E_SYNTHESIS_ON_THE_ LAGGING_STRAND	15	-0 42893	-1 16	0 27869	0 305	1	3112	tags=27%, list=15%, signal=31%
REACTOME_PROGRAMM ED CELL DEATH	173	-0.43563	-1.8461	0	0.003	0.457	4241	tags=38%, list=21%, signal=47%
REACTOME_PROLACTIN_	15	-0 4031	-1 0964	0 34053	0.391	1	5351	tags=47%, list=26%,
REACTOME_PROSTACYC LIN_SIGNALLING_THROU GH_PROSTACYCLIN_REC EPTOR	19	-0.48127	-1.3925	0.09682	0.098	1	2462	tags=37%, list=12%, signal=42%
REACTOME_PROTEIN_F OLDING	102	-0.39575	-1.5735	0.00745	0.032	1	4130	tags=34%, list=20%, signal=43%
REACTOME_PROTEIN_LO CALIZATION	162	-0.36476	-1.5337	0.00116	0.042	1	4266	tags=33%, list=21%, signal=42%
REACTOME_PROTEIN_M ETHYLATION	17	-0.34904	-0.9683	0.50579	0.588	1	4751	tags=41%, list=23%, signal=54%

REACTOME_PROTEIN_U BIQUITINATION	64	-0.56881	-2.103	0	0.000	0.009	3951	tags=50%, list=19%, signal=62%	
REACTOME_PTEN_REGU LATION	139	-0.49715	-2.0649	0	0.000	0.023	5561	tags=52%, list=27%, signal=71%	
REACTOME_PURINE_CAT ABOLISM	18	-0.52881	-1.4981	0.05354	0.053	1	4462	tags=44%, list=22%, signal=57%	
REACTOME_PURINERGIC _SIGNALING_IN_LEISHMA NIASIS_INFECTION	24	-0.58393	-1.7666	0.00291	0.006	0.794	4455	tags=50%, list=22%, signal=64%	
REACTOME_PYRUVATE_ METABOLISM	31	-0.43601	-1.3941	0.07895	0.097	1	3941	tags=32%, list=19%, signal=40%	
REACTOME_PYRUVATE_ METABOLISM_AND_CITRI C_ACID_TCA_CYCLE	55	-0.4485	-1.6166	0.00962	0.024	1	3941	tags=35%, list=19%, signal=43%	
REACTOME_RAB_GEFS_ EXCHANGE_GTP_FOR_G DP_ON_RABS	89	-0.46723	-1.8607	0	0.003	0.397	2642	tags=27%, list=13%, signal=31%	
REACTOME_RAB_GERAN YLGERANYLATION	65	-0.38756	-1.4475	0.02914	0.072	1	3403	tags=23%, list=17%, signal=28%	
REACTOME_RAB_REGUL ATION_OF_TRAFFICKING	121	-0.4832	-1.9782	0	0.001	0.079	2642	tags=29%, list=13%, signal=33%	
REACTOME_RAF_ACTIVA	34	-0.48325	-1.5726	0.02305	0.033	1	5088	tags=50%, list=25%, signal=67%	
NDENT_MAPK1_3_ACTIV ATION	23	-0.31403	-0.9468	0.52221	0.620	1	4722	tags=30%, list=23%, signal=40%	
REACTOME_RAP1_SIGNA LLING	16	-0.40986	-1.1288	0.30141	0.348	1	2774	tags=25%, list=14%, signal=29%	
REACTOME_RAS_PROCE SSING	24	-0.49446	-1.4988	0.0471	0.052	1	3113	tags=33%, list=15%, signal=39%	
REACTOME_RECOGNITIO N_OF_DNA_DAMAGE_BY _PCNA_CONTAINING_RE PLICATION_COMPLEX	30	-0.58181	-1.8597	0.00144	0.003	0.404	4960	tags=60%, list=24%, signal=79%	
REACTOME_RECRUITME NT_OF_MITOTIC_CENTR OSOME_PROTEINS_AND COMPLEXES	80	-0.45139	-1.7601	0	0.007	0.826	4264	tags=34%, list=21%, signal=43%	
REACTOME_RECRUITME NT_OF_NUMA_TO_MITOT IC_CENTROSOMES	93	-0.38931	-1.526	0.00627	0.044	1	4264	tags=31%, list=21%, signal=39%	
REACTOME_RECYCLING _OF_BILE_ACIDS_AND_S ALTS	16	-0.27237	-0.7362	0.80909	0.902	1	3193	tags=25%, list=16%, signal=30%	
REACTOME_RECYCLING _PATHWAY_OF_L1	48	-0.42159	-1.5098	0.0195	0.049	1	4342	tags=40%, list=21%, signal=50%	
REACTOME_REGULATIO N_OF_CHOLESTEROL_BI OSYNTHESIS_BY_SREBP _SREBF_	55	-0.62968	-2.2385	0	0.000	0.002	3485	tags=49%, list=17%, signal=59%	
REACTOME_REGULATIO N_OF_EXPRESSION_OF_ SLITS_AND_ROBOS	172	-0.58531	-2.5023	0	0.000	0	5581	tags=65%, list=28%, signal=89%	
REACTOME_REGULATIO N_OF_FZD_BY_UBIQUITI NATION	21	-0.37035	-1.0876	0.3791	0.402	1	3774	tags=38%, list=19%, signal=47%	
REACTOME_REGULATIO N_OF_GENE_EXPRESSIO N_IN_LATE_STAGE_BRA NCHING_MORPHOGENES IS_PANCREATIC_BUD_PR ECURSOR_CELLS	16	-0.56229	-1.5343	0.05065	0.042	1	5142	tags=44%, list=25%, signal=59%	
REACTOME_REGULATIO N_OF_GLUCOKINASE_BY _GLUCOKINASE_REGULA	24	0.04599	2.0740	0	0.000	0.021	4700	tags=65%, list=23%,	
REACTOME REGULATIO						0.021	4729	aluliai=04%	
N_OF_HSF1_MEDIATED_ HEAT_SHOCK_RESPONS E	81	-0.58648	-2.2669	0	0.000	0.0021	5086	tags=57%, list=25%, signal=76%	

REACTOME_REGULATIO N_OF_IFNA_SIGNALING	26	-0.43784	-1.3346	0.10189	0.134	1	4179	tags=38%, list=21%, signal=48%
REACTOME_REGULATIO N_OF_INSULIN_LIKE_GR OWTH_FACTOR_IGF_TRA NSPORT_AND_UPTAKE_ BY_INSULIN_LIKE_GROW TH_FACTOR_BINDING_P								tans=43% list=20%
ROTEINS_IGFBPS_ REACTOME_REGULATIO	123	-0.29231	-1.1905	0.16141	0.268	1	5895	signal=60%
ON	78	-0.34151	-1.3369	0.06971	0.132	1	3742	signal=33%
REACTOME_REGULATIO N_OF_KIT_SIGNALING	16	-0.44702	-1.2421	0.19449	0.213	1	4185	tags=50%, list=21%, signal=63%
REACTOME_REGULATIO N_OF_LIPID_METABOLIS M_BY_PPARALPHA	118	-0.47023	-1.917	0	0.001	0.208	4152	tags=38%, list=20%, signal=48%
REACTOME_REGULATIO N_OF_MECP2_EXPRESSI ON AND ACTIVITY	31	-0.38295	-1.219	0.21439	0.235	1	5642	tags=45%, list=28%, signal=62%
REACTOME_REGULATIO N_OF_MRNA_STABILITY_ BY_PROTEINS_THAT_BIN	-					30		tags=56%, list=28%,
D_AU_RICH_ELEMENTS	87	-0.52579	-2.0993	0	0.000	0.01	5582	signal=77%
REACTOME_REGULATIO N_OF_PLK1_ACTIVITY_AT _G2_M_TRANSITION	86	-0.53755	-2.086	0	0.000	0.017	4264	tags=41%, list=21%, signal=51%
REACTOME_REGULATIO N_OF_PTEN_GENE_TRAN SCRIPTION	61	-0.41603	-1.5275	0.00904	0.044	1	5561	tags=46%, list=27%, signal=63%
REACTOME_REGULATIO N_OF_PTEN_STABILITY_ AND_ACTIVITY	69	-0.55039	-2.0519	0	0.000	0.034	5555	tags=57%, list=27%, signal=78%
REACTOME_REGULATIO N_OF_PYRUVATE_DEHY DROGENASE_PDH_COM	16	-0.5042	-1 3747	0.109	0.107	1	451	tags=13%, list=2%,
REACTOME_REGULATIO	10	-0.3042	-1.0747	0.103	0.107		401	tags=40%, list=21%,
N_OF_RAS_BY_GAPS	68	-0.50446	-1.907	0	0.002	0.241	4173	signal=50%
REACTOME_REGULATIO N_OF_RUNX1_EXPRESSI ON_AND_ACTIVITY	17	-0.51993	-1.4655	0.0656	0.065	1	6101	tags=59%, list=30%, signal=84%
REACTOME_REGULATIO N_OF_RUNX2_EXPRESSI ON_AND_ACTIVITY	73	-0.52123	-1.974	0	0.001	0.086	3625	tags=37%, list=18%, signal=45%
REACTOME_REGULATIO N_OF_RUNX3_EXPRESSI								tags=56%, list=28%,
ON_AND_ACTIVITY REACTOME_REGULATIO	55	-0.53113	-1.895	0	0.002	0.276	5729	signal=78%
L	22	-0.56581	-1.7144	0.00488	0.010	0.938	5399	signal=87%
REACTOME_REGULATIO N_OF_TLR_BY_ENDOGE NOUS_LIGAND	19	-0.51851	-1.5117	0.03762	0.048	1	2007	tags=32%, list=10%, signal=35%
REACTOME_REGULATIO N_OF_TNFR1_SIGNALING	33	-0.54028	-1.7639	0.00141	0.006	0.805	5246	tags=61%, list=26%, signal=82%
REACTOME_REGULATIO N_OF_TP53_ACTIVITY	160	-0.4599	-1.9457	0	0.001	0.142	4626	tags=40%, list=23%, signal=51%
REACTOME_REGULATIO N_OF_TP53_ACTIVITY_TH ROUGH_ACETYLATION	30	-0.43002	-1.384	0.07843	0.102	1	5316	tags=47%, list=26%, signal=63%
REACTOME_REGULATIO N_OF_TP53_ACTIVITY_TH ROUGH_METHYLATION	19	-0.63659	-1.8291	0.00152	0.004	0.535	4400	tags=58%, list=22%, signal=74%
REACTOME_REGULATIO N_OF_TP53_ACTIVITY_TH ROUGH_PHOSPHORYLAT	92	-0 50069	-1 9771	0	0.001	0.08	4525	tags=40%, list=22%,
	02	5.00000		•	0.001	5.00	1020	0.3.101-02.70

REACTOME_REGULATIO N_OF_TP53_EXPRESSIO								tags=49%, list=21%,
N_AND_DEGRADATION REACTOME_REPRODUCT	37	-0.51457	-1.7427	0.00429	0.008	0.882	4264	signal=61% tags=27% list=25%
	84	-0.21192	-0.8231	0.77177	0.807	1	5085	signal=36%
N_OF_ABASIC_SITES_AP _SITES_	37	-0.42533	-1.4006	0.05951	0.094	1	4558	tags=32%, list=22%, signal=42%
REACTOME_RESOLUTIO N_OF_AP_SITES_VIA_TH E_MULTIPLE_NUCLEOTID								
E_PATCH_REPLACEMEN T_PATHWAY REACTOME_RESOLUTIO	24	-0.55698	-1.7221	0.00884	0.009	0.923	4558	tags=50%, list=22%, signal=64%
N_OF_D_LOOP_STRUCT URES	34	-0.37872	-1.2359	0.18519	0.219	1	6154	tags=38%, list=30%, signal=55%
REACTOME_RESOLUTIO N_OF_D_LOOP_STRUCT URES_THROUGH_SYNTH ESIS_DEPENDENT_STRA ND_ANNEALING_SDSA_	26	-0.44022	-1.3572	0.10445	0.119	1	5424	tags=38%, list=27%, signal=52%
REACTOME_RESOLUTIO								tags=39%, list=25%,
ID_COHESION REACTOME_RESPIRATO	125	-0.39256	-1.5897	0	0.029	1	4997	signal=52%
RY_ELECTRON_TRANSP ORT	90	-0.57476	-2.2704	0	0.000	0.002	4646	tags=56%, list=23%, signal=72%
REACTOME_RESPIRATO RY_ELECTRON_TRANSP ORT_ATP_SYNTHESIS_B Y_CHEMIOSMOTIC_COUP LING_AND_HEAT_PRODU								
CTION_BY_UNCOUPLING _PROTEINS_	112	-0.58354	-2.3654	0	0.000	0	4646	tags=54%, list=23%, signal=70%
REACTOME_RESPONSE_ OF_EIF2AK1_HRI_TO_HE ME_DEFICIENCY	15	-0.50954	-1.3848	0.10159	0.102	1	1817	tags=33%, list=9%, signal=37%
REACTOME_RESPONSE_ OF_EIF2AK4_GCN2_TO_A MINO_ACID_DEFICIENCY	102	-0.64403	-2.5783	0	0.000	0	4780	tags=72%, list=24%, signal=93%
REACTOME_RESPONSE_ OF_MTB_TO_PHAGOCYT OSIS	23	-0.65225	-1.94	0	0.001	0.153	3113	tags=39%, list=15%, signal=46%
DEACTOME DESDONSE		\mathbf{O}						
TO_ELEVATED_PLATELE T_CYTOSOLIC_CA2_	131	-0.41974	-1.7267	0	0.009	0.918	4052	tags=37%, list=20%, signal=46%
REACTOME_RET_SIGNAL	40	-0.3438	-1.1721	0.23022	0.289	1	4722	tags=40%, list=23%, signal=52%
REACTOME_RETROGRA DE_TRANSPORT_AT_THE _TRANS_GOLGI_NETWO								tags=53%, list=34%,
RK	49	-0.38191	-1.362	0.06784	0.116	1	6831	signal=80%
REACTOME_RHO_GTPAS E_CYCLE	140	-0.26418	-1.0878	0.30359	0.402	1	2901	tags=19%, list=14%, signal=22%
REACTOME_RHO_GTPAS E_EFFECTORS	262	-0.413	-1.8218	0	0.004	0.559	4495	tags=38%, list=22%, signal=48%
REACTOME_RHO_GTPAS ES_ACTIVATE_CIT	19	-0.3706	-1.0631	0.39171	0.441	1	4420	tags=42%, list=22%, signal=54%
REACTOME_RHO_GTPAS ES_ACTIVATE_FORMINS	139	-0.37978	-1.5764	0.00353	0.032	1	5021	tags=40%, list=25%, signal=52%
REACTOME_RHO_GTPAS ES_ACTIVATE_IQGAPS	31	-0.32212	-1.0458	0.40552	0.467	1	4415	tags=35%, list=22%, signal=45%
REACTOME_RHO_GTPAS ES_ACTIVATE_NADPH_O XIDASES	24	-0.36316	-1.1068	0.33956	0.377	1	3981	tags=29%, list=20%, signal=36%
REACTOME_RHO_GTPAS ES_ACTIVATE_PAKS	21	-0.36729	-1.0896	0.34743	0.401	1	6914	tags=62%, list=34%, signal=94%
REACTOME_RHO_GTPAS ES_ACTIVATE_PKNS	34	-0.48269	-1.5894	0.01946	0.029	1	4784	tags=47%, list=24%, signal=61%
REACTOME_RHO_GTPAS ES_ACTIVATE_ROCKS	19	-0.53507	-1.5272	0.04188	0.044	1	6145	tags=74%, list=30%, signal=106%

REACTOME_RHO_GTPAS ES_ACTIVATE_WASPS_A								tags=63%, list=22%,
ND_WAVES REACTOME_RIPK1_MEDI	35	-0.61389	-2.0009	0	0.000	0.056	4495	signal=81%
ROSIS	20	-0.49117	-1.4444	0.06033	0.073	1	4241	tags=60%, list=21%, signal=76%
YLATE_HISTONE_ARGINI NES	30	-0.50394	-1.6344	0.01649	0.020	0.999	3377	tags=40%, list=17%, signal=48%
REACTOME_RNA_POLYM ERASE_I_PROMOTER_ES CAPE	31	-0.4913	-1.5931	0.01775	0.028	1	5755	tags=61%, list=28%, signal=85%
REACTOME_RNA_POLYM ERASE_I_TRANSCRIPTIO	51	0 4742	1 6711	0.00432	0.015	0.087	6150	tags=59%, list=30%,
REACTOME_RNA_POLYM	01	0.4142	1.0711	0.00402	0.010	0.001	0100	toge_66% list_22%
N_INITIATION	47	-0.43845	-1.5667	0.01107	0.034	1	6777	signal=99%
REACTOME_RNA_POLYM ERASE_I_TRANSCRIPTIO N_TERMINATION	31	-0 45683	-1 4518	0.05	0.070		6933	tags=74%, list=34%, signal=113%
REACTOME RNA POLYM		0110000		0.00	0.07.0			olgital Provo
ERASE_II_TRANSCRIBES _SNRNA_GENES	74	-0.6252	-2.3895	0	0.000	0	4567	tags=59%, list=23%, signal=76%
REACTOME_RNA_POLYM ERASE_II_TRANSCRIPTIO N_TERMINATION	66	-0.57089	-2.1229	0	0.000	0.005	5551	tags=55%, list=27%, signal=75%
REACTOME_RNA_POLYM ERASE_III_CHAIN_ELONG	18	-0 51134	-1 4388	0.07717	0.075	1	4580	- tags=44%, list=23%, signal=57%
REACTOME_RNA_POLYM ERASE_III_TRANSCRIPTI	10	0.01101	1.1000	0.01711	0.010		1000	tags=44%, list=19%,
ON	41	-0.58196	-2.0009	0	0.000	0.056	3867	signal=54%
REACTOME_RNA_POLYM ERASE_III_TRANSCRIPTI ON_INITIATION_FROM_T								tags=39%, list=19%,
YPE_1_PROMOTER	28	-0.53791	-1.6724	0.00452	0.015	0.987	3867	signal=48%
REACTOME_RNA_POLYM ERASE_III_TRANSCRIPTI ON_INITIATION_FROM_T								tags=43%, list=19%,
YPE_3_PROMOTER	28	-0.55994	-1.7644	0.00295	0.006	0.802	3867	signal=53%
REACTOME_RNA_POLYM ERASE_III_TRANSCRIPTI ON_TERMINATION	23	-0.53773	-1.6074	0.02128	0.025	1	3867	tags=43%, list=19%, signal=54%
REACTOME_ROLE_OF_L								
AT2_NTAL_LAB_ON_CAL CIUM_MOBILIZATION	16	-0.55054	-1.4914	0.04058	0.055	1	4222	tags=56%, list=21%, signal=71%
HOSPHOLIPIDS_IN_PHAG OCYTOSIS	25	-0.35161	-1.0606	0.3875	0.444	1	5907	tags=44%, list=29%, signal=62%
REACTOME_RORA_ACTI VATES_GENE_EXPRESSI ON	18	-0.45864	-1.2876	0.14815	0.172	1	4784	tags=39%, list=24%, signal=51%
REACTOME_ROS_AND_R NS_PRODUCTION_IN_PH	36	-0 47291	-1 5519	0.02062	0.037	1	3218	tags=33%, list=16%, signal=40%
REACTOME BRNA MODI	00	0.17201	1.0010	0.02002	0.001		0210	
FICATION_IN_THE_NUCL EUS_AND_CYTOSOL	60	-0.43144	-1.5684	0.01083	0.033	1	5321	tags=45%, list=26%, signal=61%
REACTOME_RRNA_PROC ESSING	202	-0.52463	-2.2654	0	0.000	0.002	5414	tags=58%, list=27%, signal=78%
REACTOME_RUNX1_INTE RACTS_WITH_CO_FACTO RS_WHOSE_PRECISE_EF FECT ON RUNX1 TARG								tags=41%, list=17%.
ETS_IS_NOT_KNOWN	37	-0.54923	-1.8355	0.00143	0.003	0.501	3411	signal=49%

