
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
7
3
0
8
1

|

d
o
w
n
l
o
a
d
e
d
:

2
6
.
4
.
2
0
2
4

ARES: Adaptive Resource-Aware Split Learning for Internet of Things
Eric Samikwaa,∗, Antonio Di Maioa and Torsten Brauna

aInstitute of Computer Science, University of Bern, Switzerland

A R T I C L E I N F O
Keywords:
Split learning
Internet of things
Distributed machine learning
Federated learning
Edge computing

A B S T R A C T
Distributed training of Machine Learning models in edge Internet of Things (IoT) environments is
challenging because of three main points. First, resource-constrained devices have large training times
and limited energy budget. Second, resource heterogeneity of IoT devices slows down the training
of the global model due to the presence of slower devices (stragglers). Finally, varying operational
conditions, such as network bandwidth, and computing resources, significantly affect training time and
energy consumption. Recent studies have proposed Split Learning (SL) for distributed model training
with limited resources but its efficient implementation on the resource-constrained and decentralized
heterogeneous IoT devices remains minimally explored. We propose Adaptive REsource-aware Split-
learning (ARES), a scheme for efficient model training in IoT systems. ARES accelerates local
training in resource-constrained devices and minimizes the effect of stragglers on the training through
device-targeted split points while accounting for time-varying network throughput and computing
resources. ARES takes into account application constraints to mitigate training optimization tradeoffs
in terms of energy consumption and training time. We evaluate ARES prototype on a real testbed
comprising heterogeneous IoT devices running a widely-adopted deep neural network and dataset.
Results show that ARES accelerates model training on IoT devices by up to 48% and minimizes the
energy consumption by up to 61.4% compared to Federated Learning (FL) and classic SL, without
sacrificing the model convergence and accuracy.

1. Introduction
In conventional Machine Learning (ML) algorithms,

models are usually deployed in a centralized setting, i.e. the
data generated by end devices is collected and aggregated
into a single server for training [1]. However, the raw data
generated by Internet of Things (IoT) devices is very often
private or sensitive and can be too large to transmit over the
networks, which makes it infeasible to train a centralized
model [2]. Distributed ML techniques are essential to allow
training of joint/global models in a decentralized fashion,
without requiring direct access to the raw data stored on
the end devices [3]. Such techniques are of great appeal to
benefit from the rich data yielded by distributed IoT devices
to produce high quality models [4].

Federated Learning (FL) [5] is a distributed ML tech-
nique that allows end devices to participate in training a
joint model on massively distributed data. Using only the
data available to the client, the model is trained on the
device and only the model update is sent over the network to
the server for aggregation. Current state-of-the-art models
such as Deep Neural Networks (DNN) contain millions
of parameters, and have significant demands on memory,
computation, and energy consumption [6, 7]. In FL, the
computationally intensive training of the entire DNN model
is executed on the device using the local data [5]. However,
training the entire model on resource-constrained devices
(e.g., IoT devices) leads to very large training times and
device energy consumption [8]. Thus, the expensive compu-
tational demands of state-of-the-art models remain a serious

∗Corresponding author
eric.samikwa@inf.unibe.ch (E. Samikwa);

antonio.dimaio@inf.unibe.ch (A.D. Maio); torsten.braun@inf.unibe.ch (T.
Braun)

impediment of ML deployment on distributed resource-
constrained IoT devices.

Split Learning (SL) is a new ML technique that de-
couples model training from the need for direct access to
the raw data, in which a model is split into at least two
sub-models [9]. The client-side sub-model is trained on
the client device where the local training data exists, and
the server-side sub-model is trained on the server. In this
process, the server does not have access to raw data from
the client side [10]. An essential benefit of SL is that it
greatly reduces the computation requirements on the client-
side as it only computes a sub-model instead of the entire
computationally demanding model. Thus, SL enables model
training on devices with low computing resources such as
IoT devices [11]. However, the efficient implementation of
SL on resource-constrained and decentralised heterogeneous
IoT devices has been minimally explored.

One key challenge of SL is how to determine the op-
timal distribution of the model training task among IoT
devices and the server, in view of the varying network
channel conditions, device and server computing resources,
and the heterogeneous distributed IoT devices [12]. The
decentralised training can severely benefit from techniques
of reducing the amount of data transmitted over the networks
and the computation burden on the resource-constrained
devices, both in terms of training acceleration and energy
consumption [13]. Such techniques are highly valuable when
they have less significant impact on the resulting model ac-
curacy. Specifically, this paper aims to address the following
challenges for the efficient implementation of SL in IoT:

(1) Stragglers arising from resource heterogeneity of IoT
devices that slow down other devices during training: IoT
devices connected to a server for distributed model training
may have heterogeneous computing and network resources.

