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Preclinical extracranial aneurysmmodels
for the study and treatment of brain
aneurysms: A systematic review

Serge Marbacher1,2, Fabio Strange1,2 , Juhana Fr€os�en3 and
Javier Fandino1,2

Abstract

Animal models make an important contribution to our basic understanding of the pathobiology of human brain

aneurysms, are indispensable in testing novel treatment approaches, and are essential for training interventional neuro-

radiologists and neurosurgeons. Researchers are confronted with a broad diversity of models and techniques in various

species. This systematic review aims to summarize and categorize extracranial aneurysm models and their character-

istics, discuss advantages and disadvantages, and suggest the best use of each model. We searched the electronical

Medline/PubMed database between 1950 and 2020 to identify main models and their refinements and technical mod-

ifications for creation of extracranial aneurysms. Each study included was assessed for aneurysm-specific characteristics,

technical details of aneurysm creation, and histological findings. Among more than 4000 titles and abstracts screened,

473 studies underwent full-text analysis. From those, 68 different techniques/models in five different species were

identified, analyzed in detail, and then grouped into one of the five main groups of experimental models as sidewall,

terminal, stump, bifurcation, or complex aneurysm models. This systematic review provides a compact guide for

investigators in selecting the most appropriate model from a range of techniques to best suit their experimental

goals, practical considerations, and laboratory environment.
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Introduction

Brain aneurysms are a cerebrovascular disease in which

a weakening of a cerebral artery causes an abnormal

focal dilatation. Microsurgical and endovascular treat-

ment aims to eliminate brain aneurysms from cerebral

circulation and prevent rupture. Despite rapid advan-

ces in the development of endovascular treatment,

complete and long-lasting aneurysm occlusion remains

a challenge, and the biological mechanisms that predis-

pose brain aneurysms to grow and recanalize are not

yet fully understood.1,2 Although strong histological

similarity exists between the cerebral arteries of

humans and animals, the prevalence of naturally devel-

oped cerebral aneurysms in animals is extremely low.3,4

Models with artificial induction of aneurysm formation

are therefore needed for preclinical studies of the

pathobiology of human brain aneurysms as well as to

evaluate and invent novel endovascular devices and
medical therapies that prevent rupture and recurrence
after endovascular therapy.

Current models can be divided in two main groups:
first, intracranial aneurysm models serve to evaluate
induction, growth, and rupture of brain aneurysms
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and, second, extracranial aneurysm models that are
mainly designed to test novel endovascular treatment
options. Animal models of intracranial aneurysm for-
mation induced by flow manipulation, hypertension,
and impaired collagen synthesis developed by Prof.
Nobuo Hashimoto et al.5 are the most physiological
models in terms of reproducing human morphology,
histology, hemodynamics, and brain aneurysm vessel
surroundings. In all other models, including the induc-
tion of intracranial aneurysms by intrathecal elastase
injection,6 aneurysms are created by direct vessel
manipulation of intra- and extracranial arteries. This
review focuses exclusively on extracranial aneurysm
models for the study of endovascular therapies in the
most often used species, that is, mouse, rat, rabbit, dog,
and swine. Extracranial animal models in sheep7 and
monkey8,9 have also been described but have never
undergone detailed methodological analysis and are
seldom used today.

Although the number of studies using animal aneu-
rysm models has steadily increased in recent years, no
model has yet been established as the generally accept-
ed standard for preclinical testing.10,11 To the contrary,
confronted with a diversity of animal models and tech-
niques, investigators now face increasingly complexity
in choosing the appropriate model for any given
research question. Specifically, endovascular technolo-
gy is progressing rapidly, traditional surgically con-
structed models have been adapted, and novel models
and techniques have been designed. This review aims to
provide a contemporary detailed overview of available
extracranial aneurysm models and discusses advan-
tages and disadvantages of specific species and
techniques.

Materials and methods

Search strategy

The literature was reviewed to identify main animal
models of experimental saccular aneurysm, their refine-
ments, and technical modifications. We searched the
database Medline/PubMed on 10 January 2020 using
the key words “mouse,” “rat,” “rabbit,” “dog,” and
“swine” in combination with “aneurysm” with the
Boolean operator (AND). The search was restricted
to “animals.” Two investigators (SM and FS) indepen-
dently screened titles and abstracts for eligibility based
on our predefined criteria, reviewed the full text of eli-
gible studies, and confirmed articles for inclusion. Any
disagreement about a particular study’s eligibility was
resolved with consensus of the other authors.
Additionally, we identified studies cited in previous
reviews and added select articles by cross-reference
checking until no other publications were found.

Figure 1 outlines the applied search algorithm applied
and reasons for exclusion in accordance with the
Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines.12

Eligibility criteria and analyzed features

We considered in vivo extracranial aneurysm models in
mice, rats, rabbits, dogs, and swine but excluded
non-English publications and studies on intracranial
aneurysms. In the rare case of a model in which an
extracranial vessel was transposed or transplanted
into the intracranial space, the model was, despite its
anatomical location, assessed as an extracranial aneu-
rysm model. For each included study, we recorded
authors; year of publication; detailed technique of
aneurysm creation; number of created aneurysms;
time for creation; patency rate; histological findings;
mortality and morbidity; and shape, size, and location
of the aneurysms.