REACTOME_RUNX1_REG ULATES_GENES_INVOLV ED_IN_MEGAKARYOCYT E_DIFFERENTIATION_AN D_PLATELET_FUNCTION	37	-0.48375	-1.6264	0.00713	0.022	1	5469	tags=49%, list=27%, signal=67%
REACTOME_RUNX1_REG ULATES_TRANSCRIPTIO N_OF_GENES_INVOLVED _IN_DIFFERENTIATION_O	70	0.51047	1 0255	0	0.001	0.150	4124	tags=44%, list=20%,
REACTOME_RUNX2_REG ULATES_BONE_DEVELOP MENT	31	-0.23659	-0.7548	0.81633	0.883	1	5199	tags=29%, list=26%, signal=39%
REACTOME_RUNX2_REG ULATES_OSTEOBLAST_D	24	-0 35356	-1 072	0 37288	0.426	1	4977	tags=33%, list=25%,
REACTOME S PHASE	162	-0.48394	-2.0504	0	0.000	0.035	4626	tags=42%, list=23%, signal=54%
REACTOME_SARS_COV_	-					٤.		tags=52%, list=23%,
1_INFECTION	50	-0.52214	-1.8724	0.00139	0.002	0.348	4620	signal=67%
REACTOME_SARS_COV_I NFECTIONS REACTOME_SCAVENGIN	86	-0.52417	-2.0373	0	0.000	0.04	4749	tags=51%, list=23%, signal=67%
G_BY_CLASS_A_RECEPT ORS	19	-0.41508	-1.1855	0.2654	0.274		6241	tags=47%, list=31%, signal=68%
REACTOME SCF SKP2								
MEDIATED_DEGRADATIO N_OF_P27_P21	60	-0.52714	-1.9737	0	0.001	0.086	5729	tags=55%, list=28%, signal=76%
REACTOME_SELECTIVE_ AUTOPHAGY	81	-0.53139	-2.0457	0	0.000	0.036	4217	tags=49%, list=21%, signal=62%
REACTOME_SELENOAMI NO_ACID_METABOLISM	109	-0.59803	-2.4069	0	0.000	0	4780	tags=65%, list=24%, signal=85%
REACTOME_SEMA3A_PA K_DEPENDENT_AXON_R EPULSION	16	-0.40632	-1.1325	0.31542	0.343	1	6258	tags=63%, list=31%, signal=90%
REACTOME_SEMA4D_IN_ SEMAPHORIN_SIGNALIN	24	-0 45994	-1 4218	0.07004	0.083	1	4420	tags=50%, list=22%,
REACTOME_SEMA4D_IN	24	0.40004	1.4210	0.07004	0.000		4420	Signal-0+70
N_AND_GROWTH_CONE_	20	-0 42425	-1 2393	0 19909	0.216	1	6059	tags=60%, list=30%, signal=85%
REACTOME SEMAPHORI	20	0.12120	1.2000	0.10000	0.210		0000	
—								tags=53%, list=31%,
N_INTERACTIONS REACTOME_SENESCENC	64	-0.37476	-1.4023	0.05836	0.094	1	6258	signal=77%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP	64 52	-0.37476	-1.4023	0.05836	0.094	1	6258 3653	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP REACTOME_SEPARATIO N_OF_SISTER_CHROMAT	64 52	-0.37476 -0.43527	-1.4023 -1.5592	0.05836	0.094	1	6258 3653	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%,
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP 	64 52 190	-0.37476 -0.43527 -0.45231	-1.4023 -1.5592 -1.9586	0.05836 0.01348 0	0.094 0.035 0.001	1 1 0.116	6258 3653 4997	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP REACTOME_SEPARATIO N_OF_SISTER_CHROMAT IDS REACTOME_SHC1_EVEN TS_IN_ERBB2_SIGNALIN G	64 52 190 22	-0.37476 -0.43527 -0.45231 -0.22344	-1.4023 -1.5592 -1.9586 -0.6799	0.05836 0.01348 0 0.89425	0.094 0.035 0.001 0.947	1 1 0.116 1	6258 3653 4997 6360	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP REACTOME_SEPARATIO N_OF_SISTER_CHROMAT IDS REACTOME_SHC1_EVEN TS_IN_ERBB2_SIGNALIN G REACTOME_SIALIC_ACID _METABOLISM	64 52 190 22 33	-0.37476 -0.43527 -0.45231 -0.22344 -0.26323	-1.4023 -1.5592 -1.9586 -0.6799 -0.8675	0.05836 0.01348 0 0.89425 0.67338	0.094 0.035 0.001 0.947 0.740	1 1 0.116 1 1	6258 3653 4997 6360 4479	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60% tags=30%, list=22%, signal=39%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP REACTOME_SEPARATIO N_OF_SISTER_CHROMAT IDS REACTOME_SHC1_EVEN TS_IN_ERBB2_SIGNALIN G REACTOME_SIALIC_ACID _METABOLISM REACTOME_SIGNAL_AM PLIFICATION	64 52 190 22 33 33	-0.37476 -0.43527 -0.45231 -0.22344 -0.26323 -0.42763	-1.4023 -1.5592 -1.9586 -0.6799 -0.8675 -1.3975	0.05836 0.01348 0 0.89425 0.67338 0.06096	0.094 0.035 0.001 0.947 0.740 0.096	1 1 0.116 1 1 1	6258 3653 4997 6360 4479 3496	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60% tags=30%, list=22%, signal=39% tags=33%, list=17%, signal=40%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP 	64 52 190 22 33 33 33	-0.37476 -0.43527 -0.45231 -0.22344 -0.26323 -0.42763	-1.4023 -1.5592 -1.9586 -0.6799 -0.8675 -1.3975	0.05836 0.01348 0 0.89425 0.67338 0.06096	0.094 0.035 0.001 0.947 0.740 0.096	1 1 0.116 1 1 1	6258 3653 4997 6360 4479 3496	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60% tags=30%, list=22%, signal=39% tags=33%, list=17%, signal=40%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP REACTOME_SEPARATIO N_OF_SISTER_CHROMAT IDS REACTOME_SHC1_EVEN TS_IN_ERBB2_SIGNALIN G REACTOME_SIALIC_ACID _METABOLISM REACTOME_SIGNAL_AM PLIFICATION REACTOME_SIGNAL_RE GULATORY_PROTEIN_FA MILY_INTERACTIONS	64 52 190 22 33 33 33	-0.37476 -0.43527 -0.45231 -0.22344 -0.26323 -0.42763 -0.5326	-1.4023 -1.5592 -1.9586 -0.6799 -0.8675 -1.3975 -1.4793	0.05836 0.01348 0 0.89425 0.67338 0.06096 0.05547	0.094 0.035 0.001 0.947 0.740 0.096 0.059	1 1 0.116 1 1 1 1	6258 3653 4997 6360 4479 3496	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60% tags=30%, list=22%, signal=39% tags=33%, list=17%, signal=40% tags=56%, list=24%, signal=74%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP REACTOME_SEPARATIO N_OF_SISTER_CHROMAT IDS REACTOME_SHC1_EVEN TS_IN_ERBB2_SIGNALIN G REACTOME_SIALIC_ACID _METABOLISM REACTOME_SIGNAL_AM PLIFICATION REACTOME_SIGNAL_RE GULATORY_PROTEIN_FA MILY_INTERACTIONS REACTOME_SIGNAL_TRA NSDUCTION_BY_L1	64 52 190 22 33 33 33 16 21	-0.37476 -0.43527 -0.45231 -0.22344 -0.26323 -0.42763 -0.5326 -0.40844	-1.4023 -1.5592 -1.9586 -0.6799 -0.8675 -1.3975 -1.4793 -1.4793 -1.189	0.05836 0.01348 0 0.89425 0.67338 0.06096 0.05547 0.24094	0.094 0.035 0.001 0.947 0.740 0.096 0.059 0.270	1 1 0.116 1 1 1 1 1	6258 3653 4997 6360 4479 3496 4946 3549	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60% tags=30%, list=22%, signal=39% tags=33%, list=17%, signal=40% tags=56%, list=24%, signal=74% tags=33%, list=18%, signal=40%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP 	64 52 190 22 33 33 33 16 21 28	-0.37476 -0.43527 -0.45231 -0.22344 -0.26323 -0.42763 -0.5326 -0.40844 -0.24171	-1.4023 -1.5592 -1.9586 -0.6799 -0.8675 -1.3975 -1.4793 -1.189 -0.7627	0.05836 0.01348 0 0.89425 0.67338 0.06096 0.05547 0.24094 0.80392	0.094 0.035 0.001 0.947 0.740 0.096 0.059 0.270 0.875	1 1 0.116 1 1 1 1 1 1	6258 3653 4997 6360 4479 3496 4946 3549 3494	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60% tags=30%, list=22%, signal=39% tags=33%, list=17%, signal=40% tags=33%, list=18%, signal=40% tags=18%, list=17%, signal=40%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP REACTOME_SEPARATIO N_OF_SISTER_CHROMAT IDS REACTOME_SHC1_EVEN TS_IN_ERBB2_SIGNALINN G REACTOME_SIALIC_ACID _METABOLISM REACTOME_SIGNAL_AM PLIFICATION REACTOME_SIGNAL_RE GULATORY_PROTEIN_FA MILY_INTERACTIONS REACTOME_SIGNAL_TRA NSDUCTION_BY_L1 REACTOME_SIGNALING_ BY_BMP REACTOME_SIGNALING_ BY_BRAF_AND_RAF_FUS IONS	64 52 190 22 33 33 33 16 21 28 65	-0.37476 -0.43527 -0.45231 -0.22344 -0.26323 -0.42763 -0.42763 -0.5326 -0.40844 -0.24171 -0.24171	-1.4023 -1.5592 -1.9586 -0.6799 -0.8675 -1.3975 -1.4793 -1.189 -0.7627 -1.7544	0.05836 0.01348 0 0.89425 0.67338 0.06096 0.05547 0.24094 0.80392 0	0.094 0.035 0.001 0.947 0.740 0.096 0.059 0.270 0.875 0.007	1 0.116 1 1 1 1 1 1 1 1 0.845	6258 3653 4997 6360 4479 3496 3549 3494 3494	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60% tags=30%, list=22%, signal=39% tags=33%, list=17%, signal=40% tags=34%, list=17%, signal=41%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP 	64 52 190 22 33 33 33 16 21 28 65	-0.37476 -0.43527 -0.45231 -0.22344 -0.26323 -0.42763 -0.5326 -0.40844 -0.24171 -0.24171	-1.4023 -1.5592 -1.9586 -0.6799 -0.8675 -1.3975 -1.4793 -1.4793 -1.189 -0.7627 -1.7544	0.05836 0.01348 0 0.89425 0.67338 0.06096 0.05547 0.24094 0.80392 0	0.094 0.035 0.001 0.947 0.740 0.096 0.059 0.270 0.875 0.007	1 0.116 1 1 1 1 1 1 1 0.845	6258 3653 4997 6360 4479 3496 4946 3549 3494 3494	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60% tags=30%, list=22%, signal=39% tags=33%, list=17%, signal=40% tags=33%, list=17%, signal=40% tags=34%, list=17%, signal=41%
N_INTERACTIONS REACTOME_SENESCENC E_ASSOCIATED_SECRET ORY_PHENOTYPE_SASP REACTOME_SEPARATIO N_OF_SISTER_CHROMAT IDS REACTOME_SHC1_EVEN TS_IN_ERBB2_SIGNALIN G REACTOME_SIALIC_ACID _METABOLISM REACTOME_SIGNAL_AM PLIFICATION REACTOME_SIGNAL_RE GULATORY_PROTEIN_FA MILY_INTERACTIONS REACTOME_SIGNAL_TRA NSDUCTION_BY_L1 REACTOME_SIGNALING_ BY_BMP REACTOME_SIGNALING_ BY_BRAF_AND_RAF_FUS IONS REACTOME_SIGNALING_ BY_CYTOSOLIC_FGFR1_ FUSION_MUTANTS	 64 52 190 22 33 33 16 21 28 65 17 	-0.37476 -0.43527 -0.45231 -0.22344 -0.26323 -0.42763 -0.42763 -0.5326 -0.40844 -0.24171 -0.24171 -0.47429 -0.668868	-1.4023 -1.5592 -1.9586 -0.6799 -0.8675 -1.3975 -1.4793 -1.4793 -1.189 -0.7627 -1.7544 -1.8828	0.05836 0.01348 0 0.89425 0.67338 0.06096 0.05547 0.24094 0.80392 0	0.094 0.035 0.001 0.947 0.740 0.096 0.059 0.270 0.875 0.007	1 0.116 1 1 1 1 1 1 1 0.845 0.31	6258 3653 4997 6360 4479 3496 3549 3494 3494 3444	tags=53%, list=31%, signal=77% tags=33%, list=18%, signal=40% tags=42%, list=25%, signal=55% tags=41%, list=31%, signal=60% tags=30%, list=22%, signal=39% tags=33%, list=17%, signal=40% tags=33%, list=18%, signal=40% tags=18%, list=17%, signal=22% tags=34%, list=17%, signal=41% tags=71%, list=24%, signal=92%
REACTOME_SIGNALING_ BY_EGFR_IN_CANCER	25	-0.5755	-1.7805	0.00305	0.005	0.726	4483	tags=56%, list=22%, signal=72%
--	-----	----------	---------	---------	-------	-------	------	-----------------------------------
REACTOME_SIGNALING_ BY_ERBB2	50	-0.43106	-1.5465	0.01372	0.039	1	4626	tags=40%, list=23%, signal=52%
BY_ERBB2_ECD_MUTANT S	16	-0.58481	-1.602	0.02135	0.026	1	4222	tags=50%, list=21%, signal=63%
REACTOME_SIGNALING_ BY_ERBB2_IN_CANCER	26	-0.43462	-1.348	0.10423	0.125	1	4222	tags=35%, list=21%, signal=44%
REACTOME_SIGNALING_ BY_ERBB4	58	-0.37853	-1.3896	0.04318	0.099	1	4470	tags=34%, list=22%, signal=44%
REACTOME_SIGNALING_ BY_ERYTHROPOIETIN	25	-0.47101	-1.4675	0.06056	0.064	1	5834	tags=52%, list=29%, signal=73%
REACTOME_SIGNALING_ BY_FGFR	87	-0.428	-1.6808	0.00127	0.013	0.982	4831	tags=43%, list=24%, signal=56%
REACTOME_SIGNALING_ BY_FGFR_IN_DISEASE	62	-0.4613	-1.7194	0.00264	0.010	0.928	4430	tags=39%, list=22%, signal=49%
REACTOME_SIGNALING_ BY_FGFR1	50	-0.45047	-1.6017	0.01124	0.026	1	4222	tags=38%, list=21%, signal=48%
REACTOME_SIGNALING_ BY_FGFR1_IN_DISEASE	37	-0.55669	-1.8435	0.00283	0.003	0.465	3032	tags=35%, list=15%, signal=41%
REACTOME_SIGNALING_ BY_FGFR2	73	-0.47107	-1.7777	0.00136	0.006	0.739	4831	tags=47%, list=24%, signal=61%
REACTOME_SIGNALING_ BY_FGFR2_IIIA_TM	19	-0.5375	-1.562	0.02188	0.035	1	4412	tags=47%, list=22%, signal=60%
REACTOME_SIGNALING_ BY_FGFR2_IN_DISEASE	43	-0.38444	-1.323	0.09155	0.142	1	4412	tags=35%, list=22%, signal=44%
REACTOME_SIGNALING_ BY_FGFR3	40	-0.477	-1.6152	0.01289	0.024	1	4722	tags=48%, list=23%, signal=62%
REACTOME_SIGNALING_ BY_FGFR4	41	-0.4834	-1.6284	0.01036	0.021	0.999	3249	tags=37%, list=16%, signal=43%
REACTOME_SIGNALING_ BY_HEDGEHOG	150	-0.41924	-1.7556	0	0.007	0.843	4255	tags=35%, list=21%, signal=44%
REACTOME_SIGNALING_ BY_HIPPO	20	-0.45094	-1.3123	0.13876	0.151	1	3644	tags=35%, list=18%, signal=43%
REACTOME_SIGNALING_ BY_INSULIN_RECEPTOR	78	-0.30935	-1.1918	0.18936	0.267	1	3218	tags=24%, list=16%, signal=29%
REACTOME_SIGNALING_ BY_INTERLEUKINS	446	-0.35827	-1.6396	0	0.019	0.998	4800	tags=33%, list=24%, signal=43%
REACTOME_SIGNALING_ BY_KIT_IN_DISEASE	20	-0.53839	-1.5708	0.03257	0.033	1	5088	tags=55%, list=25%, signal=73%
REACTOME_SIGNALING_ BY_MET	79	-0.49752	-1.907	0	0.002	0.24	4722	tags=47%, list=23%, signal=61%
REACTOME_SIGNALING_ BY_MODERATE_KINASE_ ACTIVITY_BRAF_MUTANT								tags=42%, list=26%,
S REACTOME_SIGNALING_	45	-0.40534	-1.4268	0.06828	0.081	1	5174	signal=57% tags=27%, list=16%,
BY_NOTCH REACTOME_SIGNALING_	176	-0.41827	-1.7822	0	0.005	0.722	3178	signal=31% tags=36%, list=26%,
BY_NOTCH1	74	-0.35827	-1.3444	0.07631	0.127	1	5351	signal=49%
BY_NOTCH1_HD_DOMAIN _MUTANTS_IN_CANCER	15	-0.37079	-1.0042	0.44426	0.533	1	3113	tags=27%, list=15%, signal=31%
REACTOME_SIGNALING_ BY_NOTCH1_PEST_DOM AIN_MUTANTS_IN_CANC ER	58	-0.35669	-1.289	0.1114	0.171	1	5351	tags=36%, list=26%, signal=49%
REACTOME_SIGNALING_ BY_NOTCH2	33	-0.42397	-1.3792	0.09224	0.105	1	3760	tags=27%, list=19%, signal=33%
REACTOME_SIGNALING_ BY_NOTCH3	49	-0.38457	-1.3449	0.0856	0.127	1	3113	tags=22%, list=15%, signal=26%
REACTOME_SIGNALING_ BY_NOTCH4	82	-0.51586	-1.9939	0	0.001	0.062	5555	tags=49%, list=27%, signal=67%
REACTOME_SIGNALING_ BY_NTRK2_TRKB_	25	-0.38251	-1.1837	0.23231	0.276	1	5088	tags=44%, list=25%, signal=59%