E. Samikwa et al.: Preprint submitted to Elsevier Page 1 of 15

In a synchronous training process, stragglers are devices
that require a longer time to complete a training round and
slow down all other devices [14, 2]. This is because the
model sharing process will need to wait until all devices
have completed a training round [15]. Various studies have
aimed at reducing the straggler problem using asynchronous
training [15, 16]. However, these approaches often have an
effect on the accuracy of the model as all devices may not
contribute equally to training. Therefore, solutions that can
reduce the effect of stragglers in distributed training with
heterogeneous devices, typical in IoT systems, are essential.

(2) Variable network throughput and computing re-
sources on devices and server that affect the training time
and energy consumption: Due to time varying channel
conditions, the network throughput between IoT devices
and server can vary during training [17]. The available
computing resources for executing server sub-models is
impacted by varying server loads. The local sub-model
execution time on devices is also impacted by variable
background processes for the device. These factors have sig-
nificant impact on the training time and energy consumption
on the IoT devices [18, 19]. Therefore, adaptive resource-
aware mechanisms that account for changing operational
conditions are required for efficient practical SL.

(3) Training time and energy consumption optimiza-
tion tradeoffs: Splitting the model is intuitively an ideal
way of reducing the computation burden on IoT devices
during training without a major impact on the resulting
accuracy [20]. Although addressing issues 1) and 2) will
provide ideal distribution of a model training task for a
given set of hardware resources, they may not be optimal
when application objectives or constraints are taken into
account. For instance, the split point for accelerating the
overall model training time may not always coincide with the
split point to minimize energy consumption on IoT devices.
Therefore, a dynamic mechanism that supports application
requirements in cases where the tradeoffs (i.e. training time
vs energy consumption) arise is beneficial.

In this paper, we present Adaptive REsource-aware Split-
learning (ARES), a technique to mitigate the challenges
(stragglers, variable network and computing resources, train-
ing optimization tradeoffs) for efficient model training in
IoT. ARES accounts for the resource-constrained nature and
heterogeneity of IoT devices. By generating optimized split
vectors of device-targeted split points, ARES minimizes
the negative impact of stragglers on the training process.
ARES monitors the variable conditions during the training
such as network throughput and computing resources on IoT
devices and the server, and accordingly adapts the system
split vector to accelerate training and minimize the total en-
ergy consumption. ARES takes into account the application
time and energy constraints to enable efficient mitigation
of optimization tradeoffs. Furthermore, ARES optimizes the
training time and energy consumption on the devices without
sacrificing the training convergence and accuracy.

In summary, this paper makes the following contribu-
tions.

Server

Client 1

Global
model

Client 2 Client 3

Glob
al

mod
el

up
da

te

Client
model

Client model update

Local
data

Figure 1: Federated learning representation with three clients.

• We propose ARES, a scheme for efficient decen-
tralised model training in IoT systems. ARES jointly
accelerates model training time and minimizes en-
ergy consumption in resource-constrained IoT devices
through device-targeted split points while accounting
for time-varying network throughput and computing
resources on the devices and server. ARES minimizes
the effects of stragglers on the training.

• We consider the tradeoffs between minimizing the
training time and minimizing the energy consump-
tion on IoT devices by introducing energy-sensitivity
parameter for the training optimisation. The energy-
sensitivity parameter is set by the application policy-
maker and ensures the training optimization conforms
to the application’s energy or time constraints in cases
of tradeoffs between the two objectives.

• We implement and evaluate ARES prototype on a real
testbed comprising of heterogeneous IoT devices and
an edge server. The evaluation results demonstrate the
effectiveness of the proposed ARES scheme. ARES is
available on public Github repository1.

The rest of this article is organized as follows. Sec-
tion 2 presents the relevant background and related work.
Section 3 describes the assumptions about the scenario in
which our solution operates and details the operation of
our proposed solution. Section 4 provides details of the
experimental testbed setup used to evaluate the proposed
solution, the evaluation process, and highlights the results
of the evaluation. Section 5 concludes the paper.