Animal models were defined with consideration to
the large differences that occur in the natural course of
aneurysms among species. Therefore, we considered
the animal model to be unique when identical techni-
ques of aneurysm induction were performed in either
different species or a different anatomical location
within the same species or with any variation in the
aneurysm graft (arterial or venous pouch) or with mod-
ification by chemical or mechanical means. Besides dif-
ferences in species, anatomical location, or graft
characteristics, a model was defined as novel only if
modifications of an existing technique were major,
that is, resulting in significant changes in aneurysm
size or shape, patency rate, time for creation, or mor-
bidity and mortality. Any uncertainty about the novel-
ty of a particular study was resolved by two authors
based on the predefined criteria listed above.

Results

From 4295 publications related to the main animal
models of experimental saccular aneurysm, including
refinements and technical modifications, our further
screening of titles and abstracts and removal of dupli-
cates identified 473 studies for detailed full-text analy-
sis. Among these, a total of 68 techniques were found
that included mice (n¼ 4), rats (n¼ 16), rabbits
(n¼ 19), dogs (n¼ 23), and swine (n¼ 6). For each
technique, details of the animal model, localization,
time for creation, size of the aneurysm, patency rate,
and morbidity and mortality are outlined in
Supplementary Tables. We defined five main groups
of aneurysm models as (1) sidewall, (2) terminal, (3)
bifurcation stump, (4) natural and artificial bifurcation,
and (5) complex aneurysm models (Figure 2).
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In these aneurysm models, aneurysm walls consisted

of either a venous or an arterial vessel segment (auto-

genic and allogenic grafts). Creation was performed

surgically, by inducing vessel wall weakening (chemical

or physical), or a combination of both. Methods to

weaken the vessel walls consisted of treatment with

elastase, papain, collagenase, CaCl2, or sodium dodecyl

sulfate; mechanical destruction (e.g., arteriotomy) fol-

lowed by laser sealing or glue application; or mechan-

ical transluminal or external destruction of various

parts of the vessel wall. Among all species, aneurysms

were created in anatomical locations that included the

femoral artery, common iliac artery, external and inter-

nal iliac artery, aortic bifurcation, abdominal aortic

artery, renal artery, brachiocephalic artery, subclavian

artery, vertebral artery, common carotid artery (CCA),

CCA bifurcation, ascending cervical artery, external

carotid artery (ECA), ascending pharyngeal artery, lin-

gual artery, maxillary artery, superior thyroid artery,

ascending cervical artery, basilar artery, and middle

cerebral artery (Figure 3), respectively. Subtypes of

these models are given in Figures 4 and 5, and their

method depicted in step-by-step illustrations

(Supplementary Figures).

Compared to dogs and pigs, smaller animals such as

mice, rats, and rabbits have the advantages of lower

costs and easier handling. Although not all endovascu-

lar devices can be tested in mice and rats, transgenic

animals are widely available and immunohistochemical

and molecular biology techniques are easier to apply.

Unlike all other species, pigs show an unfavorable

strong tendency for spontaneous thrombosis and exces-

sive healing reaction. Sidewall, untreated stump, and

natural bifurcation models are the simplest and quick-

est techniques for creating extracranial aneurysms. In

contrast, the terminal, artificial bifurcation, treated

stump, and complex models are resource intensive, sur-

gically demanding, and time-consuming. The sidewall

model allows creation of most standardized aneurysm

shapes with good reproducibility. However, the hemo-

dynamic condition differs significantly from most

human aneurysms. Artificial bifurcation and complex

models exhibit comparably worse reproducibility but

do allow for great variability in aneurysm shape and

have flow characteristics like those seen in human

aneurysms. Advantages and disadvantages of each

animal and the five main extracranial aneurysm

models are summarized in Tables 1 and 2.

Figure 1. PRISMA flowchart of PubMed search strategy and selection process. Among more than 4000 titles and abstracts screened,
473 studies underwent detailed full-text analysis. From those, 68 models, including refinements and technical modifications, were
identified in five different species.
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Sidewall aneurysm model

The sidewall aneurysm model, described by German
and Black, is the oldest microsurgical technique to pro-
duce experimental aneurysms (Figure 4, A1).13 The two
variations of this technique have used (1) an isolated
vein graft sutured end-to-side onto the parent artery
(Supplementary Figure A1A) and (2) an arteriovenous
fistula created by end-to-side or side-to-side suturing of
a vein onto the parent artery followed by immediate or
delayed ligation of the fistula (Supplementary Figure
A1B).14,15 Modifications include weakening of the
parent artery with the use of nitrogen mustard, elas-
tase, or mechanical destruction and subsequent aneu-
rysmal outpouching at the site of the damaged vessel
segment. Although the size of arteriotomy can be stan-
dardized, the size of the venous pouch itself and ulti-
mately the aneurysm volume varies greatly. Only use of

an arterial graft can ensure the standardization of

aneurysm size.
To date, the most standardized aneurysm model in

terms of graft origin, aneurysm shape and dimensions,

volume-to-orifice ratio, and parent vessel to aneurysm

long axis angle is the rat sidewall aneurysm created by

an arterial pouch (Figure 4, A2; Supplementary

Figure A2).16 The patency rate of sidewall aneurysms

depends to a large extent on the animal used.