REACTOME_SIGNALING_ BY_NTRK3_TRKC_	17	-0.56007	-1.5679	0.02385	0.033	1	5088	tags=47%, list=25%, signal=63%
REACTOME_SIGNALING_ BY_NTRKS	134	-0.35279	-1.4608	0.01185	0.067	1	4773	tags=35%, list=24%, signal=46%
BY_NUCLEAR_RECEPTO RS	237	-0.42388	-1.8521	0	0.003	0.431	5137	tags=42%, list=25%, signal=55%
REACTOME_SIGNALING_ BY_PDGF	58	-0.32156	-1.187	0.20822	0.272	1	5088	tags=34%, list=25%, signal=46%
REACTOME_SIGNALING_ BY_PDGFR_IN_DISEASE	20	-0.66605	-1.8972	0	0.002	0.272	4185	tags=65%, list=21%, signal=82%
REACTOME_SIGNALING_ BY_PTK6	54	-0.39753	-1.4443	0.05049	0.073	1	4626	tags=39%, list=23%, signal=50%
REACTOME_SIGNALING_ BY_RETINOIC_ACID	43	-0.29241	-1.0212	0.43634	0.506	1	4476	tags=21%, list=22%, signal=27%
REACTOME_SIGNALING_ BY_RHO_GTPASES	392	-0.35472	-1.6192	0	0.023	1	4495	tags=33%, list=22%, signal=41%
REACTOME_SIGNALING_ BY_ROBO_RECEPTORS	218	-0.54864	-2.3802	0	0.000	0	5748	tags=63%, list=28%, signal=87%
REACTOME_SIGNALING_ BY_SCF_KIT	43	-0.39297	-1.3488	0.08905	0.125		4796	tags=47%, list=24%, signal=61%
REACTOME_SIGNALING_ BY_TGF_BETA_RECEPTO	73	-0 55755	-2 1362	0	0.000	0.005	3335	tags=45%, list=16%,
REACTOME_SIGNALING_ BY_TGFB_FAMILY_MEMB	102	-0.47556	-1 8808	0	0.002	0.313	3601	tags=36%, list=18%,
REACTOME_SIGNALING_ BY_THE_B_CELL_RECEP TOR_BCR	110	-0 48356	-1 9551	0	0.001	0.122	5586	tags=49%, list=28%, signal=67%
REACTOME_SIGNALING_ BY VEGF	106	-0.33431	-1.3253	0.05335	0.141	1	4626	tags=36%, list=23%, signal=46%
REACTOME_SIGNALING_ BY_WNT	269	-0.38285	-1.705	0	0.011	0.952	4740	tags=37%, list=23%, signal=47%
REACTOME_SIGNALING_ BY_WNT_IN_CANCER	34	-0.48085	-1.5714	0.0184	0.033	1	4021	tags=47%, list=20%, signal=59%
REACTOME_SIGNALLING _TO_ERKS	34	-0.39827	-1.2952	0.12428	0.166	1	6019	tags=47%, list=30%, signal=67%
REACTOME_SIGNALLING _TO_RAS	20	-0.20264	-0.5867	0.95513	0.984	1	5088	tags=30%, list=25%, signal=40%
REACTOME_SLC_MEDIAT ED_TRANSMEMBRANE_T RANSPORT	250	-0 18491	-0 8071	0 89514	0.827	1	4813	tags=24%, list=24%, signal=31%
REACTOME_SLC_TRANS	08	-0.40699	-1 6071	0.00375	0.025	1	/813	tags=39%, list=24%,
REACTOME_SMAD2_SMA D3_SMAD4_HETEROTRIM ER_REGULATES_TRANS CRIPTION	32	-0.59266	-1.8975	0	0.002	0.272	3601	tags=50%, list=18%, signal=61%
REACTOME_SMOOTH_M USCLE CONTRACTION	38	-0.32821	-1.1193	0.28973	0.359	1	2387	tags=18%, list=12%, signal=21%
REACTOME_SNRNP_ASS	53	-0.61245	-2.1878	0	0.000	0.002	4102	tags=53%, list=20%, signal=66%
REACTOME_SPHINGOLIP ID_DE_NOVO_BIOSYNTH ESIS	43	-0.36355	-1.256	0.14641	0.199	1	3156	tags=28%, list=16%, signal=33%
REACTOME_SPHINGOLIP ID_METABOLISM	87	-0.38809	-1.512	0.00911	0.048	1	3191	tags=28%, list=16%, signal=33%
REACTOME_SPRY_REGU LATION_OF_FGF_SIGNAL ING	16	-0.72848	-2.0184	0	0.000	0.05	4722	tags=75%, list=23%, signal=98%
REACTOME_SRP_DEPEN DENT_COTRANSLATIONA L_PROTEIN_TARGETING_						_		tags=73%, list=23%,
TO_MEMBRANE REACTOME_STABILIZATI	113	-0.67349	-2.7056	0	0.000	0	4674	signal=94% tags=40%, list=16%,
ON_OF_P53	57	-0.58163	-2.108	0	0.000	0.008	3178	signal=48%

REACTOME STING MEDI								
ATED_INDUCTION_OF_H								togo_120/ list_60/
ES	15	-0.36485	-0.9607	0.50256	0.600	1	1228	signal=14%
REACTOME_SULFUR_AMI NO_ACID_METABOLISM	28	-0.19584	-0.6241	0.93853	0.974	1	3718	tags=21%, list=18%, signal=26%
REACTOME_SUMOYLATI	172	-0.48129	-2.0242	0	0.000	0.047	3755	tags=34%, list=19%, signal=42%
REACTOME SUMOYLATI								
ON_OF_CHROMATIN_OR GANIZATION_PROTEINS	56	-0.6031	-2.1789	0	0.000	0.002	4957	tags=54%, list=24%, signal=71%
REACTOME_SUMOYLATI								
ESPONSE_AND_REPAIR_ PROTEINS	76	-0.57696	-2.1931	0	0.000	0.002	4997	tags=50%, list=25%, signal=66%
REACTOME SUMOYLATI								
ON_OF_DNA_METHYLATI ON_PROTEINS	16	-0.34687	-0.9593	0.52904	0.602	1	7200	tags=44%, list=36%, signal=68%
REACTOME SUMOYLATI								
ON_OF_DNA_REPLICATI	45	-0.64742	-2.2462	0	0.000	0.002	4102	tags=53%, list=20%, signal=67%
								- gran
ON_OF_INTRACELLULAR	20	0 50005	4.0405	0	0.000	0.450	4 45 4	tags=30%, list=7%,
REACTOME_SUMOYLATI	30	-0.58335	-1.8465	0	0.003	0.456	1454	signal=32%
ON_OF_RNA_BINDING_P ROTEINS	46	-0.64935	-2.2911	0	0.000	0.001	4957	tags=59%, list=24%, signal=78%
REACTOME_SUMOYLATI ON_OF_SUMOYLATION_P								tags=62%, list=23%,
ROTEINS	34	-0.67233	-2.1809	0	0.000	0.002	4729	signal=80%
REACTOME_SUMOYLATI ON_OF_TRANSCRIPTION								tags=49%, list=26%,
_COFACTORS	43	-0.55244	-1.8915	0	0.002	0.285	5309	signal=66%
REACTOME_SUMOYLATI								tage-35% list-16%
_FACTORS	20	-0.47362	-1.3668	0.13889	0.113	1	3337	signal=42%
REACTOME_SUMOYLATI								to an 500/ list 000/
ON_OF_OBIQUITINTEATT	38	-0.65762	-2.2327	0	0.000	0.002	4729	signal=75%
REACTOME_SWITCHING_								
OF_ORIGINS_TO_A_POS T_REPLICATIVE_STATE	91	-0.51249	-1.9925	0	0.001	0.064	4124	tags=40%, list=20%, signal=49%
REACTOME_SYNDECAN_	07	0.4010	1 0000	0 40744	0.016	4	5010	tags=44%, list=25%,
REACTOME_SYNTHESIS_	21	-0.4019	-1.2309	0.10741	0.210	I	2019	signal=59%
OF_ACTIVE_UBIQUITIN_R OLES_OF_E1_AND_E2_E								tags=63%, list=26%,
NZYMES	30	-0.59506	-1.9169	0	0.001	0.208	5295	signal=86%
REACTOME_SYNTHESIS_ OF_BILE_ACIDS_AND_BIL								tags=26%, list=12%,
E_SALTS	34	-0.37583	-1.2447	0.16479	0.211	1	2520	signal=30%
REACTOME_SYNTHESIS_								
E_SALTS_VIA_27_HYDRO								tags=47%, list=29%,
XYCHOLESTEROL	15	-0.40625	-1.1161	0.32689	0.362	1	5858	signal=66%
REACTOME_SYNTHESIS_								
E_SALTS_VIA_7ALPHA_H YDROXYCHOLESTEROL	24	-0.4185	-1.2734	0.16265	0.184	1	2520	tags=29%, list=12%, signal=33%
REACTOME_SYNTHESIS_ OF PA	39	-0.24368	-0.8331	0.74854	0.793	1	2416	tags=13%, list=12%, signal=15%
REACTOME_SYNTHESIS_		-						tags=57%, list=28%,
OF_PC REACTOME SYNTHESIS	28	-0.46551	-1.4876	0.05007	0.056	1	5631	signal=79%
OF_PIPS_AT_THE_EARLY ENDOSOME_MEMBRAN								tags=38%. list=25%
E	16	-0.45557	-1.2338	0.1877	0.221	1	5074	signal=50%

REACTOME_SYNTHESIS_ OF_PIPS_AT_THE_GOLGI _MEMBRANE	18	-0.5582	-1.6092	0.0216	0.025	1	4293	tags=50%, list=21%, signal=63%
REACTOME_SYNTHESIS_ OF_PIPS_AT_THE_PLASM A_MEMBRANE	53	-0.45821	-1.6582	0.00274	0.017	0.99	4535	tags=42%, list=22%, signal=53%
REACTOME_SYNTHESIS_ OF_PROSTAGLANDINS_P G_AND_THROMBOXANES _TX_	15	-0.32412	-0.8887	0.62679	0.710	1	5377	tags=33%, list=27%, signal=45%
REACTOME_SYNTHESIS_ OF_SUBSTRATES_IN_N_ GLYCAN_BIOSYTHESIS	62	-0 2932	-1 0882	0 31907	0 402	1	3778	tags=21%, list=19%, signal=26%
REACTOME_SYNTHESIS_ OF_VERY_LONG_CHAIN_	24	0.0000	0.8022	0.75455	0.820	1	4554	tags=38%, list=22%,
REACTOME_SYNTHESIS_ SECRETION_AND_DEACY	24	-0.26282	-0.8032	0.75155	0.829	¢.	4554	signai=48% tags=32%, list=17%,
REACTOME_SYNTHESIS_	19	-0.38874	-1.1424	0.28885	0.328		3353	signal=38%
VATION_OF_GLUCAGON_ LIKE_PEPTIDE_1_GLP_1_	20	-0.33752	-0.976	0.51033	0.575		3353	tags=30%, list=17%, signal=36%
ATES_NFKB_BY_PHOSPH ORYLATION_AND_ACTIV ATION_OF_IKKS_COMPL								tags=38%, list=19%,
EX REACTOME_TBC_RABGA	32	-0.48228	-1.5591	0.02193	0.035	1	3926	signal=46% tags=41%, list=15%,
PS	44	-0.57017	-1.9960		0.000	0.058	3005	signal=40%
DENT_SIGNALING_IN_RE SPONSE_TO_WNT	173	-0.37098	-1.5872	0.00228	0.029	1	4740	tags=36%, list=23%, signal=47%
REACTOME_TCR_SIGNAL ING	117	-0.59667	-2.4069	0	0.000	0	3572	tags=41%, list=18%, signal=50%
REACTOME_TELOMERE_ C_STRAND_LAGGING_ST RAND_SYNTHESIS	34	-0.33094	-1.0829	0.35755	0.408	1	5170	tags=35%, list=26%, signal=47%
REACTOME_TELOMERE_ EXTENSION_BY_TELOME RASE	23	-0.38701	-1.1615	0.25469	0.303	1	5171	tags=39%, list=26%, signal=52%
REACTOME_TELOMERE_ MAINTENANCE	65	-0.38892	-1.4546	0.03426	0.069	1	5171	tags=38%, list=26%, signal=51%
REACTOME_TERMINATIO								Ŭ
N_OF_TRANSLESION_DN A_SYNTHESIS	32	-0.60581	-1.978	0.00142	0.001	0.079	3646	tags=53%, list=18%, signal=65%
REACTOME_TGF_BETA_ RECEPTOR_SIGNALING_ ACTIVATES_SMADS	32	-0.55083	-1.7957	0.00287	0.005	0.677	3335	tags=44%, list=16%, signal=52%
REACTOME_TGF_BETA_ RECEPTOR_SIGNALING_I N_EMT_EPITHELIAL_TO_ MESENCHYMAL_TRANSIT								tage-60% list-23%
ION_ REACTOME THE CITRIC	16	-0.56963	-1.5772	0.02318	0.032	1	4616	signal=89%
_ACID_TCA_CYCLE_AND _RESPIRATORY_ELECTR ON_TRANSPORT	163	-0.53429	-2.2369	0	0.000	0.002	4646	tags=48%, list=23%, signal=62%
REACTOME_THE_NLRP3_	15	-0 47669	-1 2796	0 18/3/	0 179	1	3802	tags=40%, list=19%,
REACTOME_THE_PHOTO TRANSDUCTION_CASCA	13	0.48868	0.6400	0.05054	0.077	1	4000	tags=24%, list=23%,
REACTOME_THE_ROLE_ OF_GTSE1_IN_G2_M_PR OGRESSION_AFTER_G2_	34	-0.10000	-0.0123	0.90904	0.911	1	4000	tags=38%, list=21%,
CHECKPOINT CHECKPOINT REACTOME_THE_ROLE_	78	-0.46557	-1.7923	0	0.005	0.689	4264	signal=49%
OF_NEF_IN_HIV_1_REPLI CATION_AND_DISEASE_P ATHOGENESIS	28	-0.44671	-1.4005	0.08663	0.094	1	3565	tags=32%, list=18%, signal=39%

REACTOME_THROMBIN_ SIGNALLING_THROUGH_ PROTEINASE_ACTIVATE D_RECEPTORS_PARS_	32	-0.42767	-1.3954	0.07133	0.096	1	3496	tags=34%, list=17%, signal=41%
REACTOME_THROMBOX ANE_SIGNALLING_THRO UGH_TP_RECEPTOR	24	-0.39861	-1.2179	0.2003	0.236	1	2462	tags=29%, list=12%, signal=33%
REACTOME_TICAM1_RIP 1_MEDIATED_IKK_COMPL EX_RECRUITMENT	19	-0.67735	-1.9335	0.00152	0.001	0.167	3356	tags=68%, list=17%, signal=82%
ING	18	-0.51177	-1.4427	0.07256	0.074	1	5088	signal=82%
REACTOME_TIGHT_JUNC TION_INTERACTIONS	30	-0.26164	-0.8316	0.73945	0.795	1	1586	tags=17%, list=8%, signal=18%
REACTOME_TNF_RECEP TOR_SUPERFAMILY_TNF SF_MEMBERS_MEDIATIN G NON CANONICAL NF								taqs=29%, list=18%,
KB_PATHWAY REACTOME TNF SIGNAL	17	-0.31099	-0.8834	0.62063	0.718	1	3657	signal=36% tags=58%, list=26%,
ING	43	-0.54736	-1.8817	0.00273	0.002	0.312	5246	signal=78%
REACTOME_TNFR1_INDU CED_NFKAPPAB_SIGNALI NG_PATHWAY	30	-0.55649	-1.8187	0.00297	0.004	0.568	5246	tags=67%, list=26%, signal=90%
CANONICAL_NF_KB_PA	101	-0.40414	-1.6133	0.00377	0.024	1	5555	tags=42%, list=27%, signal=57%
REACTOME_TOLL_LIKE_ RECEPTOR_10_TLR10_C ASCADE	84	-0.49044	-1.9034	0	0.002	0.251	4362	tags=42%, list=22%, signal=53%
REACTOME_TOLL_LIKE_ RECEPTOR_4_TLR4_CAS CADE	127	-0.48047	-1.97	0	0.001	0.091	4362	tags=40%, list=22%, signal=51%
REACTOME_TOLL_LIKE_ RECEPTOR_9_TLR9_CAS CADE	95	-0.4671	-1.856	0	0.003	0.416	4021	tags=38%, list=20%, signal=47%
REACTOME_TOLL_LIKE_ RECEPTOR_CASCADES	153	-0.47523	-1.9818	0	0.001	0.078	4021	tags=39%, list=20%, signal=48%
REACTOME_TOLL_LIKE_ RECEPTOR_TLR1_TLR2_ CASCADE	97	-0.45745	-1.8248	0	0.004	0.549	4021	tags=35%, list=20%, signal=44%
REACTOME_TP53_REGU LATES_METABOLIC_GEN ES	83	-0.55394	-2.1318	0	0.000	0.005	4307	tags=52%, list=21%, signal=66%
REACTOME_TP53_REGU LATES_TRANSCRIPTION_ OF_ADDITIONAL_CELL_C YCLE_GENES_WHOSE_E XACT_ROLE_IN_THE_P53 _PATHWAY_REMAIN_UN	21	0 57428	1.602	0.00027	0.012	0.07	5200	tags=52%, list=26%,
REACTOME TP53 REGU	21	-0.37438	-1.095	0.00927	0.012	0.97	5500	Signal=7176
LATES_TRANSCRIPTION_ OF_CELL_CYCLE_GENES	49	-0.53002	-1.8723	0.00138	0.002	0.348	5300	tags=51%, list=26%, signal=69%
REACTOME_TP53_REGU LATES_TRANSCRIPTION_ OF_CELL_DEATH_GENES	44	-0.35097	-1.2076	0.19712	0.248	1	2079	tags=20%, list=10%, signal=23%
REACTOME_TP53_REGU LATES_TRANSCRIPTION_ OF_DNA_REPAIR_GENES	62	-0.64146	-2.3563	0	0.000	0	4584	tags=55%, list=23%, signal=71%
REACTOME_TP53_REGU LATES_TRANSCRIPTION_ OF_GENES_INVOLVED_I N_CYTOCHROME_C_REL EASE	20	-0.39756	-1.1429	0.28594	0.328	1	1519	tags=20%, list=7%, signal=22%
REACTOME_TP53_REGU LATES_TRANSCRIPTION_ OF_GENES_INVOLVED_I N_G2_CELL_CYCLE_ARR	10	0 5070	1 4954	0.07410	0.092	4	E407	tags=44%, list=25%,
REACTOME_TRAF6_MEDI ATED_INDUCTION_OF_TA K1_COMPLEX_WITHIN_TL R4_COMPLEX	16	-0.5072	-1.4204	0	0.002	0.123	3113	signal=39% tags=63%, list=15%, signal=74%