2. Background and Related Work
In the FL algorithm [5], model aggregation, Federated

Averaging (FedAvg), is carried out on the server where a
global model is generated by averaging local model up-
dates (Figure 1). Over the entire training of FL, only the

1https://github.com/ricsamikwa/RES-Things

E. Samikwa et al.: Preprint submitted to Elsevier Page 2 of 15

Server

Client 1

Server
sub-model(s)

Client 2 Client 3

Intermediate activations

Client
sub-model

Grad
ien

ts

Local
data

Figure 2: Split learning representation with three clients, where
the model is split into two sub-models, namely client sub-model
and server sub-model.

model parameters are communicated between clients and
the server. Therefore, the clients do not require to share
their raw training data to the server or to other clients. The
local data remains local and confidential, which makes FL
a privacy-preserving ML technique. However, training an
entire model is often too computationally demanding and
can lead to prolonged training times on resource-constrained
devices [21]. Furthermore, FL is known to be less efficient
for heterogeneous devices that have different computational
capabilities, common in IoT systems. Thus, computation
of the model on resource-constrained devices is a major
bottleneck for the FL training process [22, 10, 23].

The SL training technique was first presented in [9].
From one specific layer, called split layer or cut layer,
the neural network is split into two sub-networks. On the
device-side, the model is trained up to the split layer. Then
the activation feature maps of the split layer (intermediate
activations) are sent to the server. The server continues
training until the last layer of the model. After the training
loss is calculated and the gradient is updated, the respective
intermediate gradients of the split layer are sent to the
device so that the gradients are updated on the device. An
iteration of the above process over the entire client dataset is
often referred to as training round. The training rounds are
repeatedly carried out until the model converges.

Figure 1 shows a representation of the SL process, in
which the server does not have direct access to raw data on
clients. The advantage of SL compared to FL is that each
client trains only a portion of the whole neural network,
made of just a few layers, which considerably reduces the
computational burden on clients [24]. This is essential for
the proliferation of artificial intelligence enabled IoT, where
ML methods enhance both applications and management of
IoT networks [25]. However, basic SL does not take into
account the computational heterogeneity of devices in IoT
systems and the variable network channel conditions that af-
fect data transmission throughput and computing resources

on devices and server which, in turn, impact the total training
time and energy consumption.

DNNs are comprised of sequence of layers with varying
computational requirements and output sizes [18]. Splitting
the model distributes the computation load of the model
training task on the multiple devices involved. Furthermore,
the split layer determines the amount of data transmitted over
the network during the training task. For efficient distributed
execution, the split layer for optimal performance needs to
be identified. Depending on how the model is split, the time
required to complete an SL training task and the energy
consumption by the system to perform it can change [26].
Since the set of possible model split points is finite, the
existence of a model splitting that minimizes training time or
energy consumption or both is guaranteed. Since the training
time and energy required for computation and transmission
changes for each device, training time and energy optimal
model splitting may not always coincide.

The available computing and network resources in IoT
systems can change over time and affect both the training
time and the energy consumption [26]. In high-network-
throughput scenarios, for example, the IoT devices may take
less time to transmit data from an intermediate layer while in
low-network-throughput scenarios the time may be consid-
erably higher. On the other hand, the available computing
resources on the IoT devices and server can change due
to third party processes. Therefore, the optimal split points
may not always be the same for the entire life time of an
application. The optimal splitting should then be selected
according to variable training conditions and application
requirements.

In comparison, model training in FL is relatively fast due
to the parallel independent model updates in clients when
the device local training is not a bottleneck (i.e. on more
powerful devices). It has been shown that SL is more com-
munication efficient with increasing the number of clients
while FL becomes more efficient with increasing the number
of data samples especially when the number of clients or
the model size is small [27]. Based on the experiments for
IoT setting [10], evaluating classification performance of the
vanilla FL [5] and SL on Electrocardiography (ECG) and
speech signals, SL achieves better classification accuracy
than that of FL when data is Independent and Identically
Distributed (IID), but less efficient under extreme non-IID
data distribution. Thus, SL is a more suitable approach to
support training in low resource environments and synergy
of SL and FL techniques enables robust distributed training.

FedMask [21] allows computation and communication
efficient personalised federated learning on heterogeneous
devices. However, FedMask does not account for the varying
network and computation conditions that affect the training,
and resource-constrained nature of IoT devices. Further-
more, the process of creating neural network masks can have
an effect on the resulting training accuracy.

Thapa et al. [28] proposed Split Federated Learning to
achieve both parallel training and acceleration of device

E. Samikwa et al.: Preprint submitted to Elsevier Page 3 of 15

Table 1
Comparison of ARES to FL and SL.