Untreated sidewall swine aneurysms have a tendency

for spontaneous thrombosis.17–19 Unlike the tendency

for spontaneous thrombosis in swine,17–19 the sidewall

venous pouch aneurysm models in the rat, rabbit, and

dog achieved excellent rates of long-term patency, that

is, 100% (84/84),16 95% (38/40),20 and 94% (81/86),21

respectively, without need for an antithrombotic

regimen.

Figure 2. Main groups of extracranial aneurysm models. Preclinical extracranial aneurysm models in different species can be cat-
egorized into one of the five main groups. Top form left to right: (1) sidewall aneurysm models, (2) bifurcation stump aneurysm
models, and (3) terminal aneurysm models. Down from left to right: (4) natural and artificial bifurcation aneurysm models and (5)
complex aneurysm models.
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Stump aneurysm model

Fingerhut and Alksne22 were among the first to ligate a
major muscular branch of the femoral artery to create
an arterial stump. Unlike all other bifurcation stumps,
the tail artery stump in dogs (abdominal aortic trifur-
cation), described by Roach,23 represents a natural
arterial bifurcation (Figure 4, B6; Supplementary
Figure B6). Following these original descriptions,
others have reported untreated arterial stump models

at different anatomical locations and in various species.

Untreated stumps are the simplest, fastest method to

create an arterial pouch (even in relatively small spe-

cies) and therefore are ideal models to screen potential

embolization materials (Figure 4, B2; Supplementary
Figure B2).24–26

Influenced by previous experimental work of

elastase-induced abdominal aortic aneurysms in

rats,27 Cawley et al.28 infused elastase (via microcath-

eter from the femoral artery) into unilateral and bilat-
eral surgically created stumps of the ECA in rabbits

(Figure 4, B3; Supplementary Figure B3). Cloft

et al.29 elaborated on a purely endovascular-based arte-

rial aneurysm model. After blocking the origin of the

left CCA 2 cm distal to the vessel origin using a detach-

able balloon, they infused the stump with elastase for

30min (Figure 4, B1; Supplementary Figure B1). Altes
et al.30 modified a version of this model that reduced

creation time (<1 h) and procedural morbidity and

mortality. They surgically exposed the right CCA,

blocked its origin retrograde with a pliable balloon,

and infused the distal stump with elastase. The group

proposed several modifications to their right CCA
model to customize resultant aneurysm morpholo-

gy.31–33 Because the right CCA model is more of a

sidewall-type aneurysm (origins as bifurcation from

the subclavian artery), Ding et al.34 adapted their pre-

vious modifications to the left CCA (originates as a

trifurcation between the brachiocephalic artery and

aortic arch) to create a more bifurcation type
elastase-induced aneurysm in 2013.

Others proposed improvements for the elastase-

induced CCA bifurcation stump model. Krings

et al.35 advocated fluoroscopic guidance of elastase

infusion to prevent leakage into aberrant tracheal
arteries in effort to reduce mortality and morbidity

(mainly attributed to hemorrhagic necrosis of the tra-

chea).36 One year later, Hoh et al.,37 also concerned by

reports of failure of the original model due to aberrant

branches from the right CCA,38 proposed temporary

clip placement at the origin of the right CCA and infu-

sion of the lumen under visual control (aberrant
branches are ligated or coagulated). The technique

reduced procedure time by 35min, eliminated the

need for fluoroscopy, and minimized the use of endo-

vascular supplies. More recently, Kainth et al.39 pro-

posed to ligate the left or right CCA 4–6mm distal to

the bifurcation, precisely brush the apex of the blind

pouch using a 10/0 round-tip paint brush, and anchor
the aneurysm to influence its orientation. This extra-

vascular elastase application supposedly eliminates the

need for angiography and endovascular supplies, pre-

serves the femoral arteries for follow-up imaging or

endovascular procedures, and allows for variation in

Figure 3. Anatomical locations of extracranial aneurysm
models. Green circle: modified pouch; blue circle: venous pouch;
red circle: arterial pouch. AAA: abdominal aortic artery; CCA:
common carotid artery; CIA: common iliac artery; ECA: external
carotid artery; FA: femoral artery; IA: iliac artery bifurcation;
ICA: internal carotid artery; IIA: internal iliac artery; LA: lingual
artery; RA: renal artery; SA: subclavian artery; STA: superior
thyroid artery; VA: vertebral artery.
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the orientation of the aneurysm relative to the parent

vessel.
The elastase-induced ECA bifurcation stump model

also underwent modifications. Wang et al.40 proposed

to ligate the ECA temporally using an aneurysm clip

and infuse the ECA stump with elastase for 20min.