REACTOME_TRAF6_MEDI ATED_IRF7_ACTIVATION	29	-0.28198	-0.9069	0.58997	0.685	1	4278	tags=28%, list=21%, signal=35%
ATED_NF_KB_ACTIVATIO N	24	-0.29239	-0.8751	0.64583	0.730	1	5901	tags=38%, list=29%, signal=53%
REACTOME_TRANS_GOL GI_NETWORK_VESICLE_	72	-0 49825	-1 8765	0	0.002	0 332	4064	tags=49%, list=20%,
REACTOME_TRANSCRIP TION_COUPLED_NUCLEO TIDE_EXCISION_REPAIR_ TC_NER	72	-0.55124	-2 1032	0	0.002	0.009	5097	tags=53%, list=25%,
REACTOME_TRANSCRIP TION_OF_E2F_TARGETS_ UNDER_NEGATIVE_CONT ROL_BY_DREAM_COMPL	10	0.50724	4.4040	0.05005	0.000		0070	tags=63%, list=31%,
REACTOME_TRANSCRIP TION_OF_E2F_TARGETS_ UNDER_NEGATIVE_CONT ROL_BY_P107_RBL1_AND P130_RBL2_IN_COMPLE	19	-0.51769	-1.4840	0.05965	0.057	ç	0272	tags=63%, list=33%,
X_WITH_HDAC1 REACTOME_TRANSCRIP	16	-0.40276	-1.0974	0.33981	0.390	1	6711	signal=93%
OME REACTOME TRANSCRIP	70	-0.56958	-2.1474	0	0.000	0.004	4571	signal=62%
TIONAL_ACTIVATION_OF _MITOCHONDRIAL_BIOG ENESIS	55	-0.47039	-1.6957	0.00549	0.012	0.965	5845	tags=49%, list=29%, signal=69%
REACTOME_TRANSCRIP TIONAL_ACTIVITY_OF_S MAD2_SMAD3_SMAD4_H ETEROTRIMER	44	-0 59681	-2 0907	0	0.000	0.013	3601	tags=52%, list=18%, signal=63%
REACTOME_TRANSCRIP TIONAL_REGULATION_BY	34	-0.59429	-1 9902	0.00147	0.001	0.068	4898	tags=53%, list=24%,
REACTOME_TRANSCRIP TIONAL_REGULATION_BY	61	-0.3065	-1 1283	0.27734	0.349	1	3072	tags=25%, list=15%,
REACTOME_TRANSCRIP TIONAL_REGULATION_BY	178	-0.4366	-1 8565	0	0.003	0 414	5555	tags=47%, list=27%,
REACTOME_TRANSCRIP TIONAL_REGULATION_BY RUNX2	120	-0 42002	-1 7072	0	0.011	0.95	5555	tags=43%, list=27%, signal=59%
REACTOME_TRANSCRIP TIONAL_REGULATION_BY _RUNX3	95	-0.45016	-1.7753	0	0.006	0.75	5555	tags=45%, list=27%, signal=62%
REACTOME_TRANSCRIP TIONAL_REGULATION_BY SMALL RNAS	46	-0.66595	-2.3517	0	0.000	0	4102	tags=57%, list=20%, signal=71%
REACTOME_TRANSCRIP TIONAL_REGULATION_BY _THE_AP_2_TFAP2_FAMI								togo 200/ list 170/
FACTORS REACTOME_TRANSCRIP	38	-0.31158	-1.0427	0.40841	0.471	1	3458	tags=29%, list=17%, signal=35%
TIONAL_REGULATION_BY _TP53 REACTOME_TRANSCRIP	359	-0.49833	-2.2245	0	0.000	0.002	4661	tags=44%, list=23%, signal=56%
TIONAL_REGULATION_BY _VENTX	40	-0.45927	-1.5528	0.02244	0.037	1	1780	tags=23%, list=9%, signal=25%
REACTOME_TRANSCRIP TIONAL_REGULATION_O F_GRANULOPOIESIS	30	-0.33051	-1.049	0.38791	0.463	1	3458	tags=27%, list=17%, signal=32%
REACTOME_TRANSCRIP TIONAL_REGULATION_O F_WHITE_ADIPOCYTE_DI FFERENTIATION	84	-0 29115	-1 1187	0 27728	0 359	1	4977	tags=33%, list=25%, signal=44%
REACTOME_TRANSFERR IN_ENDOCYTOSIS_AND_	24	0.50004	4 6700	0.0074	0.044	0.004	2240	tags=42%, list=16%,
REACTOME_TRANSLATIO	275	-0.52324	-1.6792	0.0071	0.000	0.984	3218 4795	signal=50% tags=53%, list=24%, signal=68%
REACTOME_TRANSLATIO N_OF_STRUCTURAL_PR OTEINS	28	-0.55889	-1.7888	0.00154	0.005	0.695	4436	tags=61%, list=22%, signal=78%
REACTOME_TRANSLESIO N_SYNTHESIS_BY_POLH	19	-0.59916	-1.7335	0.00784	0.009	0.899	4525	tags=63%, list=22%, signal=81%

REACTOME_TRANSLESIO N_SYNTHESIS_BY_POLK	17	-0.58612	-1.6268	0.02826	0.022	0.999	5120	tags=71%, list=25%, signal=94%
REACTOME_TRANSLESIO N_SYNTHESIS_BY_Y_FA MILY_DNA_POLYMERASE S BYPASSES LESIONS								taos=54%, list=22%,
ON_DNA_TEMPLATE REACTOME_TRANSLOCA TION_OF_SLC2A4_GLUT4 TO_THE_PLASMA_MEM	39	-0.56055	-1.8943	0	0.002	0.277	4525	signal=69%
BRANE	71	-0.45607	-1.7233	0.00128	0.009	0.922	5107	signal=62%
REACTOME_TRANSPORT _OF_BILE_SALTS_AND_O RGANIC_ACIDS_METAL_I ONS_AND_AMINE_COMP OUNDS	86	-0.24586	-0.9629	0.52868	0.598	1	4919	tags=31%, list=24%, signal=41%
REACTOME_TRANSPORT _OF_MATURE_MRNAS_D ERIVED_FROM_INTRONL ESS_TRANSCRIPTS	42	-0.65111	-2.226	0	0.000	0.002	4729	tags=62%, list=23%, signal=81%
- REACTOME_TRANSPORT _OF_MATURE_TRANSCRI PT_TO_CYTOPLASM	83	-0 59198	-2 2976	0	0.000	0.001	5551	tags=59%, list=27%,
REACTOME_TRANSPORT _OF_THE_SLBP_DEPEND	05	0.04005	-2.2310	0	0.000	0.001	1700	tags=60%, list=23%,
REACTOME_TRANSPORT _OF_VITAMINS_NUCLEO SIDES_AND_RELATED_M	35	-0.04805	-2.1307	0	0.000	0.004	4729	tags=16%, list=18%,
REACTOME_TRANSPORT _TO_THE_GOLGI_AND_S UBSEQUENT_MODIFICATI	44	-0.17176	-0.8004	0.97309	0.981	1	3009	tags=34%, list=17%,
ON	185	-0.47072	-2.0271	0	0.000	0.046	3413	signal=41%
DE_CATABOLISM	24	-0.36418	-1.1195	0.31201	0.359	1	6183	signal=66%
REACTOME_TRIGLYCERI DE_METABOLISM	37	-0.34519	-1.1514	0.26829	0.317	1	3876	tags=30%, list=19%, signal=37%
REACTOME_TRISTETRAP ROLIN_TTP_ZFP36_BIND S_AND_DESTABILIZES_M RNA	17	-0.49037	-1.3826	0.09486	0.102	1	4811	tags=59%, list=24%, signal=77%
REACTOME_TRNA_AMIN OACYLATION	24	-0.24641	-0.7433	0.84759	0.895	1	3922	tags=29%, list=19%, signal=36%
REACTOME_TRNA_MODI FICATION_IN_THE_NUCL EUS_AND_CYTOSOL	42	-0.22255	-0.7787	0.79798	0.857	1	4134	tags=19%, list=20%, signal=24%
REACTOME_TRNA_PROC ESSING	105	-0.40597	-1.642	0.00123	0.019	0.997	4134	tags=30%, list=20%, signal=37%
REACTOME_TRNA_PROC ESSING_IN_THE_NUCLEU S	57	-0 50984	-1 8762	0	0.002	0.332	4729	tags=42%, list=23%, signal=55%
REACTOME_UB_SPECIFI C_PROCESSING_PROTE ASES	186	-0.38555	-1.6546	0	0.017	0.992	4658	tags=37%, list=23%, signal=48%
REACTOME_UCH_PROTE	85	-0.51974	-2.0388	0	0.000	0.038	3610	tags=38%, list=18%, signal=46%
PROTEIN_RESPONSE_UP R_	92	-0.46749	-1.8244	0	0.004	0.549	4911	tags=46%, list=24%, signal=60%
REACTOME_UPTAKE_AN D_ACTIONS_OF_BACTERI AL_TOXINS	29	-0.35226	-1.1252	0.31184	0.351	1	3722	tags=28%, list=18%, signal=34%
REACTOME_VASOPRESS IN_REGULATES_RENAL_ WATER HOMEOSTASIS								taos=26%, list=12%
VIA_AQUAPORINS REACTOME_VEGFR2_ME DIATED_CFLL_PROLIFER	43	-0.36487	-1.268	0.15092	0.189	1	2496	signal=29%
ATION	19	-0.3329	-0.9543	0.50077	0.610	1	5907	signal=67%

REACTOME_VEGFR2_ME DIATED_VASCULAR_PER MEABILITY	27	-0.24524	-0.7685	0.81426	0.870	1	4626	tags=30%, list=23%, signal=38%
REACTOME_VIRAL_MESS ENGER_RNA_SYNTHESIS	43	-0.6782	-2.3395	0	0.000	0	4729	tags=65%, list=23%, signal=85%
REACTOME_VITAMIN_B5 _PANTOTHENATE_META BOLISM	17	-0.62275	-1.7165	0.01316	0.010	0.932	4868	tags=65%, list=24%, signal=85%
REACTOME_VXPX_CARG O_TARGETING_TO_CILIU M	21	-0.43289	-1.2621	0.18615	0.194	1	3285	tags=24%, list=16%, signal=28%
REACTOME_WNT_LIGAN D_BIOGENESIS_AND_TR AFFICKING	26	-0 29007	-0.9011	0 6009	0.691	1	1367	tags=15%, list=7%, signal=16%
REACTOME_WNT5A_DEP ENDENT_INTERNALIZATI ON_OF_FZD4	15	-0 4817	-1 314	0 15266	0 150	1	3977	tags=33%, list=20%,
REACTOME_ZINC_TRANS PORTERS	17	-0.45499	-1.2606	0.18325	0.195	1	3219	tags=35%, list=16%, signal=42%

Table S6: Previousy reported signatures of response / resistance to anti-PD1 therapy and signatures capturing immune cell subsets

aDC	CCL1	EBI3	INDO	LAMP3	OAS3					
B cells	MS4A1	TCL1A	HLA-DOB	PNOC	KIAA0125	CD19	CR2	IGHG1	FCRL2	BLK
	SPIB	BCL11A	GNG7	IGKC	CD72	MICAL3	BACH2	IGL@	CCR9	QRSL1
	COCH	OSBPL10	IGHA1	TNFRSF17	ABCB4	BLNK	GLDC	MEF2C	IGHM	FAM30A
	DTNB		SCN3A	SI C15A2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22.00	0100			
CD8 T cells	CD8B	CD8A	PF4	PRR5	SF1	LIME1	DNA.IB1	ARHGAP8	G7MM	SI C16A7
		VAMP2	7NF91	7NF22	TMC6	FLT3LG	CDKN2AIP	TSC22D3	TBCC	RBM3
	SERS7	APRA2	C4orf15	LEPROTI 1	7EP36L2	GADD45A	MYST3	7FR1	ZNE609	C12orf47
	ABT1	C19orf6	CAMLG				DRF1	ZEDI	2111 000	01201147
Cutotox	KI RD1	KI RE1	GNLY	CTSW			NKG7	G7MH	SIGIPP	7BTB16
Cylolox							GZMA	02MIT	SIGIN	201010
DC	CD200									
Do		KONUD			CCE22			CALC		01.0
Eosinophiis					LURS			GALC	RINUZ	
	HEST		HPARP	SMPD3	MYUISB	IGIFI	RRP12	IGSF2	REURS	EPNZ
	HIST 1H1C	CYSLIR2	HRH4	RNASE2	CAT	LRP5L	SYNJ1	THBS4	GPR44	KB1BD11
	C9orf156	SIAH1								
IDC	CD1B	VASH1	F13A1	CD1E	MMP12	FABP4	CLEC10A	SY117	MS4A6A	CINS
	CSF1R	HS3ST2	CH25H	LMAN2L	SLC26A6	BLVRB	NUDT9	PREP	TM7SF4	TACSTD2
	GUCA1A	CARD9	ABCG2	CD1A	PPARG	RAP1GAP	SLC7A8	GSTT1	NM_021941	FZD2
	CD1C									
Macrophages	MARCO	CXCL5	SCG5	SULT1C2	MSR1	CTSK	PTGDS	COLEC12	GPC4	PCOLCE2
	BCAT1	RAI14	COL8A2	APOE	CHI3L1	ATG7	CD84	FDX1	MS4A4A	SGMS1
	CHIT1	KAL1	CLEC5A	ME1	DNASE2B	CCL7	FN1	CD163	GM2A	SCARB2
	EMP1	CYBB	CD68							
Mast cells	PRG2	CTSG	TPSAB1	SLC18A2	MS4A2	CPA3	TPSB2	TPS1	GATA2	HDC
	TAL1	ABCC4	PPM1H	МАОВ	HPGD	SCG2	PTGS1	CEACAM8	MPO	NR0B1
	LOH11CR2A	SIGLEC6	ELA2	CMA1	PGDS	MLPH	ADCYAP1	SLC24A3	CALB2	KIT
	LOC339524									
Th17 cells	IL17A	IL17RA	RORC							
Th2 cells	PMCH	AHI1	PTGIS	CXCR6	EVI5	IL26	MB	NEIL3	GSTA4	PHEX
	BIRC5	SLC39A14	HELLS	LIMA1	CDC25C	CDC7	GATA3			
	SMAD2	CENPF	ANK1	ADCY1	AI582773	LAIR2	SNRPD1	MICAL2	DHFR	WDHD1
Th1 cells	IFNG	LTA	APBB2	DOK5	IL12RB2	APOD	ZBTB32	CD38	CSF2	CTLA4
	LRRN3	SYNGR3	ATP9A	BTG3	CMAH	HBEGF	SGCB			
	CD70	DPP4	EGFL6	BST2	DUSP5	LRP8	IL22	DGKI	CCL4	GGT1
Tgd cells	TRD@	TARP	C1orf61	TRGV9	CD160	FEZ1				
TFH cells	CHI3L2	CXCL13	MYO7A	CHGB	ICA1	HEY1	CDK5R1	ST8SIA1	PDCD1	BLR1
	PTPN13	KCNK5	ZNF764	MAF	MYO6	SIRPG	THADA	MAGEH1	B3GAT1	SH3TC1
	KIAA1324	PVALB	TSHR	C18orf1	TOX	SLC7A10	SMAD1	POMT1	PASK	MKL2
	HIST1H4K	STK39								
Tem cells	TRA@	PRKY	VIL2	GDPD5	CCR2	MEFV	C7orf54	FLI1	TBC1D5	DDX17
	AKT3	EWSR1	TBCD	NFATC4	LTK					
Tcm cells	CDC14A	ATM	USP9Y	PCNX	FOXP1	KLF12	ST3GAL1	INPP4B	CASP8	MLL
	HNRPH1	STX16	CYLD	SNRPN	TRAF3IP3	NEFL	POLR2J2	AQP3	CG030	PDXDC2
	PCM1	RP11-74E24.2	PHC3	NFATC3	LOC202134	TIMM8A	ATF7IP	REPS1	PSPC1	RPP38
	CLUAP1	DOCK9	CYorf15B	CREBZF	CEP68	TXK	SLC7A6	FYB	MAP3K1	
T helper cells	ICOS	LRBA	ITM2A	FAM111A	PHF10	NUP107	SEC24C	NAP1L4	BATF	ASF1A
	ATF2	CD28	GOLGA8A							
	FRYL	FUSIP1	TRA@	RPA1	UBE2L3	ANP32B	DDX50	C13orf34	PPP2R5C	SLC25A12
T cells	PRKCQ	CD3D	CD3G	CD28	LCK	TRAT1	BCL11B	CD2	TRBC1	TRA@
	ITM2A	SH2D1A	CD6	CD96	NCALD	GIMAP5	CD3E	SKAP1		
NK cells	LOC643313	GAGE2	ZNF747	XCL1	XCL2	AF107846	SLC30A5	NM_014114	MCM3AP	TBXA2R
	ZNF205	AL080130	ZNF528	MAPRE3	BCL2	NM_017616	ARL6IP2	PDLIM4	NM_014274	LDB3
	CDC5L	LOC730096	FUT5	FGF18	MRC2	RP5-886K2.1	SPN	PSMD4	PRX	FZR1
	ADARB1	SMEK1	TCTN2	TINAGL1	IGFBP5	ALDH1B1	NCR1			
NK CD56dim cells	KIR3DL2	SPON2	KIR2DL3	GZMB	KIR3DS1	KIR3DL1	FLJ20699	TMEPAI	IL21R	KIR3DL3
	KIR2DS5	KIR2DS2	GTF3C1	KIR2DS1	EDG8					