This surgical procedure is simple, fast, and requires

no interventional support. Elastase-induced bifurcation

stump models have also been introduced in the right41

and left42 CCA in mice and in the abdominal aortic

bifurcation in rats.43

The original elastase-induced right CCA bifurcation

stump model in rabbits is one of the best characterized

saccular aneurysm models. Serial angiography on days

1, 3, 5, 7, 14, and 21 demonstrated progressive enlarge-

ment, but thereafter the aneurysm size remained stable

on one, two, three, and fourmonths imaging.44 An

excellent long-term patency of 92% was confirmed in

a five-year follow-up study.45 Mortality rates associat-

ed with aneurysm creation and the embolization pro-

cedure were 8.4% (59/700) and 8.1% (43/529),

respectively.46 Hemodynamic analysis revealed that

most features of the elastase-induced right CCA

model are qualitatively and quantitatively similar to

many of human cerebral aneurysms.47 In a dose-

escalation study, native bifurcation stumps failed to

create saccular aneurysms.48 However, increased elas-

tase concentration or incubation time or both

Figure 4. Sidewall, stump, and terminal aneurysm models. Sidewall aneurysms are created by suturing either a venous (A1) or
arterial (A2) unmodified pouch onto a parent artery. Stump aneurysms are created by endovascular occlusion, ligature, or flap
construction of a branching artery (B1–B5). Modification of the aneurysm wall (green) allows for growth of the stump into a more
saccular shape. The tail artery stump represents a unique true arterial bifurcation model (B6). Terminal aneurysm models are designed
to simulate flow conditions similar to human basilar and internal carotid artery bifurcation aneurysms (C1–C4).
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demonstrated a trend for widening parent arteries but

did not result in larger aneurysms cavities at

threeweeks follow-up. Rather, the aneurysms were

mainly caused by the initial infusion of elastase and

not by ongoing wall remodeling and degradation by

endogenous proteases.49 Nevertheless, histological

analysis has demonstrated that this model mimics

wall types that have been identified in human intracra-

nial aneurysms.50,51

Terminal aneurysm model

Terminal aneurysms are aimed at simulating human

basilar tip and internal carotid artery (ICA) bifurcation

aneurysms. Originally described by Strother et al. in

1992, they were constructed by forming an arch with

end-to-end anastomosis of both CCAs (Figure 4, C1;

Supplementary Figure C1).52 One should be aware that

the volume increases as the aneurysm matures during

the first few weeks but thereafter remains stable (up to

sixmonths follow-up).53 With its distinctive hemody-

namic stress, terminal aneurysms demonstrate 100%

patency in rat (9/9)54 and rabbits (9/9)55 and 85% to

100% (11/13)56 to (16/16)53 in dogs. Even in swine

where long-term patency is a concern, terminal aneur-

ysms have been reported to have direct intraluminal

blood flow with a 100% (3/3) patency rate at three-

month follow-up.19

Figure 5. Bifurcation and complex aneurysm models. Bifurcation aneurysms are created by suturing a venous pouch into an arti-
ficially created bifurcation (D1 and D2). A natural bifurcation aneurysm model is created when a venous pouch is sutured into an
already existing bifurcation (D3 and D4). Complex aneurysm models comprise a heterogenous group of microsurgically created
aneurysms that mimic rare forms of intracranial aneurysms such as confluence (E1 and E2), giant sized (E3), multilobulated (E4),
fusiform (E5 and E6), curved (E7), or aneurysms with a side branch (E8).

Marbacher et al. 7



Bifurcation aneurysm model, natural, and artificial

variations

Natural bifurcation aneurysm model. Stehbens first created
a natural bifurcation aneurysm model in rabbits by

suturing a venous pouch into the bifurcation of the
abdominal aorta (Figure 5, D4; Supplementary
Figure D4A).57 Ujiie et al.58 modified the arteriotomy
and venous pouch ligature to achieve narrow or broad-
based aneurysms shaped as dumbbell, oval, and lobu-

lar. In delivering elastase topically to the bifurcation of
either the right CCA or the right superior thyroid
artery bifurcation, Miskolczi et al.59 found that aneu-
rysm formation was mainly at the latter location.
Nishikawa et al.60 and Young et al.61 induced natural

bifurcation models in rats by suturing a vein pouch or
inducing external damage to the vessel wall at the site
of CCA/ECA bifurcation.

Since mechanical destruction at the apex of the
CCA/ECA bifurcation from the outside failed to

produce aneurysmal bulging, it was concluded that

the internal elastic lamina represents a critical structure

in aneurysm formation.62 Accordingly, van Alphen

et al.63 achieved aneurysm formation in rats by trans-

luminal (via arteriotomy proximal to the CCA/ECA

bifurcation) removal of the tunica intima and media.

Mucke et al.64 harvested a CCA vessel segment

and sutured this arterial graft into the aortic bifurca-

tion in rats (Supplementary Figure D4B). In dogs,

Sekhar et al.65, Macdonald et al.56, and Shin et al.66

created an aneurysm by suturing a venous pouch in

the natural bifurcation between the CCA and

superior thyroid artery, lingual artery, and cranial

thyroid artery, respectively (Figure 5, D3;

Supplementary Figure D3). Boulos et al.67 used the

ECA-lingual artery bifurcations to create bilateral

aneurysms. In swine, Massoud et al.68 created natural

bifurcation aneurysms at the CCA-ascending pharyn-

geal artery.

Table 1. Advantages and disadvantages of each animal.

Animal Advantages Disadvantages

Mice and rats -Low costs, widely available

-Reliable anesthesia

-Readily applied immunohistochemical and molecular

biological techniques

-Ethically acceptable

-High aneurysm patency rates without the need for

anticoagulation in most models

-Availability of transgenic animals

-Allows for a larger number of experiments and subse-

quently increased statistical power

-Limited access for diagnostic and interventional cathe-

terization

-Although small stents and coils are applicable ins some

models, not all endovascular devices can be tested

(size-related)

-Requires microsurgical expertise particularly operation

on the carotid arteries (small vessel size)

Rabbits -Relatively low costs, wide availability

-Easy handling (nonaggressive behavior)

-Carotid artery diameter comparable to human major

cerebral arteries

-Similarities to hemodynamics, thrombosis, and throm-

bolysis seen in humans

-Readily access to diagnostic and interventional cathe-

terization

-Well-characterized models (especially the carotid

artery elastase-induced bifurcation stump model)

-Relatively high perioperative morbidity and mortality

(anesthetic-related death, long-term housing compli-

cations, respiratory infections)

-Challenging anesthesia and endotracheal intubation

-Some groups advocate anticoagulant therapy for

patency of some models

Dogs -Active fibrinolytic system with high patency rate, no

need for anticoagulation

-Readily access for diagnostic and interventional cathe-

terization

-Suitable for testing endovascular devices of all sizes

-Well-characterized models

-Reliable anesthesia

-Ethical concerns

-Require veterinary anesthesiologist

-High costs for care and housing

-Restricted availability

Swine -Readily access for diagnostic and interventional cathe-

terization

-Suitable for testing endovascular devices of all sizes

-Well-established models

-Reliable anesthesia

-Abandoned healing reaction

-Tendency for spontaneous thrombosis

-Require veterinary anesthesiologist

-High costs for care and housing

8 Journal of Cerebral Blood Flow & Metabolism 0(0)



Table 2. Methods of aneurysm creation: Advantages and disadvantages of main models.

Model Advantages Disadvantages

Sidewall -Fast and technically easy aneurysm creation

-Multiple aneurysms in one animal

-Control and experimental arm in one animal possible

(e.g., both carotid arteries)

-Standardized aneurysm shapes and volumes, good

reproducibility

-High rates of long-term patency in rats, rabbits, and

dogs without need for anticoagulation therapy

-Hemodynamic condition differs significantly from most

human aneurysms

-High rate of thrombosis in swine

-Surgical trauma at the artificial aneurysm neck

Stump (untreated) -Fastest and easiest way to construct an aneurysm

-Low costs (no additional catheter/deployment or

suture material)

-Multiple aneurysm in one animal

-Control and experimental arm in one animal possible

(e.g., both carotid arteries)

-Highly standardized aneurysm shapes and volumes,

excellent reproducibility

-Ideal for screening (embolization material) in smaller

animals

-Unfavorable hemodynamic condition with most models

(except for the tail artery stump which represents a

natural bifurcation)

Stump (treated)a -Fast and technically easy aneurysm creation (when

modifications of original model are applied)

-Standardized aneurysm shapes and volumes, good

reproducibility

-No microsurgical skills required

-Excellent long-term patency without need for antico-

agulation therapy

-No micro anastomosis

-Healing (rate of recurrence) comparable to that seen in

humans

-Need for sophisticated laboratory equipment (less

demanding when modifications of original model are

applied)

Terminal -Specific flow conditions such as human terminal inter-

nal carotid artery or basilar tip aneurysms

-High patency rates in all species (even in swine)

-Need for microsurgical skills and sophisticated labora-

tory equipment

-Only one aneurysm per animal

-Unknown biological effect of artery wall disruption and

surgery at the site of micro anastomosis

Bifurcation (artificial) -Flow dynamics as those in natural bifurcation aneurysm

models and most human aneurysms

-Shape and size highly variable

-High patency rates in all species (even in swine)

-Healing (rate of recurrence) comparable to that seen in

humans

-Need for microsurgical skills and sophisticated labora-

tory equipment

-Only one aneurysm per animal

-Unknown biological effect of artery wall disruption and

surgery at the site of micro anastomosis

-Great variability of shape and size with most methods,

poor reproducibility

-Associated with a learning curve and initial long pro-

cedural times

Bifurcation (natural) -Favorable hemodynamics

-Easier and faster to construct than an artificial bifur-

cation

-When constructed in the neck two aneurysms per

animal possible

-Lower tendency to thrombose when compared with

sidewall aneurysm

-Surgical trauma at the artificial aneurysm neck

-Requires microsurgical skills and the requisite labora-

tory equipment (microscope)

Complex - Allows creation of aneurysms with complex shape and

large to giant size

-Angioarchitecture (parent artery configuration) highly

variable (curved sidewall, confluence, and fusiform

aneurysm models with or without side branches)