Journal Pre-proof

NK CD56bright cells	DUSP4 MUC3B	RRAD	XCL1	PLA2G6	NIBP	FOXJ1	44261	MADD	BG255923	MPPED1
Neutronhils	CSE3R	CYP4F3	VNN3	EPRI 1	KCN 115	MME		II 8RB	ECGR3B	DYSE
Neutrophilis	SI C25A37	BST1		G0S2	SIGLEC5		MGAM		FDR1	
	SLOZJAJI ECAD	CEACAM2			51GLL05	CDEDS	\$100A12		SI C2244	
		CEACAINIS		HF3E	FLJIIIJI	CREDJ	3100A12	INFROF IUC	3L022A4	KIAA0329
т	LILKBZ									
cellsmELANOMA	CD8A	CCL2	CCL3	CCL4	CXCL9	CXCL10	ICOS	GZMK	IRF1	HLA-DMA
	HLA-DMB	HLA-DOA	HLA-DOB							
MDSC	CCR2	CXCR4	CXCR2	ITGAM	ITGAX	ANPEP	CD14	FUT4	CD33	CD34
	CCL2	TNF	CXCL12	CSF1R	S100A8	S100A9	STAT1	STAT3	STAT5A	ARG1
	CD38	ENTPD1	PTPRC	CEACAM8	CD80	CSE1R	U 4R	CSE3	CSE2	CXCI 8
	NOS2				TOEP1	U 10				UNOLU
TLS nat	N032	CD2/4	ILKJ	ILR4	IGEDI	IL IU	FUAF3	IDOT	PDCDT	
immunol_Finkin	CCL21	CCL19	CXCL13	CXCL11	CCL8	CXCL10	CXCL9	CCL21	CCL3	CCL18
	CCL5									
Auslander		0000	0.174	0005	0000	0500	0000	00074	0000	0040
IMPRES	PDCD1	CD28	CITA	CD3E	CD86	CD28	CD80	CD274	CD86	CD40
	CD28	TNFRSF14	STAT1	GZMB						
POPLAR	CD8A	GZMA	CTLA4	CD40	EOMES	CXCL9	CXCL10	TBX21		
signature (Sangro										
et al)	CD8A	LAG3	STAT1	CD274						
Cytolytic activity										
(Rooney et al)	PRF1	GZMA								
Sia Immune Class	NTN3	IGKC	IGKV3D-11	IGLV1-44	IGJ	CCL19	IGHG3	IGHA1	IGHM	IGHG2
	TRBC1	GPR171	GEM	CCI 21	TARP	CXCL9	CCI 2	TRBC1	IGL 13	CHIT1
	CD53	DTY3				TRAC	EVD			CVTID
	0014	F T AJ			CD2	OVOLO				
	CCL4	STMINZ	C110H96	ID4	CR2	CXCL6	FNDCT	THB52	LIB	CLICO
	MGP	TAGLN	CD3D	RAC2	CD27	C160rf54	S100A4	CYR61	PIGIS	COL6A3
	PMEPA1	C7	CORO1A	MS4A1	FAM26F	LAPTM5				
	IGHG1	IGHA2	IGHM	PTGDS	POU2AF1	MMP7	MGC29506	CCL18	GBP5	CD52
				CYCPA	CD84	C7MP	LUM		CETD	GZWK
								DOCTN		
	UUL5			MIMP 12	AEBPT		CD30	PUSIN	CACL 14	FAMIDUB
	TIGB2	GZMH	CCR7	LCP2	RGS1	CD2	SMOC2	LIBP2	GZMA	COLIAZ
	SLA	COL1A1	MTHFD2	SAMSN1	PMP22	SRGN	TIMP1	IGLV1-40	GABRP	CIGF
Ayers1 / IFN	IDO1	CXCL10	CXCL9	HLA-DRA	STAT1	IFNG				
WNTscore	APC	APC2	CTNNB1	MYC	SOX11	SOX2	TCF12	TCF7	VEGFA	
					DAC2					
www.rigr_up		PLAU	TAXTBPS		RACZ	FZDZ	PRRUD	IVIIVIP7	PKKA	FZDI
	16F4	AKKBZ	CCND3	PLCB4	DKK3	RURZ	AK13			
	FRAT2	CDC2	HDAC1	CACYBP	FZD6	DKK2	MVP	PRKCI	MAP1B	SFRP4
WNTTGE down	TCF1	L RP6	I RP1	PRKCE	WNT16	FZD4	SALL 1	WNT1	CAMK2A	NR5A1
	PPKACG	EIG 0		TRICE	WITTO	1204	ONELT	, , , , , , , , , , , , , , , , , , ,	0/10/12/1	
	FRACO									
	WNT8B	CREBBP	DVL1	SOX1	PRKCA	TSHB	WNT10B	NFATC3	NFATC2	CDX1
JerbyArnon_up	BZW2	CC13	CDK4	GPATCH4	ISYNA1	MDH2	PPIA	RPL31	RPL37A	RPL41
	CHCHD2	CTPS1	EEF1G	EIF2S3	EIF3K	EIF4A1	FARSA	FBL	FKBP4	GAS5
	NONO	PABPC1	PAICS	PFN1	POLD2	PPA1	PTMA	PUF60	RPL10A	RPL11
	RPL28	RPL29	RPL3	RPL36	RPL36A	RPL37	RPL4	RPL5	RPL6	RPL8
	RPS17L	RPS18	RPS19	RPS23	RPS24	RPS27	RPS28	RPS3	RPS4X	RPS5
	SLC25A13	SNHG6	SNRPE	SOX4	SSR2	TIMM50	TOP1MT	TUBB	UQCRFS1	UQCRH
	BOLA2	BOLA2B	BOP1	BTF3	C20orf112	C6orf48	CA14	CACYBP	CBX5	CCT2
	DCAF13	DCT	DCTPP1	DDX21	DDX39A	DDX39B	DLL3	DNAJC9	EEF1B2	EEF1D
	FAM92A1	FBI N1	FOXRED?	FTI	FUS	GABARAP	GGH	GNL3	GRWD1	H3F3A
	IFRD2	II F3		ITM2C	KIAA0101	L DHR	L SM4	LSM7		MAGEAA
	MDDI /		MDDe10	MDD004				NME2		
				IVIRP521	NUUFA11	NUUFA13			INUP ID	
	PULK2E	PPP2R1A	PKM11	PSMA/	PSMD4	KAN	KBM34	KNASEH2A	KNF2	ROMO1
	RPL35A	RPL39	RPL7	RPL7A	RPL9	RPLP2	RPS12	RPS2	RPS20	RPS25
	SLC25A6	SLIRP	SLMO2	SMARCA4	SMIM15	SMS	SNAI2	SNHG15	SNRPB	SNRPC
	TP53	TPI1	TPRKB	TRAP1	TRIM28	TRPM1	TSR1	TUBA1B	TULP4	TXNDC17
	ZFAS1	ZNF286A								
JerbyArnon_down	AHNAK	APOD	ATP1A1	B2M	CD44	CD63	CTSB	CTSD	FOS	GRN

	SERPINE2	TAPBP	TIMP2	A2M	ACSL3	AEBP1	AGA	APOC2	APOE	ATP1B1
	CYP27A1	DAG1	DDR1	EEA1	EMP1	EVA1A	FBXO32	FGFR1	GAA	GPNMB
	MIA	MT2A	NEAT1	NPC1	NSG1	PROS1	S100A6	S100B	SAT1	SCARB2
	TIMP3	TM4SF1	TMED10	TPP1	TSC22D3	TYR	UBC	VAT1	WBP2	XAGE1D
	ATF3	ATP1B3	ATP6V0C	BACE2	BBX	BCL6	C4A	C6orf226	CALU	CARD16
	CLIC4	CORO1A	CRELD1	CRYAB	CSGALNACT1	CXCR4	CYP4V2	DCBLD2	DDX17	DDX5
	FCRLA	FLJ39051	FLJ43663	FLNA	FMN1	FRZB	FSTL3	FTH1	GADD45B	GATSL3
	IFI27	IFI27L2	IFI35	IFI6	IGF1R	IGFBP7	IGSF8	IL1RAP	IL6ST	ITGA6
	LGALS1	I GMN	LINC00518	LOC100126784	LOC100506190	LOC100506714	LOC100507463	I PI	LY6E	1 Y96
	PDF4DIP	PDK4	PERP	PIK3IP1	PI P2	PRKCDBP	PRNP	PRSS23	PSMB9	PTRF
	MT1X	MTRNR2L1	MTRNR2I 10	MTRNR2L2	MTRNR2L3	MTRNR214	MTRNR215	MTRNR2L6	MTRNR2L7	MTRNR218
	S100A13	SCOPDH	SDCBP	SEL 1I	SEMA3B	SERINC1	SERPINA1	SGCE	SHC4	SI C20A1
	SPON2	SPP1	SPRV2	SOSTM1	SRPY	ST3GAL6-AS1	STEGALNAC2	STRIP2	SVNE2	SVNGR2
			TRIM22	TRIMI 2		TTU 1	TYNIP			WDEV1
	RPS21	RPS27A	RUVBL2	SAE1	LIBA52		C17orf76-4S1	C19orf/18	C1OBP	CCT6A
	CNR2L1								NME1	
									DDC16	
				RESTI	RESIS			RF3 IDA	CLIMT2	
		ACTD		ANDOOL	ADD	ADMOG				ATDECO
		ACTB	AEN CDC122	ANP32E			ATP5AT		ATP5G2	AIPOGO
			CDC123		GFLI	CKSIB	CMSST	CINRIPT	65	DARS
	EEFZ	EIF3E	EIF3F	EIF3G		EIF4EBP2	ENUT	EXUSUS	FAMI174B	
	H3F3AP4	HMGAT	HMGBI	HINT	HNRNPAIPIU			HSP9UABI	HSPA	HSPDI
	MAGECT	MCM7	METAP2	MID1	MIR4461	MKI6/IP	MLLIII	MPZL1	MRPL15	MRPL37
	NREP	PA2G4	PAFAH1B3	PETIOU	PFDN2	PFDN4	PGAM1	PIHIDI	PLEKHJ1	POLRID
	RPAIN	RPL10	RPL14	RPL15	RPL19	RPL22	RPL27A	RPL30	RPL32	RPL35
	RPS3A	RQCD1	RSL1D1	RTKN	SCD	SCNM1	SERBP1	SF3B4	SKP2	SLC25A3
	SNRPD1	SNRPD2	SNRPF	SNRPG	SRM	SRP14	SSB	TIMM13	TIMM44	TMC6
	TYMS	UBL5	UCK2	UHRF1	USMG5	USP22	VCY1B	VPS72	XIST	YWHAE
	HLA-A	HLA-B	HLA-C	HLA-E	HLA-H	LAMP2	LGALS3	LGALS3BP	NPC2	PSAP
	CD151	CD47	CD58	CD59	CDH19	CSPG4	CST3	CTSA	CTSL1	CTSO
	GSN	HI A-F	HSPA1A	IRF4	ITGA3	KCNN4	KI F4	LEF1-AS1	I RPAP1	MEGE8
	SDC3	SEC11C	SERPINA3	SGK1	SI C26A2	SI C5A3	STOM	STX7	TAPRPI	TIMP1
	ACSI 4	ACTA2	ADM	ANGPTI 4	ANXA1	ANXA2	API P2	APOI 1	ARI 6IP5	ARSA
	CASP1	CAST	CAV1		CCND3	CCR10	CD9			CITED1
	DPYSI 2	DUSP4	DUSP6	ECM1	EGR1	EPHX2	ERBB3	EZH1	EAM3C	ECGR2C
	GEM	GIB1	GOLGB1	GPR155	GPR56		HI A-G			1001120
		ITGB1	ITGB3	ITM2B			KI F6	LAMB2	LCP1	I EPROT
		MAGEC2	MALAT1	MATN2	MCAM	MEI2	MMP1/	MP7	MT1E	MT1M
	DVCR	OPCT								S100A1
	MYO1D	NAV2	NFE2L1	NFKBIA	NFKBIZ	NMRK1	NNMT	NR4A1	P2RX4	PAGE5
	SI C22A18	SI C30A14		SI C748	SNIXO	SOD1		SD100		QDINT1
	SYPI 1	TF	TEAP2A		THRD	TMBIM6		TMFM2554		TMX4
	ZBTB20	ZBTB38		TOOLINZ		TNDINIO	TWIEDS	TWEW200A	TWEWOO	T WIX T
MAPKi resistant		1500				501500		50145	2245	001170
melanoma up	ACVR1B	APC2	ARHGAP35	ARID1A	AURKA	BCAP29	BCORL1	BGLAP	BRAF	CCND3
	EGLN2	FANCA	FANCC	FANCE	FGF18	FIGF	FZD5	GATA2	GOI1	GSTP1
	LAMC3	LIFR	MAP1S	MAP2K1	MAPK3	MED12	MEOX2	MLXIPL	MYOD1	NFKBIA
	PIK3R2	PLCG1	POLQ	PPARD	PPM1D	RAB40A	RALBP1	RARB	RCOR2	RPTOR
	VCX3A	WNT6	XIRP2	ZBTB16						
	CCNE1	CD163L1	CDKN2C	CHD8	CIC	CPNE1	CSRNP1	CYCS	DAXX	DOT1L
	HIST1H3C	HSPE1	HTR2C	IGF2	IL6	INPPL1	IPO13	IQSEC1	ITGA2B	JAKMIP2
	NKX3-1	NLRP5	NOTCH2	NPAP1	NRAS	NTRK1	OGDH	PBRM1	PGF	PIAS4
MAPKi resistant	RXRA	SAMD4B	SMAD3	SRC	STX2	SUFU	SUPT6H	TFEB	THNSL2	TPM3
melanoma down	ACADVL	AKT3	AMER1	ANAPC5	ARID2	ASXL1	ATG16L1	ATG4B	ATP1A1	AXIN1
	CTLA4	CTNNA2	DCC	DUSP4	DVL2	EGFR	ERBB3	ESR1	FANCF	FAT1
	GID4	GLI1	GNPTAB	GPR101	H3F3C	HOXD8	IGF1R	ING1	IRF4	ISX
	MLH1	MLL	MLL4	MYC	MYOCD	NCOA4	NFE2L3	NSMAF	OR4A16	PCBP1
	RAC1	RAD51	RARA	RBX1	RHOA	RPS11	RUNX1T1	RXRG	SAMD4A	SLC26A3