-Allows to test novel endovascular devices in highly

specific narrow conditions

-Often need for long operation duration, high micro-

surgical skills and sophisticated laboratory equipment

(some models even require two surgeons to create)

-Only one aneurysm per animal in most models

-Poor reproducibility in some models

aAdvantages and disadvantages mainly relate to the right common carotid artery elastase bifurcation stump aneurysm model.
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Artificial bifurcation aneurysm model. Forrest and O’Reilly
were the first to create an artificial bifurcation aneu-
rysm by suturing a venous pouch into the end-to-side
anastomosis of the left to right CCA in rabbits
(Figure 5, D1; Supplementary Figure D1).69 Despite
an excellent 97% patency rate (34/35) at 1–10weeks
follow-up, the 22% morbidity rate (10/45) was rather
high. Subsequent modifications of the surgical tech-
nique (i.e., preservation of laryngeal nerves, tensionless
anastomosis, reduction of number of sutures and pro-
cedural time) and improved anticoagulation and peri-
and postoperative management successively reduced
the mortality/morbidity rate from 24%,70 <20%71 to
0%72 and maintained high patency rates (100%71 and
87.5%72) at one-month follow-up.

Creation of such aneurysms requires profound
microsurgical skills. Accordingly, operative times
decreased during the experimental series (from 210 to
90min71 and from 225 to 115min72). The same venous
pouch technique for artificial bifurcation aneurysms
performed at the same location in the rat, dog, and
swine species achieved excellent patency rates (100%
in 12/12).73

Complex aneurysm model

This group represents microsurgically created aneur-
ysms that mimic rare forms of intracranial aneurysms
such as giant sized, broad-based, no-neck, fusiform,
blister-like, bisaccular, bi- or multilobular, or conflu-
ence artery aneurysms. Nishikawa et al.74 had already
reported confluence aneurysms in dogs by inclusion of
a vein graft into an intracranial lingual-basilar artery
anastomosis. Jiang et al.75 designed a dog confluence
aneurysm model that used both the CCA and a vein
graft to closely mimic human vertebral confluence
aneurysms (Figure 5, E2; Supplementary Figure E2).
Complex shaped bilobular, bisaccular, and broad-
neck microsurgical aneurysms were created using vari-
ous combinations of vein grafts in the rabbit artificial
bifurcation model (Figure 5, E4; Supplementary Figure
E4A–E4C).76 Despite the complex angioarchitecture,
the aneurysms proved excellent long-term patency.77

Varsos et al.14 first attempted to create a giant aneu-
rysm by inducing a fistula between the CCA and exter-
nal jugular vein and ligating this fistula one
week later to form a giant sidewall aneurysm pouch
(Supplementary Figure E3B). Yapor et al.78 presented
a modification with a one-stage approach
(Supplementary Figure E3C). Almost two decades
later, giant aneurysms (approximately 1� 2.5 cm)
were created in the canine terminal79 and rabbit artifi-
cial bifurcation80 models (Supplementary Figure E3A).

With the emergence of novel endovascular technol-
ogies that extended the indications for treatment to a

broader range of intracranial aneurysm (IA) morphol-
ogies, new preclinical models were needed. More
recently fusiform81 and curved sidewall82 aneurysm
models were designed in rabbits and dogs. Darsaut
et al.83 introduced a giant fusiform model that used a
rhomboid venous patch sutured to the anterior aspect
of the lingual artery that allowed testing of flow divert-
ers (Figure 5, E5; Supplementary Figure E5A).

Based on this groundwork, Greim-Kuczewski
et al.84 proposed to surgically include a venous patch
as a sidewall aneurysm to mimic some morphological
aspects of human intracranial dysplastic, fusiform, and
blood blister-like aneurysms (Supplementary Figure
E5B). To test flow diverter treatment of aneurysms
with side branches, Darsaut et al.85 created complex
terminal aneurysms that featured a side branch origi-
nating from the aneurysm sac (Figure 5, E8;
Supplementary Figure E8). Similarly, Fahed et al.81

created a complex fusiform rabbit aneurysm model
that permitted more comprehensive testing for flow
diverters (Figure 5, E6; Supplementary Figure E6).
Avery et al.86 presented a refined fusiform aneurysm
model by periarterial application of combined elastase
and CaCl2 in a rabbit CCA. Yan et al.87 and
Nakayama et al.88 created canine CCA curved-artery
models (Figure 5, E7). First, they printed artificial
hollow tortuous tubes (based on human ICA stereo-
litography data) and then transposed the animal’s
CCA into this hollow rod (Supplementary Figure
E7A-C).

Complex aneurysm models uniquely address a very
narrow research questions about a specific aneurysm
shape or flow condition. To date, these models are typ-
ically technically difficult, time-consuming to create
(some even require two surgeons79), and are not well
standardized or characterized.

Discussion

Our systematic review confirms the great variety in vivo
extracranial aneurysm models used for a range of
applications from basic biological concepts to screen-
ing of endovascular materials to final testing of endo-
vascular devices for human application. After screening
more than 4000 potential publications, the 68 studies
included in this review represented five major groups of
extracranial animal models and techniques. Our results
highlight each model’s evolution and, in recent years
mainly, the modifications and refinements that
improved morbidity and mortality rates, reduced oper-
ation time, improved patency rates, and kept pace with
the implementation of novel endovascular techniques
and devices (broadened clinical indications).

An ideal extracranial aneurysm model would require
the following features: (1) size of aneurysm and parent
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artery similar to larger cerebral arteries (enables realis-
tic microcatheter interventions), (2) long-term patency
of the aneurysm complex without spontaneous throm-
bosis and no need for anticoagulation or anti-
aggregation therapy, (3) standardized method with
good reproducibility for comparison of treatment strat-
egies, (4) hemodynamics, coagulation profiles (clotting
and thrombolytic system), and tissue and immunologic
reactions similar to those of human IA, (5) wide avail-
ability of the animal and easy handling, (6) low costs,
and (7) surgical or endovascular creation technique
that is simple, fast, and associated with a gentle learn-
ing curve.89–92 None of the identified preclinical extra-
cranial aneurysm models that are currently available
combine all these ideal characteristics. In contrast
with intracranial aneurysm models where aneurysms
develop in cerebral arteries without direct vessel manip-
ulation, creation of extracranial models always requires
a vascular injury. Researchers should be aware of the
differences in vascular biology and hemodynamic char-
acteristics between intra- and extracranial arteries.
Furthermore, extracranial aneurysms are surrounded
by cell-rich connective tissue and the aneurysm wall
histology differs greatly from their intracranial
counterparts.

Localization

The perianeurysmal space differs greatly between that
of extracranial models and human brain aneurysms.
With few exceptions, aneurysms models are not created
in the subarachnoid space but in the soft tissues of the
mediastinum,29,30 neck,28,93 leg,22,94 retroperitoneal
space58,95 or within the abdominal cavity.96,97

Nishikawa et al. created an intracranial sidewall aneu-
rysm by suturing an autologous vein graft aneurysm
onto the main branch of the middle cerebral artery
(via transzygomatic approach),60 and sidewall and arte-
rial confluence aneurysms were formed on the basilar
and lingual arteries (via a transclival approach) in
dogs.74 O’Reilly et al.98 relocated a rabbit vein pouch
aneurysm via polyvinyl tubing from the right CCA into
the subarachnoid space. However, technical difficulties,
high mortality, and low patency rates prevented the
further use of these techniques.

All other microsurgically created aneurysm models
are surrounded by tissue that might affect intraluminal
thrombosis and the healing response. The peritoneal
cavity has the advantage of being less restrictive than
the neck or other subcutaneous regions. Therefore, this
region will potentially allow an aneurysm to grow if the
wall is weakened. One specific advantage of aneurysm
location on the renal artery is the possibility to control
for potential ischemic embolic complications by post-
mortem assessment of renal infarction.95 Besides the

location of aneurysm creation, one must also consider
the diameter of parent arteries. Comparable to the
diameter of great cerebral arteries where most human
brain aneurysms are located is the size of the CCA in
rabbits and the abdominal artery in rats.

Creation time

The simplest and fastest surgical techniques are the
sidewall, bifurcation stump, and natural bifurcation
models; these take 30–60min for creation based on
whether the aneurysm pouch needs additional modifi-
cation. In comparison, terminal and artificial aneurysm
models need up to 3 h for creation. The most demand-
ing and time-consuming are complex aneurysm models,
which require advanced microsurgical skills, an operat-
ing microscope, and occasionally two operators
to create.79

Costs

Small experimental animals, such as mice and rats, are
associated with lower costs than larger animals that
require specialized experimental equipment, anesthesia,
postoperative care, and housing. Additionally, surgery
on small animals eliminates the need for a veterinary
anesthesiologist and costs less for animal purchase, sur-
gery, postoperative care, and housing. Surgery can usu-
ally be performed in the research laboratory, and
general anesthesia is easily maintained by the operator
with non-inhalational methods. Dogs and swine are the
most expensive experimental animals. Operations are
usually performed under costly general inhalational
anesthesia by a veterinary anesthesiologist and addi-
tional technical assistants and must be performed in a
designated animal operating theater.

Patency rate

Long-term patency without spontaneous thrombosis is
a key characteristic and concern of any aneurysm
model. Large series in rats, rabbits, and dogs demon-
strated patency rates of 92.5%,96 95%,99 94%,21

respectively, in 90� angle sidewall aneurysm models
without any anticoagulation. However, when consider-
ing these excellent patency rates achieved by experi-
enced researchers, it remains a matter of debate to
what extent other factors are important measures in
preventing thrombosis. These include extensive micro-
surgical training and associated technical factors
(suture line, vein valves, badly placed sutures, or con-
stricted aneurysm neck),100,101 shape and size of arte-
riotomy,98 aneurysm volume-to-neck ratio,102 angle to
long axis of grafted venous pouches,103 number of
sutures, tensionless anastomosis, and perioperative
and postoperative management (compensation for