	VHL	WNT8B	XBP1	XIAP	YAP1	ZFAND6	ZNF217			
	AXL	B2M	BID	CASP9	CCT8	CDC42	CRIPAK	CRLF2	CTBP1	CTBP2
	FBXW7	FGF1	FGF12	FGF13	FGF2	FGF5	FOXA2	FZD10	FZD3	FZD6
	JAK1	KEAP1	LAMA4	LAMC1	LEF1	LRRK2	MAP2K4	MED23	MEIS2	MGA
	PIAS3	PIK3CB	PLEKHG3	POFUT1	PRKAR1A	PSMA1	PTCH1	PTEN	PTK2	PTPRK
	SMC3	STK36	STK4	TAF1	TIMM44	TNFRSF13B	TP53BP1	TRAF3	TRAF4	TRAF6
	0	011100	0							
Nivolumab (molecular) resistant										
melanoma up	100133445	ABCA5	ABHD12B	ACAD9	ACSBG1	ADAMTS1	ADGRB1	AHNAK2	AHSA2	ANKRD10
	BBS5	BEGAIN	BEST1	C11orf24	C1orf101	C3orf70	CA12	CALCOCO1	CCDC188	CD44
	CREBZF	CRMP1	CSGALNACT1	CSRP1	CTDSPL	CTTN	CYP27C1	CYP4V2	DCBLD2	DDX39B
	EFHC1	EPG5	EVC	FAM131A	FAM188A	FAM210B	FAM86HP	FARP2	FBXL2	FBXO7
	GPM6B	GPR180	GRB10	GSK3B	H1FX-AS1	HERC2P2	HERC2P3	HIBCH	HIST1H3H	HM13-AS1
	ITIH6	KATNAL1	KAZN	KCTD15	KIF13A	KIFC3	KLC1	KLHL41	KPTN	LAMA1
	LOC285593	LOC389834	LOC541473	LOC93429	LPIN3	LRP2BP	LUC7L	LYST	LZTS1	MAP4
	MPZ	MREG	MTRNR2L1	MYBPHL	MYO5A	MYOM3	N6AMT1	NAPB	NAV1	NEAT1
	OSTM1	PABPC1L	PCGF3	PCNX4	PHLDB1	PHLPP1	PIGG	PITRM1	PKD1P1	PKD2
	PTPRS	PTPRZ1	RAB4B	RAB6B	RBM25	RCBTB1	REV3L	RGS12	RHOB	RHOJ
	SLITRK2	SNORD97	SNRNP70	SNX25	SPATA6	SRSF6	ST3GAL4	ST3GAL6-AS1	ST6GALNAC2	ST8SIA6
	TRIB2	TRIM9	TRPM1	TSPAN9	TTC14	TTLL3	TTLL4	TTYH1	UBE2Q2P1	USP31
	ANKRD30B	ANKS1A	AP3M2	ARHGAP5	ARHGAP5-AS1	ARHGEF4	ATG2B	ATP1B3	ATP8B3	B4GALT6
	CDC16	CDC42EP3	CDH4	CELSR2	CHST3	CI CN3	CMYA5	COI 16A1	COL7A1	CORO2B
	DIP2C	DI FUI			DNA IC13	DNM1P35	DOCK6	DST		DYNC1H1
	EHDC1	FLCN		GABBR1	GALNT14	GANC	GAS7	GMEB	GNG12	GPAT4
	HN1		HSPG2		IGEL4	IGEN1	INIPD5E			ITGB3
		LAMR2		LENG8				1 00100507351	1 00100507577	1 00284080
	MCOLN3	MELTF	MFAP3L	MFGE8	MIA	MIR211	MIR3685	MIR5047	MIR647	MOCOS
	NECTIN1	NEK3	NLGN1	NLGN3	NPHP3	NPHP3- ACAD11	NPIPA1	NPIPA3	NPIPA5	NXF1
	PKNOX2	PLA2G4C	PLAT	PLEKHG3	PLXNB3	PNMA1	POMT2	PRICKLE2	PRMT2	PTPRM
	PKNOX2 SAMD4A	PLA2G4C SERPINE2	PLAT SETD4	PLEKHG3 SGCD	PLXNB3 SLC10A6	PNMA1 SLC22A15	POMT2 SLC25A27	PRICKLE2 SLC26A8	PRMT2 SLC4A3	PTPRM SLC5A3
	PKNOX2 SAMD4A STK32A	PLA2G4C SERPINE2 STK36	PLAT SETD4 TCEAL4	PLEKHG3 SGCD TEAD1	PLXNB3 SLC10A6 TMED10	PNMA1 SLC22A15 TMEM229B	POMT2 SLC25A27 TMOD1	PRICKLE2 SLC26A8 TP53INP2	PRMT2 SLC4A3 TPT1-AS1	PTPRM SLC5A3 TRAF3IP2
	PKNOX2 SAMD4A STK32A USP32P1	PLA2G4C SERPINE2 STK36 UVSSA	PLAT SETD4 TCEAL4 VARS2	PLEKHG3 SGCD TEAD1 VN1R1	PLXNB3 SLC10A6 TMED10 VPS36	PNMA1 SLC22A15 TMEM229B ZC3H7A	POMT2 SLC25A27 TMOD1 ZMAT3	PRICKLE2 SLC26A8 TP53INP2 ZNF491	PRMT2 SLC4A3 TPT1-AS1 ZNF514	PTPRM SLC5A3 TRAF3IP2 ZNF704
Nivolumab (molecular)	PKNOX2 SAMD4A STK32A USP32P1	PLA2G4C SERPINE2 STK36 UVSSA	PLAT SETD4 TCEAL4 VARS2	PLEKHG3 SGCD TEAD1 VN1R1	PLXNB3 SLC10A6 TMED10 VPS36	PNMA1 SLC22A15 TMEM229B ZC3H7A	POMT2 SLC25A27 TMOD1 ZMAT3	PRICKLE2 SLC26A8 TP53INP2 ZNF491	PRMT2 SLC4A3 TPT1-AS1 ZNF514	PTPRM SLC5A3 TRAF3IP2 ZNF704
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1	PLA2G4C SERPINE2 STK36 UVSSA 44440	PLAT SETD4 TCEAL4 VARS2 ABI3	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CYBA	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CYBA EFCAB1	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CD6 CETP CYBA EFCAB1 FRAT1	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3 HLA-DQA1	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP HLA-DQA2	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL HLA-DQB1	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A HLA-DQB2	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1 HLA-DRA	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1 HLA-DRB1	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1 HLA-DRB5	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH HLX	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK HS3ST2	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2 HSH2D
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3 HLA-DQA1 IL32	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP HLA-DQA2 INPP5D	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL HLA-DQB1 IQGAP2	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A HLA-DQB2 IRF8	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1 HLA-DRA ITGAD	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1 HLA-DRB1 JCHAIN	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1 HLA-DRB5 KBTBD8	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH HLX KCNJ5	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK HS3ST2 KCNQ1	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2 HSH2D KCTD12
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3 HLA-DQA1 IL32 LINC00693	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP HLA-DQA2 INPP5D LIPA	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL HLA-DQB1 IQGAP2 LOC100505622	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A HLA-DQB2 IRF8 LOC389641	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1 HLA-DRA ITGAD LOC606724	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1 HLA-DRB1 JCHAIN LOC653786	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1 HLA-DRB5 KBTBD8 LOC728989	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH HLX KCNJ5 LPAR1	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK HS3ST2 KCNQ1 LPAR5	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2 HSH2D KCTD12 LPCAT3
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3 HLA-DQA1 IL32 LINC00693 MGAT4C	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP HLA-DQA2 INPP5D LIPA MGC70870	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL HLA-DQB1 IQGAP2 LOC100505622 MPEG1	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A HLA-DQB2 IRF8 LOC389641 MSL3P1	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1 HLA-DRA ITGAD LOC606724 MYO1A	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1 HLA-DRB1 JCHAIN LOC653786 MYO7B	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1 HLA-DRB5 KBTBD8 LOC728989 NAPSB	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH HLX KCNJ5 LPAR1 NCF1	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK HS3ST2 KCNQ1 LPAR5 NCF1B	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2 HSH2D KCTD12 LPCAT3 NCF1C
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3 HLA-DQA1 IL32 LINC00693 MGAT4C P2RX5	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP HLA-DQA2 INPP5D LIPA MGC70870 P2RY10	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL HLA-DQB1 IQGAP2 LOC100505622 MPEG1 P2RY13	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A HLA-DQB2 IRF8 LOC389641 MSL3P1 P2RY14	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1 HLA-DRA ITGAD LOC606724 MYO1A P2RY8	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1 HLA-DRB1 JCHAIN LOC653786 MYO7B PACSIN1	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1 HLA-DRB5 KBTBD8 LOC728989 NAPSB PAOX	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH HLX KCNJ5 LPAR1 NCF1 PCED1B	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK HS3ST2 KCNQ1 LPAR5 NCF1B PCED1B-AS1	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2 HSH2D KCTD12 LPCAT3 NCF1C PDE1A
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3 HLA-DQA1 IL32 LINC00693 MGAT4C P2RX5 PKD2L1	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP HLA-DQA2 INPP5D LIPA MGC70870 P2RY10 PKHD1L1	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL HLA-DQB1 IQGAP2 LOC100505622 MPEG1 P2RY13 PKIB	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A HLA-DQB2 IRF8 LOC389641 MSL3P1 P2RY14 PLA2G2D	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1 HLA-DRA ITGAD LOC606724 MYO1A P2RY8 PLA2G7	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1 HLA-DRB1 JCHAIN LOC653786 MYO7B PACSIN1 PLAC8	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1 HLA-DRB5 KBTBD8 LOC728989 NAPSB PAOX PLCG2	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH HLX KCNJ5 LPAR1 NCF1 PCED1B PLCL2	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK HS3ST2 KCNQ1 LPAR5 NCF1B PCED1B-AS1 PLCXD2	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2 HSH2D KCTD12 LPCAT3 NCF1C PDE1A PLD4
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3 HLA-DQA1 IL32 LINC00693 MGAT4C P2RX5 PKD2L1 PROC	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP HLA-DQA2 INPP5D LIPA MGC70870 P2RY10 PKHD1L1 PRSS12	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL HLA-DQB1 IQGAP2 LOC100505622 MPEG1 P2RY13 PKIB PRUNE2	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A HLA-DQB2 IRF8 LOC389641 MSL3P1 P2RY14 PLA2G2D PSD4	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1 HLA-DRA ITGAD LOC606724 MYO1A P2RY8 PLA2G7 PTGER4	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1 HLA-DRB1 JCHAIN LOC653786 MYO7B PACSIN1 PLAC8 PTPN6	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1 HLA-DRB5 KBTBD8 LOC728989 NAPSB PAOX PLCG2 PTPRC	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH HLX KCNJ5 LPAR1 NCF1 PCED1B PLCL2 PTPRCAP	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK HS3ST2 KCNQ1 LPAR5 NCF1B PCED1B-AS1 PLCXD2 PTPRN2	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2 HSH2D KCTD12 LPCAT3 NCF1C PDE1A PLD4 RAB3C
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3 HLA-DQA1 IL32 LINC00693 MGAT4C P2RX5 PKD2L1 PROC RGN	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP HLA-DQA2 INPP5D LIPA MGC70870 P2RY10 PKHD1L1 PRSS12 RGS7	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL HLA-DQB1 IQGAP2 LOC100505622 MPEG1 P2RY13 PKIB PRUNE2 RGS9	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A HLA-DQB2 IRF8 LOC389641 MSL3P1 P2RY14 PLA2G2D PSD4 RHOH	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1 HLA-DRA ITGAD LOC606724 MYO1A P2RY8 PLA2G7 PTGER4 RHOU	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1 HLA-DRB1 JCHAIN LOC653786 MYO7B PACSIN1 PLAC8 PTPN6 RILPL2	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1 HLA-DRB5 KBTBD8 LOC728989 NAPSB PAOX PLCG2 PTPRC RNASE6	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH HLX KCNJ5 LPAR1 NCF1 PCED1B PLCL2 PTPRCAP RNASET2	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK HS3ST2 KCNQ1 LPAR5 NCF1B PCED1B-AS1 PLCXD2 PTPRN2 RND1	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2 HSH2D KCTD12 LPCAT3 NCF1C PDE1A PLD4 RAB3C RNLS
Nivolumab (molecular) resistant melanoma down	PKNOX2 SAMD4A STK32A USP32P1 MARCH1 ANKRD29 ATP8A1 CCL19 CD6 CETP CYBA EFCAB1 FRAT1 GPRIN3 HLA-DQA1 IL32 LINC00693 MGAT4C P2RX5 PKD2L1 PROC RGN SDS	PLA2G4C SERPINE2 STK36 UVSSA 44440 ANKRD33B BCAS4 CCL21 CD68 CFD CYP2C8 EMG1 FRAT2 GRAP HLA-DQA2 INPP5D LIPA MGC70870 P2RY10 PKHD1L1 PRSS12 RGS7 SEL1L3	PLAT SETD4 TCEAL4 VARS2 ABI3 ANKRD55 BCL11A CCL24 CD69 CHDH CYP2C9 ERP27 FTL GRAPL HLA-DQB1 IQGAP2 LOC100505622 MPEG1 P2RY13 PKIB PRUNE2 RGS9 SELENOP	PLEKHG3 SGCD TEAD1 VN1R1 ACAP1 ANTXR2 BCL2L14 CCR4 CD7 CHIT1 CYTH1 EVI2A FUCA1 GRIN3A HLA-DQB2 IRF8 LOC389641 MSL3P1 P2RY14 PLA2G2D PSD4 RHOH SERPINB9	PLXNB3 SLC10A6 TMED10 VPS36 ACRBP ANXA2R BHMT CCRL2 CD72 CHRNA1 CYTIP EVI2B GABRR1 GSTA1 HLA-DRA ITGAD LOC606724 MYO1A P2RY8 PLA2G7 PTGER4 RHOU SERPINF2	PNMA1 SLC22A15 TMEM229B ZC3H7A ADA APEX2 BLNK CD180 CD74 CHST13 DAPP1 EXOSC1 GALNT13 GSTK1 HLA-DRB1 JCHAIN LOC653786 MYO7B PACSIN1 PLAC8 PTPN6 RILPL2 SH2D1A	POMT2 SLC25A27 TMOD1 ZMAT3 ADAM28 APOA1 BTG2 CD2 CD79A CISH DEF6 FAM107B GAPT GTSF1 HLA-DRB5 KBTBD8 LOC728989 NAPSB PAOX PLCG2 PTPRC RNASE6 SH2D1B	PRICKLE2 SLC26A8 TP53INP2 ZNF491 ADAMDEC1 APOC1 BTK CD247 CD83 CLECL1 DENND1C FAM151A GCHFR GZMH HLX KCNJ5 LPAR1 NCF1 PCED1B PLCL2 PTPRCAP RNASET2 SH2D2A	PRMT2 SLC4A3 TPT1-AS1 ZNF514 ADGRG5 APOC1P1 C15orf57 CD27 CD84 CLU DENND2D FAM159A GCNT1 GZMK HS3ST2 KCNQ1 LPAR5 NCF1B PCED1B-AS1 PLCXD2 PTPRN2 RND1 SIGLEC10	PTPRM SLC5A3 TRAF3IP2 ZNF704 ADH1C ARHGAP15 C16orf54 CD28 CD86 CNTNAP2 DGKD FAM172BP GCSAM HAVCR2 HSH2D KCTD12 LPCAT3 NCF1C PDE1A PLD4 RAB3C RNLS SIGLEC12

Nivolumab (molecular) resistant melanoma de

	STK17B	SURF1	SUSD3	SYK	SYTL3	TAGAP	TBC1D10C	TBC1D22A	TBC1D30	TDRD6
	TMEM37	TMIGD2	TMSB4X	TNF	TNFAIP8	TNFAIP8L2	TNFRSF17	TNFSF8	тох	TRAF3IP3
	VAV1	VAV3	VCAM1	VOPP1	WDFY4	XCL1	ZBTB18	ZBTB8OS	ZC3H12D	ZC4H2
	ADORA2A-AS1	ADORA3	AKNA	AKR1B1	AKR1C1	AKR1C2	AKR1C3	ALDH2	ALDOB	ANKRD19P
	ARHGAP25	ARHGDIB	ARID3A	ARL11	ARRB2	ASAH2	ASAH2B	ASGR2	ATP2A3	ATP6V0D2
	C1orf54	C4BPA	C4BPB	C5	CARD11	CBLN2	CCDC28A	CCDC69	CCDC88C	CCL18
	CD300LF	CD37	CD3D	CD3E	CD3G	CD40LG	CD48	CD5	CD52	CD53
	CD8B	CD96	CDC42SE2	CEACAM21	CEBPA	CEBPA-AS1	CECR1	CENPH	CEP120	CERKL
	CORO1A	CP	CREG1	CRTAM	CSF2RB	CTSH	CTSS	CXCL13	CXCL16	CYB5R4
	DHDH	DLL3	DNAJC5B	DOCK11	DOCK2	DOK3	DPEP2	EAF2	EDARADD	EDN3
	FAM58A	FBN2	FBP1	FCER1G	FCRL3	FCRL5	FGD3	FKBP5	FLI1	FNDC5
	GM2A	GNGT2	GP1BA	GPC3	GPR160	GPR174	GPR18	GPR183	GPR35	GPR88
	HCLS1	HCN1	HEIH	HLA-DMA	HLA-DMB	HLA-DOA	HLA-DOB	HLA-DPA1	HLA-DPB1	HLA-DPB2
	HTRA4	HVCN1	ICAM3	ICOSLG	IGFLR1	IGSF6	IKZF1	IKZF3	IL21R	IL2RG
	KLHL6	KLRB1	LAIR1	LAPTM5	LCK	LGALS2	LGALS9	LILRA4	LILRB1	LILRB4
	LSP1	LTA	LTB	LY86	LY9	LYZ	MAP4K1	MEF2C	MFNG	MFSD6L
	NCR3	NELL2	NINJ2	NLRP2	NR2F1	NTS	NUAK2	NUB1	NUGGC	ORM2
	PDE6G	PDE7A	PHYHIPL	PIK3AP1	PIK3CG	PIK3IP1	PILRA	PIM2	PIP5K1B	PIPOX
	PLEK	PNOC	POC1B	POU2AF1	POU2F2	PPARG	PPP1R16B	PRDM8	PRIM1	PRLR
	RAB42	RAB8A	RASGEF1B	RASSF5	RBM47	RBP5	RCSD1	RELB	RFC2	RFTN1
	RPA2	RPA3	RPL10	RPS14P3	RPS6KA1	RSPO3	SASH3	SCIMP	SCN3A	SCTR
	SIGLEC7	SIGLEC8	SIRPG	SIT1	SLAMF1	SLAMF6	SLAMF8	SLC12A3	SLC1A2	SLC25A38
	SNAI3	SOCS1	SOWAHD	SP140	SPOCK2	SSBP1	SSR4	ST6GALNAC1	ST8SIA4	STAP1
	TESPA1	TFEB	TFR2	TIFA	TIFAB	TLCD1	TLR7	TMEM156	TMEM176A	TMEM176B
	TRAT1	TREM2	TRG-AS1	TSPAN13	TSPAN33	TST	TTF1	TYROBP	UBASH3A	UPB1
Nivolumab	ZNF101	ZNF48	ZNF890P	ZNRF2	ZSCAN2					
melanoma up	ARSI	C1orf116	CAMK2A	CEACAM19	ELFN1	FAM189A2	FGFR3	FLCN	H1FX-AS1	LINC00571
	LINC01024	PMP22	SHROOM1	SLC9A3	TACR2	ZNF577				
Nivolumab										
resistant	ΔΤΡ2Δ3		BACH2	BANK1	RMP6			CCI 24	CCR6	CD10
melanoma down		EAM120C	EAM150A		GPC3		CDD88	CRAD		
	DODVS						DSMA7	DRM38		SAMDS
	F2R10									
					MADAK1	MLC1	NELL2		NUGGO	DINAGLILJ
	CINC00043		TAEA				INELLZ	NLRC3	NUGGC	FZRAJ
On Nivelumeh un	3L020A4	303D3								40010
On Nivolumab up	SEPTI		ACOD1		AKAP5				APOLS	ASULZ
				CDSUULF	CD3D	CUSE	CD3G			
	CTLA4								ODDE	EBIJ
	FURLS			GADD45G	GBPT	GBPIPI	GBP2			GUTT
	HLA-C							H53513B1		
	IL32			TIGAL			KLHDC/B	LAG3	LUK	
	PLEK	PRFI	PSD4	PSIMB9			PIPRC	RAB37	RACZ	RARRES3
	SIRPG	5111	SKAPT	SLAZ	SLAMFO	SLAMF7	SLAMFO	SLUZIAZ	SLUZAD	SLC6A12
	THEMIS	TIGIT	TLR8	TMEM155	TMEM176A	TMEM176B	TMPRSS3	TNFAIP3	TNFRSF1B	TNFRSF9
	BATF	BCL11B	BCL6	BIRC3	CA11	CCL4	CCL4L1	CCL5	CCL8	CCR5
	CD72	CD80	CD8A	CD8B	CD96	CIITA	CLEC4E	CP	CRTAM	CST7
	EOMES	ETV7	EZR	FADS2	FAM179A	FAM26F	FASLG	FCGR1A	FCGR1B	FCGR1CP
	GJD3	GPR132	GPR171	GPR68	GRIN3A	GZMA	G7MB	GZMH	G7MK	HI A-R
		IENG	IGEL R1	IK7E3	II 12RB1	II 18BP	II 21R	II 2RA	II 2RB	II 2RG
							122 111			
	LILRB1	LY75	MFSD6	MIAT	NKG7	NLRC5	PDCD1	PDCD1LG2	PIK3AP1	PLA2G2D
	RASGEF1B	RASGRP1	RILPL2	RIPK3	RNF144B	SECTM1	SERPINA1	SH2D1A	SIGLEC10	SIGLEC11
	SLC9A3R1	SMCO4	SOD2	SPATA13	SPOCK2	SQRDL	STAT3	TAP1	TAPBP	TGM2
On Nivalumah	TNIP3	TOX	TOX2	UBASH3A	ZAP70	ZC3H12A				
down	CBX1	GAP43	GYPE	HOXA2	HOXD4	KIAA1024	MPP4	NCAM1	NIFK	NYAP1

Responders on Nivolumab up

PIR	POPDC3	RPL7	TRAM1L1	WASF1					
SEPT1	LOC728875	ABCB1	ABCC9	ABCD2	ABI3	ABRACL	ACAA1	ACAP1	ACOD1
AES	AFTPH	AGAP2	AGFG2	AIM1	AIM2	AKAP5	AKNA	AKR1C4	AKTIP
APOL2	APOL3	APOL6	ARHGAP15	ARHGAP27	ARHGAP30	ARHGAP9	ARHGEF3	ARID5A	ARNTL
BATF	BCL2L11	BCL3	BCL6	BID	BIN2	BIRC3	BLOC1S2	BTN3A1	BTN3A2
C2orf81	C4B 2	C5AR2	CA11	CA2	CABP4	CALCOCO2	CARD11	CARHSP1	CASP7
CCR5	CCRL2	CD14	CD163	CD1D	CD2	CD226	CD244	CD247	CD27
CD40	CD47	CD48	CD5	CD53	CD6	CD7	CD72	CD74	CD80
		CHST7	CIITA	CLMN		CP	CPPED1	CREG1	CRLE3
			CYCR3	CYCR6	CVB5R4	CVBA	CVEIP2	CVLD	CVTH1
								ELE3	EU
EAM102A	EAM20A	EAM20C	EAMORE	EASLO		ERVOR	ECOP1A		ECCB1CD
FAMILISZA		FAIWIZUC		CADD450					CDD2
FUUM	FATUI	FTB	GADD45B	GADD45G	GALM	GBPT	GBPIPI	GBPZ	GBP3
GIMAPo	GJD3	GLDC	GLRX	GMFG	GMIP	GNB5	GNLY	GPR 132	GPR1/1
HAVCR2	HCG26	HCLS1	HCP5	HCST	HGD	HK3	HLA-A	HLA-B	HLA-C
HLA-E	HLA-F	HLA-H	HLA-L	HMHA1	HS3ST3A1	HS3ST3B1	HSD11B1	HSD3B7	ICAM3
IKZF1	IKZF3	IL10	IL10RB	IL12RB1	IL15	IL18BP	IL21R	IL24	IL2RA
IRF2	IRF8	ISG20	ITGAL	ITGB2	ITGB7	ITK	JAK3	JAKMIP1	JAKMIP2
KLHDC7B	KLHL2	KLRC2	KLRD1	KMO	KYNU	LACTB	LAG3	LAIR1	LAMP3
LINC00324	LINC00623	LINC00649	LLGL2	LOC100499489	LOC100506585	LOC100507412	LOC153684	LOC606724	LOC728752
MAFB	MAN1C1	MAN2A1	MAN2B2	MAP3K14	MAP3K7CL	MAP3K8	MAP4K1	MAPK13	MBD4
MPO	MPPE1	MR1	MT1E	MT1L	MVP	MYD88	MYL12A	MYLK	MYO1F
NFKBIB	NKAPP1	NKG7	NLRC3	NLRC5	NMI	NR1H3	NSMCE4A	NTN4	NTSR1
P4HTM	PARP11	PARP12	PARP14	PARP15	PARP9	PATL2	PCED1B-AS1	PCGF5	PDCD1
PLPP6	PNRC1	PPM1M	PPP3CC	PRF1	PROX1	PRR5L	PSD4	PSMB10	PSMB8
PTPRC	PTPRCAP	PZP	RAB11B-AS1	RAB20	RAB37	RAB8A	RAC2	RAP2C	RARRES2
RGS14	RGS9	RHOH	RILPL2	RIN3	RIPK3	RLTPR	RNASET2	RNF166	RNF213
SCP2	SCPEP1	SECTM1	SEMA4D	SERPINA1	SERPINB1	SERPINB8	SERPING1	SGPP1	SH2D1A
SLA	SI A2	SLAME1	SLAME6	SLAME7	SLAME8	SI C14A1	SI C15A3	SI C16A13	SI C27A2
SL C9A3R1	SL C9A3R2	SI C947	SLCO2B1	SI EN12	SMAP2	SMCO4	SNORD89	SNX20	SOD2
STAT1	STAT3	STATA	STAT5B	STY11	STY/	STYRP2		SUN2	5002
		TEEC	TCER1	TCER111	TCM2				
		TMDDCC2							
		TRIPROSS		TINFAIPS		TNFAIPOLZ		TYMP	
IRG-AST		TRIMZZ		11C39B	TUBA4A				UBA/
VASP	VAV1	VNN1	VNN2	VPS13C	WAS	WIPF1	WISP1	WIAP	XPU6
ACO12	ACP2	ACSF3	ACSL5	ACTR3	ADAM28	ADAM1S9-AS2	ADAP1	ADAP2	ADCY3
ALPK1	AMFR	AMPD3	ANKRD22	ANKRD29	ANPEP	APBB1IP	APOBEC3F	APOBEC3G	APOL1
ARNTL2	ARPC4	ARRB2	ARRDC1	ASCL2	ASGR1	ATF5	ATF7IP2	ATP6V0D1	B2M
BTN3A3	C10orf76	C12orf75	C16orf54	C17orf62	C18orf8	C19orf38	C1RL	C1S	C2
CASP8	CCBE1	CCDC64	CCDC88B	CCL16	CCL3	CCL4	CCL4L1	CCL5	CCL8
CD274	CD28	CD300A	CD300C	CD300LF	CD38	CD3D	CD3E	CD3G	CD4
CD82	CD84	CD86	CD8A	CD8B	CD96	CDC40	CDC42SE2	CEBPD	CFB
CRTAM	CSF1	CST7	CTAGE1	CTAGE5	CTLA4	CTSH	CTSS	CTSW	CXCL10
CYTH4	DAZAP2	DBH	DDHD1	DENND1B	DENND1C	DHRS1	DHRS3	DNAJC5B	DNASE2
EOMES	EPHA1	EPSTI1	ERAP1	ERMARD	EVL	F11R	FAM107B	FAM111A	FAM179A
FCN1	FCRL6	FERMT3	FGD2	FLT3LG	FLVCR2	FMNL1	FPGS	FRMD4B	FTL
GBP4	GBP5	GCH1	GCHFR	GCLC	GCNT1	GFI1	GGT5	GIMAP2	GIMAP4
GPR65	GPR68	GSAP	GSDMD	GZMA	GZMB	GZMH	GZMK	HAAO	HAMP
HLA-DMA	HLA-DMB	HLA-DOA	HLA-DPA1	HLA-DPB1	HLA-DQB1	HLA-DRA	HLA-DRB1	HLA-DRB5	HLA-DRB6
ICOS	ID2	IDNK	ID01	IFITM1	IFITM10	IFITM2	IFNAR2	IENG	IGFI R1
II 2RB	II 2RG	11.32	II 4R	INHBB	INPP5D	IPCEE1	IRAK2	IRAK4	IRF1
	KRTRD8	KCNA1	KCNK6	KCNMA1	KCNMB1		KIAA1324	KIAA1551	KIE19
LAP3		I AT2	I CK	I CP1	LCP2	I FPR			
		LRG1	LRRC25	ISR	1 75	1 29	LILINO		MAF
MED29	MFNG	MFSD2A	MFSD8	MIAT	MICB	MIR155HG	MKNK1	MOB1A	MOB3C
N/010	10/074			NAT				NOVADA	
MYUIG	MYU/A	N4BP2L1	NAAA	NAT1	NUF1	NCF1B	NUFIC	NCKAP1L	NEKBIA
NUBP1	NUD116P1	NUMB	UASL	UCIAD2		USUAK			P2RY14
PUCUILG2	PHF11	PI4K2B	PIGK	PIKJAP'I		PHPNMT	PLEK	PLEKHF1	PLINZ
PSMB8-AS1	PSMB9	PSME1	PSME2	PSTPIP1	PSTPIP2	PTK2B	PIPN22	PIPN6	PIPN7
RARRES3	RASAL3	RASGEF1B	RASGRP1	RASSF4	RASSF5	RASSF7	RCSD1	REC8	RELB

Journal Pre-proo

	RNF34	RNF4	RPS6KA1	RRAD	S1PR4	SAMD3	SAMSN1	SASH3	SCARF1	SCIMP
	SH3BP2	SHKBP1	SIGIRR	SIGLEC11	SIGLEC14	SIGLEC16	SIPA1	SIRPG	SIT1	SKAP1
	SLC29A3	SLC2A6	SLC30A1	SLC31A2	SLC41A2	SLC47A1	SLC6A1	SLC6A12	SLC8A1	SLC8B1
	SOWAHD	SP100	SP140I	SPATA13	SPI1	SPN	SPOCK2	SORDI	SSTR2	STARD4
	SUSD6	SYTI 3		TANK	τΔΡ1	TAPRP			TBC1D10C	TBC1D2
	TIGIT		TIDE				TMEM123	TMEM155	TMEM170A	TMEM175
							TIMEIMIZS			
	INFRSF9	INFSF13	INFSF14		INP3		TUXZ	IPRGI	TRADD	TRAF3IP3
	UBASH3A	UBASH3B	UBE2F	UBE2L6	UBE2QL1	UNC13D	UNC5A	VAMP5	VAMP8	VASN
on	ZAP70	ZBED1	ZBTB32	ZC3H12A	ZC3H12D	ZDHHC18	ZNF101	ZNF438	ZNF831	ZNRF2
own	SEP3	AACS	ABCB6	ABCF1	ABCF2	ADGRL1	AHCYL2	AKT3	ALX1	AMMECR1L
	ATP1A1	ATP6V0A4	ATP6V1B1	ATP9A	BACE2	BAMBI	BBS9	BCAN	BEST1	BEX3
	C16orf59	C19orf57	C2orf88	C5orf22	C5orf30	C8orf33	CABLES1	CAPN3	CASKIN1	CBX1
	CDK16	CDK2	CDK5R1	CDKN2B	CDKN3	CDYI	CELSR2	CENPA	CENPE	CERS1
		COPG2	CORO2B	CRNDE	CRTAP	CS	CSE1		CSNK2A1	CSPG/
	DUI3									E2E1
		EPHAD	EPRS	ESFI	ESRPI		EVISATI	EXUI	EAILI	
	FARSB	FASN	FAXC	FGDT	FIGNLI	FKBP10	FKBP14		FININZ	FUXIMI
	GEMIN5	GGCT	GINS4	GJC3	GLI3	GLMP	GOLGA2P10	GOLGA2P7	GPATCH4	GPM6B
	H2AFZ	HAGLR	HAS2	HCN1	HEY1	HHAIL	HILS1	HMGXB4	HNRNPA1	HNRNPA1L2
	IGF1R	IGFBPL1	IGSF11	IMPDH2	INPP5F	IPO11	IPO4	IPO7	IPO9	IQGAP3
	KIAA1024	KIF20A	KIF4A	KIFAP3	KIFC1	LAPTM4B	LDHB	LEF1	LGI3	LHFPL3-AS1
	LINC01278	LINC01531	LOC100126784	LOC100130370	LOC100505912	LOC285000	LOC642423	LOC646762	LONRF1	LRP12
	MCOLN3	MCUR1	MDGA2	MECR	MED20	MEIS2	METAP1D	MGC16275	MID1	MITF
	MSTO1	MSTO2P	MSX2	MTAP	MTBP	MYC	MYEF2	MYH14	MYO10	MYT1
	NKAIN1	NLE1	NME1	NOL11	NONO	NOP16	NOP56	NPM1	NRG3	NRM
	PABPC1	PABPC3	PAICS	PAPSS1	PARVB	PAX3	PBK	PCGF2	PDCD7	PDE11A
	PLCB4	PLEKHA5	PLEKHA8P1	PLEKHH1	PLOD3	PLXNB3	PMS2	PNCK	PNMAL1	POGK
	PPT2	PRAME	PRC1	PRELID2	PRR11	PRRT3-AS1	PRSS33	PRTG	PTK2	PTP4A3
	RASSF8	RASSF8-AS1	RBBP7	RCOR2	RECQL4	RGS20	RIMS2	RLBP1	RNF144A	RNF2
	RTCB	RTTN	S100A1	SAMM50	SCIN	SEMA6A	SERPINB7	SERPINE2	SFTPC	SGCD
	SLC6A10P	SLC6A15	SLC6A17	SLC6A8	SLC7A1	SLC7A5	SLCO4A1-AS1	SMIM13	SMYD5	SNCA
	SPIRE2	SPRY1	SPRY4	SRP68	SRPK1	SRPK2	SRRD	ST13	ST13P4	STEAP1
	TCEAL4	TCTN3	TEAD1	TEX10	TEX15	TEX41	TFAP2A	TFAP4	TICRR	TIMM8A
	TONSL	TOP1MT	TPTE	TRAM1L1	TRIM63	TRIM9	TRIP13	TRMT12	TROAP	TSPAN10
	TYRP1	TYW3	UBAP2L	UBE2H	UBE2T	UBFD1	UCK2	URB1	URB2	USP51
	XRCC2	ZBTB9	ZC2HC1A	ZIC2	ZNF106	ZNF16	ZNF212	ZNF280B	ZNF330	ZNF343
	AMOT	ANKRD7	ANLN	AP1S2	ARC	ARHGAP39	ARHGAP5-AS1	ARPC1A	ASB11	ATP10B
	BICD1	BMS1	BMS1P17	BMS1P18	BNC2	BTBD3	BUB1B	BYSL	BZW2	C10orf90
	CC2D2A	CCDC140	CCDC34	CCNB1	CCT2	CCT3	CCT6A	CCT8	CDC45	CDC6
	CHAF1B	CHGA	CHMI	CHST10	CIT	CITED1	CKAP2I	CNNM1	CNPY4	COI 25A1
	CTSV	CXorf56	CYTH3	DARS2	DCAE13	DCT		DGAT1		DKC1
	0100	0,0100	01110	DANOZ	DOAL13	DOT	DENIX	DOATT	DINGO	DIGT
	E2F3	ECD	EFNA5	EFR3B	EIF2S3	EIF3B	EIF3D	EIF3E	EIF3H	EIF3L
	FAM127C	FAM161A	FAM169A	FAM174B	FAM20B	FAM57A	FAM64A	FAM69C	FAM83D	FAM86C2P
	FSTL4	FSTL5	FXR1	GABRA3	GABRB3	GAPDHS	GAR1	GAS5	GDAP1	GDF11
	GPR143	GPRIN1	GPSM2	GREB1	GSTA4	GTF2IP4	GTF3C4	GTSE1	GYG2	GYS1
	HNRNPA1P33	HOXB9	HPS4	HS6ST2	HSP90AB1	HSPA12A	HSPA2	HSPA4	HTATSF1	IARS2
	IRX5	IRX6	ISPD	ISYNA1	JARID2	KAZN	KBTBD2	KCNH1	KCNQ5	KDM1A
	LINC00461	LINC00473	LINC00511	LINC00622	LINC00673	LINC00681	LINC00997	LINC01021	LINC01102	LINC01158
	LRRC39	LRRN4CL	LUZP1	MAGEC1	MAGED2	MAP7D2	MAPK12	MAPK4	MAPT	MCM8
	MLANA	MLPH	MMP16	MMP17	MOB3B	MOK	MORF4L2	MPP4	MPPED2	MRPS25
	NARS	NARS2	NAT9	NAV2	NBEA	NCAPG2	NCBP2	NCL	NFYA	NIFK
	NSG1	NT5DC3	NURPI	NV/I	ΝΥΔΡ1	OCRI			P2RX6	P3H4
		PEG10	PES1	PEX5	PEKM		PIAS3	PIR	P.IA1	
							DDEE1			
						DN/D2				
	RNF216P1	ROPN1	ROPN1R	RP9	RP9P	r wr2 RPI 7	RPS10	RESEKC1	RRP15	RRS1
	SH3TC2	SLC19A2	SLC24A5	SLC25A23	SLC25A32	SLC35B4	SLC39A10	SLC39A6	SLC41A1	SLC45A2
	SNHG16	SNHG4	SNHG6	SNX12	SORT1	SOX10	SOX12	SOX6	SOX9	SPIRE1
	STEAP1B	STK32A	STRADB	STX7	STXBP6	TAF4B	TAF9B	TBC1D16	TBC1D7	TBRG4

Responders or Nivolumab dov

Journal Pre-proo

TMCC2	TMEM120B	TMEM164	TMEM201	TMEM215	TMEM237	TMEM241	TMEM55A	TMEM98	TOMM20
TSPAN3	TSR1	TTC21B	TTC26	TUBB	TUBB4A	TULP3	TYMS	TYR	TYRO3
USP54	UTP14A	UTP15	VLDLR-AS1	WASF1	WDR3	WDR46	WDR63	WDR91	XPO5
ZNF367	ZNF462	ZNF696	ZNF697	ZNF704	ZNF74				

Journal Pre-proof

Table S7: Performance of previously reported signatures and IFNAP in frontline cohort

	IFN	Inflammatory signature	POPLAR	Cytolytic Activity	IFNAP
Accuracy	82%	82%	68%	68%	82%
Sensitivity	67%	67%	50%	50%	67%
Specificity	94%	94%	81%	81%	94%
PPV	89%	89%	67%	67%	89%
NPV	79%	79%	68%	68%	79%
AUC	0.85	0.82	0.76	0.67	0.87

Table S8: Genes incorporated in the IFNAP signature

Genename STAT1 GBP1 HLA-DRA HLA-DRB5 HLA-DQA1 TRIM25 FCER1G SEC24A CTSS CXCL9 B2M

Journal Prevention

	All (n = 55)	Objective response (n=13)	No response (n=42)	р
Age (years), median (range)	63.0 (28-86)	63.0 (51-86)	63.5 (28-83)	0.48
>65 years, n(%)	25 (45.5)	6 (46.2)	19 (45.2)	1.0
Sex, n (%)				0.16
Male	42 (76.4)	12 (92.3)	30 (71.4)	
Female	13 (23.6)	1 (7.7)	12 (28.6)	
Region, n (%)				0.67
US	9 (16.4)	1 (7.7)	8 (19.0)	
Europe	46 (83.6)	12 (92.3)	34 (81.0)	
Aetiology, n (%))	
HBV	11 (20.0)	5 (38.5)	6 (14.3)	0.11
HCV	13 (23.6)	1 (7.7)	12 (28.6)	0.16
Uninfected	31 (56.4)	7 (53.8)	24 (57.1)	
BCLC stage, n (%)		0.		0.71
Intermediate (B)	12 (21.8)	2 (15.4)	10 (23.8)	
Advanced (C)	43 (78.2)	11 (84.6)	32 (76.2)	
Sample origin, n (%)		, , ,	, , , , , , , , , , , , , , , , , , ,	0.62
Primary tumor	49 (89.1)	11 (84.6)	38 (90.5)	
Metastasis	6 (10.9)	2 (15.4)	4 (9.5)	
Specimen type, n (%)		× 7		0.75
Resection	35 (63.6)	9 (69.2)	26 (61.9)	
Biopsy	20 (36.4)	4 (30.8)	16 (38.1)	
Child Pugh Score, n (%)		. ,		0.34
А	48 (87.3)	10 (76.9)	38 (90.5)	
В	7 (12.7)	3 (23.1)	4 (9.5)	
Advanced Fibrosis F3-4, n (%)*	15 (44.1)	4 (44.4)	11 (44.0)	1.0
Platelets >100,000 / mm3, n (%)	41 (74.5)	10 (76.9)	31 (73.8)	1.0
AFP (ng/mL), median (range)	58 (1-675,400)	4.4 (1-93,238)	97.9 (1-675,400)	0.03
AFP (ng/ml) > 200, n (%)	23 (41.8)	3 (23.1)	20 (47.6)	0.20
Macrovascular invasion, n (%)	12 (22.2)	4 (30.8)	8 (19.5)	0.45
Extrahepatic disease, n (%)	39 (70.9)	10 (76.9)	29 (69.0)	0.73
Anti-PD1 drug, n (%)			. ,	0.59
Nivolumab	42 (76.4)	9 (69.2)	33 (78.6)	
Pembrolizumab	12 (21.8)	4 (30.8)	8 (19.0)	
Tislelizumab	1 (1.8)	0 (0.0)	1 (2.4)	
Median time on therapy (months)	3.9	21.0	2.78	<0.001

Table S9: Clinicopathological characteristics of patients treated with anti-PD1 in $2^{nd}/3^{rd}$ line

* data missing from 21 cases

Molecular markers of response to anti-PD1 therapy in advanced hepatocellular

carcinoma

INDEX OF SUPPLEMENTARY INFORMATION

Supplementary materials and methods	2
Supplementary References	8
Supplementary Figures	
Supplementary Tables	

Supplementary materials and methods

Study population and endpoints

Gene expression profiles from 347 patients undergoing anti-PD1 therapy were analysed for the purpose of our study, including our HCC cohort of 83 cases established under the umbrella of an international consortium comprising 13 referral centers. Cases from our cohort were recruited from the following institutions: Icahn School of Medicine at Mount Sinai, the Inselspital University of Bern, KU Leuven, University of Mainz, Hannover Medical School, University College London Cancer Institute, Lausanne University Hospital, Mayo Clinic, Hospital Universitari Vall d'Hebron, IRCCS Istituto Nazionale Tumori (Milan, Italy), University of Frankfurt, Charité University Medicine Berlin and the Geffen School of Medicine at UCLA. The transcriptomic data from the remaining 240 cases were previously published and obtained from public repositories¹⁻⁴. Clinicopathological data and follow-up for patients included in the internal cohort of 83 patients are summarized in **Tables 1, S2-3**.

RNA extraction and gene expression profiling

We collected 111 archived formalin-fixed paraffin-embedded tissue blocks (**Table S1**), including both resection specimen and biopsies, of patients undergoing anti-PD1 therapy for advanced HCC. The study protocol was approved at each contributing center and informed consent obtained from subjects. An expert liver pathologist (ST) validated HCC as the disease entity and discerned tumor tissue from adjacent non-tumoral hepatic parenchyma based on haematoxylin/eosin (H&E) staining. Briefly, tumor tissue was

Journal Pre-proot

macrodissected in FFPE sections and RNA as well as gDNA isolated using the miRNAeasy FFPE and QIAmp DNA FFPE tissue kit (QIAgen), respectively.