Marbacher et al. 11



fluid loss, pain management, antibiotics, vitamin com-
plexes).71,72 In rats and dogs, patency rates are better in
artificial bifurcation models than in sidewall aneurysm
models.21,60,74 In dogs and swine, terminal aneurysm
models exhibited better patency than sidewall aneu-
rysm models.19,56,66

Anticoagulation

Although most groups use local irrigation of parent
arteries and storage of grafts in heparinized saline, sys-
temic application of systemic anticoagulant58,80,104 or
antiplatlet39,75,76 drugs is also common. In a rare direct
comparison of effect of systematic antiplatelet medica-
tion on the patency rate of venous sidewall CCA aneur-
ysms in dogs, Kerber and Buschman observed greater
success with aspirin than without; patency rates were
74% versus 45%, respectively, but the difference was
not statistically significant.100 Excellent long-term
patency rates in large series of sidewall, terminal, bifur-
cation stump, and arterial bifurcation models in rat,
rabbit, and dog provide evidence against the use of
systematic anticoagulation. One must be especially
careful with the administration of aspirin because of
its potential influence on aneurysm wall biology and
recurrence after endovascular therapy.105,106

Histopathology and aneurysm healing

Debate continues about whether the morphological
and histological characteristics of human cerebral
aneurysms are more accurately modeled by elastase-
digested arterial stump models or by surgically created
vein or arterial pouch aneurysms.51,107 Nonetheless,
there is consensus that models with a strong tendency
for spontaneous thrombosis and excessive neointima
formation are inappropriate for study of healing after
embolization. Sidewall aneurysms (especially in swine)
have demonstrated favorable healing reactions after
coil embolization compared to artificial bifurcation
models.108 However, bifurcation models may also dem-
onstrate healing rates that far exceed those seen in
human aneurysms after coil embolization.109 Recent
research revealed that aneurysm healing and recurrence
after endovascular treatment also depend on the aneu-
rysm wall condition.1,110–112 Therefore, models that
depict various types of wall conditions will gain interest
and become appropriate models for testing novel endo-
vascular therapies.50,110

Reproducibility

Standardized and reproducible aneurysm creation is
vitally important to improve preclinical assessment of
novel endovascular devices and enhance comparability
of results between laboratories. To date, the most

standardized aneurysm models in terms of graft

origin, aneurysm shape and dimensions, volume-to-

orifice ratio, and parent vessel to aneurysm long axis

angle are created by an arterial pouch.55,96 To a certain

degree, neck size and aneurysm volume can also be

controlled and adjusted in elastase-induced aneur-

ysms31,33,113,114 and modified techniques have achieved

more consistent/standardized aneurysm diameters.32 In

venous pouch aneurysm techniques (especially complex

models), the angioarchitecture (size, shape, and flow

condition) is less standardized. However, the heteroge-

neity of aneurysm angioarchitecture increases the exter-

nal validity of the model. Therefore, both are

indispensable: standard models can test and refine the

basic characteristics of a novel endovascular device,

whereas models with high aneurysm variability can

provide more exacting tests.

Ethical considerations

Depending on the location, most sidewall and some

bifurcation stump and natural bifurcation models

allow for the creation of two or more aneurysms in

the same animal. Such models not only reduce the

overall number of animals needed but also allow test-

ing of two treatment modalities side-to-side within a

single animal. Except for a three- and four-aneurysm

dog model, most artificial bifurcation and complex

aneurysm models allow creation of only one aneurysm

per animal.66,67,76,79 Some aneurysm models depend on

syngeneic grafts, that is, using two animals to produce

one aneurysm.16,61,96 In contrast, aneurysm models

with simple and fast aneurysm creation facilitate

research with a larger number of experiments, thus

ensuring adequate statistical power with increased sig-

nificance and ultimately fewer animals. With the excep-

tion of some historical models and thanks to modified

techniques over the past decades, currently used aneu-

rysm models harbor low rates of morbidity and

mortality.

Limitation of the study

Despite systematic approach by following the

PRISMA guidelines and two investigators who inde-

pendently screened the literature, this review might

not be exhaustive based on our inclusion and exclusion

criteria. Especially in the case of recognition of a new

model related to a major modification of an existing

technique, we cannot exclude a certain arbitrariness in

the selection process despite strict application of pre-

defined criteria.
Taking the potential confounding effects of the

chosen species and techniques into consideration,

basic biological concepts of novel intracranial
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aneurysm therapies can be tested in a great variety of

models available today. Our categorization of models

into five main groups and discussion of advantages and

disadvantages allows a quick and comprehensive

insight into the field. Detailed submodel analysis facil-

itates prediction of specific aneurysm model character-

istics and therefore supports researchers in study

planning, the execution of experiments, and interpreta-

tion of the results.
In summary, this systematic review of PubMed data-

base, covering the period between 1950 and 2020, iden-

tified five main models of extracranial saccular

aneurysms in mice, rats, rabbits, dogs, and swine, and

their subsequent refinements and technical modifica-

tions. This review may serve as a compendium for

investigators to identify the most appropriate model

from a wide range of different techniques that suits

best their experimental goals, practical considerations,

and laboratory environment.
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