Transcriptomic studies were performed using the Clariom S human Array (Affymetrix) with 400ng of total RNA as input. We performed the microarrays in two different batches of 58 samples and 29 cases, respectively. The latter batch included 4 technical replicates from the first batch, in order to allow for subsequent batch correction, if necessary. Nonetheless, after applying an empirical Bayes framework with ComBat -integrated in sva bioconductor package⁵ - no differences were observed between batches, and therefore technical replicates were removed from the first set. Commands mod=NULL, and par.prior=TRUE were used in ComBat. Background correction and quantile normalization of the raw expression data was carried out using the R oligo package with rma modules. Differential gene expression based on the distinct response subtypes was conducted using the *limma* package. We performed Wilcoxon rank sum test on an individual gene level and used a nominal p value threshold <0.01 and a fold change (FC) of 1.5 as cut-offs to define differentially expressed genes (DEG). Functional characterization of DEGs was performed using Gene Ontology enrichment analysis with FDR corrected p values. We further tested previously reported gene-expression signatures that define states of inflammation and immune cell subsets using the Molecular Signature Database gene sets (MSigDB, www.broadinstitute.org/msigdb) and individually curated gene sets⁶⁻¹³ (signatures are shown in **Table S6**). This included signatures that have been previously linked to response to immunotherapy in HCC and other cancer types. Gene sets with an upregulation of all included genes were tested via single sample Gene set enrichment analysis (ssGSEA) after normalization. Assessment of pathway

Journal Pre-proof

activation was performed using Gene Set Enrichment Analysis (GSEA) and ssGSEA. Other signatures that incorporate up-and downregulation of genes as well as previously reported molecular HCC classes^{11, 14, 15} were tested using the GenePattern Nearest Template Prediction module¹⁶. Samples were assigned to a given class when the FDR<0.05 unless otherwise stated in the original publication. Microenvironmental deconvolution was performed with CIBERSORTx¹⁷ in batch corrected mode.

Generation of the IFNAP signature

To generate a gene-expression signature associated with objective response to anti-PD1 single-agent therapy, differential expression analysis was performed between responders and non-responders and genes with a Fold Change > 1.5 and a p-value by Wilcoxon-rank sum test p<0.01 selected for further analysis. The resulting 140 genes were able to distinguish responding from non-responding cases based on principal component analysis (Figure S2A). We next cross-referenced the 140 genes with the two top Gene Ontology terms associated with these genes pertaining to IFN signalling (GO:0060333) and antigen presentation (GO:0019886). We added CXCL9 (FC=3.4, p<0.01) and B2M (FC=1.7, p=0.01) that were enriched in responders in our dataset as well. CXCL9 is a key chemokine, facilitating tumoral T-cell infiltration that has been shown in a recent metaanalysis to be significantly enriched among responding patients across cancer types¹⁸. B2M is a part of the antigen-presentation machinery, where loss of heterozygosity (LOH) and deletions have been linked to primary resistance in melanoma¹⁹. The resulting 11 genes were incorporated into a gene set titled IFNAP that was then tested to predict response and survival in our HCC cohort and four validation datasets. We defined high

expression of IFNAP as patients within the 3rd tertile, whereas the remaining patients were characterized as the Rest. A summary of the generation of the signature is depicted in **Figure S13**.

Validation of IFNAP in external datasets

After ensuring acceptable predictive ability in our dataset, we then sought to test the predictive potential of IFNAP in five independent external datasets that were previously published:

- 1. Prat et al, Cancer research 2017 : 65 patients (Melanoma, NSCLC, HNSCC)³
- 2. Jung et al, Nat. Comm. 2019: 27 patients (NSCLC)¹
- 3. Liu et al, Nature Med. 2019 : 151 patients (Melanoma)²
- 4. Hugo et al, Cell 2016 : 28 patients (Melanoma)⁴
- 5. Hsu et al, Liver Cancer 2021 : 24 patients (HCC)²⁰

As in our internal cohort, IFNAP expression was defined as high for the top tertile whereas the remaining patients were grouped as the Rest in each of the datasets. In the cohort by Jung et al, response was defined as patients having a durable clinical benefit (DCB), meaning the patient had either OR or SD for at least 6 months.

In all datasets, tissue was obtained before the initiation of anti-PD1 therapy. In the Liu et al cohort, however, one patient had an on-treatment biopsy. This patient was therefore excluded from the analysis.

Journal Pre-proof

In both pure melanoma datasets, response rates exceeded 33% and therefore the applied cut-off for the third tertile limited the predictive ability of IFNAP. In these datasets, chi² p values are 1-sided.

The effect of TKIs on tumoral and microenvironmental signaling was studies by repurposing a previously published report where a syngeneic HCC model was generated by injecting 5x106 Hepa1-6 cells in 5-6-week old female C57BL/6J mice²¹. Tumor samples from the model were collected 13 days after treatment with either lenvatinib or vehicle and subjected to gene expression microarray studies using the Clariom S Mouse Array (Affymetrix, Santa Clara, CA; GSE153203). Normalization, background correction and log-transformation were were carried out using the limma package and single sample gene set enrichment analysis performed using GenePattern.

Immunohistochemistry and assessment of immune infiltration

The presence and severity of an immune infiltrate was assessed by an expert pathologist (ST) using HE stained slides. A previously published scoring system was applied grading the overall amount of the immune infiltrate applying a semi-quantitative score from 0-4, where 0= absence of immune cell infiltration, 1= minimal, 2=mild infiltration, 3= moderate infiltration and 4= severe infiltration¹¹. We applied the previously established threshold of 2, up to which samples are defined to have low infiltration where grades 3-4 are considered to have high infiltration. Scoring was performed both within the tumoral compartment as well as at the invasive margin when available.

Journal Pre-proof

Assessment of the tumor infiltration lymphocytes (TILs) and scoring was performed following the International Immuno-Oncology Biomarkers Working Group recommendations²².

Immunohistochemistry (IHC) for PD-1 and PD-L1 was performed on 3-µm-thick FFPE tissue sections after heat-induced antigen retrieval in microwave with 10 mM TRIS-EDTA (pH=9). Primary antibodies used for anti-PD-L1 and anti-PD1 were Abcam clone 28-8 and clone NAT105, respectively. Positive staining for PD1 was measured as previously characterized using a semi-quantitative (high vs. low) score¹¹. PD-L1 expression was assessed in HCC cells where the percentage of neoplastic cells with membranous staining was defined and tumors with 1% or more of positively stained cells were classified as positive.

CTNNB1 mutation status

As mutations in *CTNNB1* have been implicated in driving primary resistance to anti-PD1 therapy, we performed Sanger sequencing using primers to amplify *CTNNB1* exon 3. Mutations were confirmed by sequencing a second amplification product on both strands. Primers used were 5' to 3' GATTTGATGGAGTTGGACATGG (forward) and TGTTCTTGAGTGAAGGACTGAG (reverse).

Statistical analysis

Supplementary analysis were performed using the R statistical package. Correlations between expression of gene signatures and objective response were performed by Chi² test and Wilcoxon rank-sum test for categorical and continuous data, respectively. Kaplan-Meier estimates and log-rank test were performed to investigate the association

of IFNAP expression with progression-free- and overall survival using the *survminer* package.

Molecular Data availability

Publically available datasets used in this study are detailed in the supplementary materials and methods. The normalized gene expression data and clinical data from the HCC cohort has been deposited at European Genome archive (EGAS00001005477). All reasonable requests for raw data will be promptly reviewed by the corresponding author to determine whether the request is subject to any intellectual property or confidentiality obligations.

References

- 1. Jung H, Kim HS, Kim JY, et al. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nature Communications 2019;10:4278.
- 2. Liu D, Schilling B, Liu D, et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nature Medicine 2019;25:1916-1927.
- 3. Prat A, Navarro A, Paré L, et al. Immune-Related Gene Expression Profiling After PD-1 Blockade in Non–Small Cell Lung Carcinoma, Head and Neck Squamous Cell Carcinoma, and Melanoma. Cancer Research 2017;77:3540-3550.
- 4. Hugo W, Zaretsky JM, Sun L, et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 2016;165:35-44.
- 5. Leek JT, Johnson WE, Parker HS, et al. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012;28:882-3.
- 6. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 2017;127:2930-2940.
- 7. Rooney MS, Shukla SA, Wu CJ, et al. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160:48-61.
- 8. Sangro B, Melero I, Wadhawan S, et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J Hepatol 2020;73:1460-1469.
- 9. Auslander N, Zhang G, Lee JS, et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med 2018;24:1545-1549.
- 10. Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. The Lancet 2016;387:1837-1846.
- 11. Sia D, Jiao Y, Martinez-Quetglas I, et al. Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology 2017;153:812-826.

- 12. Pinyol R, Montal R, Bassaganyas L, et al. Molecular predictors of prevention of recurrence in HCC with sorafenib as adjuvant treatment and prognostic factors in the phase 3 STORM trial. Gut 2019;68:1065-1075.
- 13. Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013;39:782-95.
- 14. Hoshida Y, Nijman SM, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009;69:7385-92.
- 15. Chiang DY, Villanueva A, Hoshida Y, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 2008;68:6779-88.
- 16. Brunet J-P, Tamayo P, Golub TR, et al. Metagenes and molecular pattern discovery using matrix factorization. Proceedings of the National Academy of Sciences 2004;101:4164.
- 17. Newman AM, Steen CB, Liu CL, et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology 2019;37:773-782.
- 18. Litchfield K, Reading JL, Puttick C, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021;184:596-614.e14.
- 19. Sade-Feldman M, Jiao YJ, Chen JH, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nature Communications 2017;8:1136.
- 20. Hsu CL, Ou DL, Bai LY, et al. Exploring Markers of Exhausted CD8 T Cells to Predict Response to Immune Checkpoint Inhibitor Therapy for Hepatocellular Carcinoma. Liver Cancer 2021;10:346-359.
- 21. Torrens L, Montironi C, Puigvehí M, et al. Immunomodulatory Effects of Lenvatinib Plus Anti-Programmed Cell Death Protein 1 in Mice and Rationale for Patient Enrichment in Hepatocellular Carcinoma. Hepatology 2021.
- 22. Hendry S, Salgado R, Gevaert T, et al. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv Anat Pathol 2017;24:311-335.

Supplementary Figures

S1: Depiction showing the time between sample acquisition and treatment initiation.

S2: Pathway activation in responding patients and clinical outcomes according to the HCC molecular classes.

S3: Performance of histological markers and inferred TMB in patients treated with anti-PD1 frontline and $2^{nd}/3^{rd}$ line

- S4: Principal component analysis and composition of IFNAP and other signatures.
- S5: Association of outcomes and individual genes in response signatures
- S6: Validation of IFNAP in two independent melanoma cohorts.
- S7: Performance of previously reported response signatures in two validation datasets.

S8: Validation of IFNAP in independent HCC cohort.

S9: Microenvironmental deconvolution with CIBERSORTx.

S10: Outcomes according to CTNNB1 mutational status.

S11: Performance of response signatures in patients treated with anti-PD1 after previous TKI therapy.

S12:Prior TKI therapy interferes with the readout of inflammatory signatures as biomarkers of response

S13: Generation of IFNAP signature.

Fig. S1: Depiction showing the time between sample acquisition and treatment initiation. The time difference between the acquisition of the biological specimen and the initiation of systemic therapies was 4 months in patients treated with anti-PD1 in frontline and 12.8 months for patients treated in 2nd or 3rd line.

Fig. S2: Pathway activation in responding patients and clinical outcomes according to the HCC molecular classes. (A) GO-term analysis for cellular components among the 140 DE genes revealed a strong association enrichment in genes associated with MHC class II expression and formation (FDR<0.001). (B) Gene set enrichment analysis (GSEA) between responding patients treated with anti-PD1 in frontline (n=12) compared to non-responders (n=16) confirmed an upregulation of genesets associated with an active immune response and antigen presentation (FDR<0.001). (C) Outcome analysis in patients treated with anti-PD1 in frontline revealed a trend towards longer mPFS in the *Inflamed HCC* subclass was observed. (D) Patients with an aggressive phenotype, as accounted for by the molecular classes *S1* and *S2* had a markedly longer mPFS than the remaining patients.

Fig. S3: Performance of histological markers and inferred TMB in patients treated with anti-PD1 frontline and 2nd/3rd line. (A) No difference was observed between responders and non-respondes treated in frontline based on histological assessment of tumor infiltrating lymphocytes within the tumor (top panel) or at the invasive margin (bottom panel). (B) In patients treated in 2nd and 3rd line, a similar observation was made, where the severity of TIL infiltration was not linked to response. (C) Expression of previously reported signatures inferring high mutational burden (TMB) and the presence of tertiary lymphoid structures (TLS) was not linked to response status in frontline or in $2^{nd}/3^{rd}$ line.

Fig. S4: Principal component analysis and composition of IFNAP and other signatures. (A) Principal component analysis (PCA) using the 140 DE genes reveals a clear separation between responding and non-responding patients, with IFNAP positive patients clustering together. (B) Individual compositions of gene expression signatures previously reported and IFNAP are shown highlighting the unique composition of IFNAP. Red squares indicate the inclusion of an individual gene in the respective signature. (C) Re-analysis of a previously published cohort of 30 samples from 15 large HCC tumors revealed expression of IFNAP to be highly correlated between two samples of a given tumor indicating that intratumoral heterogeneity does not mitigate the robustness of the signature.

Fig. S6: Association of outcomes and individual genes in response signatures. Analysis of the genes included in the IFNAP and IFN signature revealed a significant enrichment of all individual IFNAP genes in responders (A). Superior clinical outcomes were observed with regard to Objective response when performing binary logistic regression and to PFS with Cox regression analysis (B). Of the 6 genes included in the IFN signature only the ones overlapping with IFNAP were positively linked with OR and longer PFS whereas the remaining 3 genes (IFNG, CXCL10 and IDO1) were not (C).

Fig. S6: Validation of IFNAP in two independent melanoma cohorts. Correlations between response signature expression, according to the top tertile vs remaining cases, and objective response rates as well as Kaplan-Meier estimates for progression-free survival and overall survival are shown. (A-L) In a third dataset, including only melanoma cases treated with anti-PD1, only IFNAP was able to consistently show significant differences in terms of objective response (A), progression-free- (B) and overall survival (C). Conversely, none of the previously reported response signatures (D-L) were able to elicit significant differences in terms of OR (D,G,J), PFS (E,H,K) and OS (C,F,I,L). (M-P) Validation was performed in a further RNA-seq based dataset of melanoma patients treated with anti-PD1 (Hugo et al). Of the tested signatures, only high Expression of IFNAP was associated with an increase in ORR (M), whereas neither the 6-gene *IFN* signature, nor *POPLAR* and the *Inflammatory* signature predicted response (N-P). No data on PFS was available in this dataset. P values in Chi² tests represent a 1-sided significance level.

Fig. S7: Performance of previously reported response signatures in 2 validation datasets. Correlations between response signature expression, according to the top tertile vs remaining cases, and objective response rates as well as Kaplan-Meier estimates for progression-free survival are shown. (A-F) In the nanostring-based datasets with non-small cell lung cancer, melanoma or head and neck squamous cell cancer patients, none of the previously reported signatures were associated with response (A,C,E), while high expression of the IFN signature was able associated with longer PFS (B). (G-L) In the RNA-seq based dataset by Jung et al, comprising NSCLC patients, only IFNAP and the IFN signature was associated with response (G) and longer PFS (H) while

the remaining signatures had no predictive values (I-L). A cut-off at between 2nd and 3rd expression tertile was applied to separate the groups. P values in Chi² tests represent a 2-sided significance level.

Fig. S8: Validation of IFNAP in independent HCC cohort. Validation was performed in an independent cohort of 24 HCC patients treated with either nivolumab (n=13) or combination (n=11). Among the patients treated with nivolumab, high expression of IFNAP was associated with significantly longer OS (A), whereas a trend was observed towards higher ORR in patients with high IFNAP expression. In those patients treated with combination, however, high IFNAP expression was neither associated with neither OS (C) nor OR (D). P values represent log-rank test in KM curves as well as asymptotic Chi² tests with a 2-sided significance level.

Fig. S9: Microenvironmental deconvolution with CIBERSORTx. Complete results of CIBERSORTx are shown based on expression of IFNAP. High expression was defined as the top tertile, whereas remaining patients were summarized as the Rest. Analysis was performed with 100 permutations in batch-correction mode. P values represent Wilcoxon-rank sum tests.

Fig. S10: Outcomes according to CTNNB1 mutational status. Kaplan-Meier estimates for PFS and OS are shown for patients treated with anti-PD1 in frontline. While responders had markedly longer mPFS and mOS than non-responders, no differences were observed when comparing responders based on CTNNB1 mutational status. Likewise, outcomes of non-responders were similar as well between CTNNB1 mutated cases and CTNNB1 wildtype (WT) patients. P values represent a log rank test.

Fig. S11: Performance of response signatures in patients treated with anti-PD1 after previous TKI therapy. Correlations between response signature expression, according to the top tertile vs remaining cases, and objective response rates as well as Kaplan-Meier estimates for progression-free- and overall survival are shown for patients treated with anti-PD1 therapy in either 2nd or 3rd line in our dataset. Neither IFNAP nor previously reported signatures of response were able to predict any differences in ORR (A,D,G,J), progression-free- (B,E,H,K) and overall survival (C,F,I,L). The lack of discrimatory ability by these signatures suggests that previous TKI therapy can reshape the tumoral microenvironment to render initially inflamed tumors no longer amenable to anti-PD1 therapy. P values in Chi² tests represent a 2-sided significance level.

Fig. S12: Prior TKI therapy interferes with the readout of inflammatory signatures as biomarkers of response. (A) Heatmap of patients treated with anti-PD1 in 2nd and 3rd line and previously characterized response signatures. (B) Depiction of normalized expression scores from GO-based gene set enrichment analysis in patients with low IFNAP expression based on whether they responded (IFNAP low OR, pink) or not (IFNAP low NR, navy blue). (C) Boxplot representation of CIBERSORTx in patients with low IFNAP expression identifies severe Treg infiltration as an obstacle to achieve OR to anti-PD1 in patients treated in 2nd and 3rd line. (D) A previously reported murine model was re-analyzed to investigate the impact of TKI treatment via lenvatinib on the tumoral microenvironment. (E) In the murine model, lenvatinib elicited a shift in the cellular

composition within the tumoral microenvironment and was able to augment inflammatory signalling. P values for KM analysis derive from log-rank test whereas those in the boxplot representation represent Wilcoxon-rank sum test.

Fig. S13: Generation of IFNAP signature. IFNAP signature was created based on differential expression analysis using highly differentially expressed genes that overlapped with known Gene Ontology terms with the addition of CXCL9 and B2M.

Supplementary Tables

Table S1: Participating centers.

- Table S2: Cohort characteristics based on treatment line.
- Table S3: Clinicopathological characteristics of patients treated with anti-PD1 in frontline.

Table S4: Differentially expressed genes between responders and non-responders in frontline treated patients.

Table S5: GSEA between responding and non-responding patients treated in frontline.

Table S6: Previously reported signatures of response / resistance to anti-PD1 therapy and signatures capturing immune cell subsets.

Table S7: Performance of previously reported signatures and IFNAP in frontline cohort.

Table S8: Genes incorporated in the IFNAP signature.

Table S9: Clinicopathological characteristics of patients treated with anti-PD1 in 2nd/3rd line.