Characteristic FL SL ARES

Decentralised training ✓ ✓ ✓

Independent (parallel) model updates ✓ x ✓

Resource-constrained devices x ✓ ✓

Energy consumption considerations x x ✓

Variable resources (network, computing) x x ✓

Training time and energy tradeoffs x x ✓

training. FedSL [29] combines parallel training and accel-
eration of device training for sequentially partitioned data
in health applications. However, both approaches do not
pay attention to the computation heterogeneity of the target
devices and disregard energy consumption.

Wu et. al. [30] proposed FedAdapt, a mechanism for
adaptive offloading for devices in FL. However, FedAdapt
does not take into account differences in energy consumption
for on-device processing and data transmission. Further-
more, these approaches do not pay attention to the optimiza-
tion tradeoffs in view of user-defined constraints/objectives
that can affect the outcomes of their methods.

Krouka et. al. [31] proposed model compression and
splitting for energy efficient collaborative inference over
time-varying channels. However, their approach affects the
model accuracy for the inference operations. Similarly, early
exit of inference mechanisms and offloading model layers
from a device to a server to improve inference efficiency
have been proposed in various studies (these do not consider
training efficiency) [32, 33, 34, 35, 36].

Mao et. al. [37] proposed an approach for energy-
efficient communication and computation over wireless
powered mobile-edge system. The solution minimizes the
total energy consumption of a cooperative edge system by
jointly considering time-slot assignment, computation-task
allocation, and the optimization of central processing unit
frequencies for computing. However, their approach does
not consider the efficiency of distributed model training on
heterogeneous resource-constrained IoT devices using SL.

In our previous work, we introduced Adaptive Early
Exit of Computation (EEoC) for Energy-Efficient and Low-
Latency Machine Learning over IoT Networks [26]. EEoC is
a method for distributed computation of ML inference over
IoT networks for latency and energy optimization. EEoC
considers the time varying network conditions and available
computing resources to determine the optimal distribution of
DNN models between the IoT device and edge by selecting
an ideal model split point. EEoC improves inference effi-
ciency for ML tasks in IoT systems but does not consider the
training of the models using distributed training techniques
such as SL.

Unlike the existing work, ARES accounts for the resource-
constrained nature and heterogeneity of devices, typical
in IoT systems. By enabling device-targeted split points
for the various devices involved in the training, ARES

minimizes the effects of stragglers on the training process.
ARES utilizes realistic estimations of the variable condi-
tions during the training (network throughput, computing
resources on IoT devices and server). ARES adapts a split
vector of device-specific split points for the IoT devices
to jointly accelerates model training time and minimizes
energy consumption in resource-constrained IoT devices
while accounting for time-varying network throughput and
computing resources on the devices and server. ARES
optimizes the training time and energy consumption on the
devices without affecting the training convergence and the
resulting accuracy. Through an energy-sensitivity parameter,
ARES takes into account application constraints to enable
efficient mitigation of training optimization tradeoffs (i.e.
training time, energy consumption). Table 1 presents a
comparison of FL, SL and ARES.

3. Adaptive Resource-Aware Split Learning
for Model Training in IoT Systems

3.1. System Model
We consider a scenario in which there are Φ hetero-

geneous IoT devices that cooperate with an edge server to
perform training of a shared DNN model for all Φ IoT
devices using each device’s local dataset. The DNN model’s
architecture is composed of 𝑁 consecutive layers, each
denoted by 𝐿𝑖, with 𝑖 ∈ {1,… , 𝑁}. We assume that each
IoT device 𝜙 involved in the training process hosts a local
dataset of size 𝑊𝜙 that does not change during the training.
In the considered scenario, the training is performed using
minibatches [38].We assume that the dataset on each IoT
device 𝜙 is partitioned in minibatches of equal size, contain-
ing 𝜉 entries each. The size 𝜉 of each minibatch is defined
as a training hyper-parameter and remains constant during
training.

The training operates as follows. First, the model weights
are initialized according to a weight initialization strategy.
Then, for each of the 𝜉 entries of the first minibatch, the
model performs forward propagation and applies a loss
function (e.g., sum of squares or cross entropy [39]) to the 𝜉
outputs to accumulate the errors. The accumulated errors are
used as the starting step of the Error Back Propagation (EBP)
algorithm, which propagates error gradients back from the
last layer𝐿𝑁 to the first layer𝐿1 to update the DNN weights.
When the EBP algorithm is finished, all model weights
have been updated according to the information contained
in the minibatch. Now, the procedure of alternating forward
and backpropagation to train the DNN model is repeated
for each following minibatch until the model has "seen"
all minibatches, i.e., the whole dataset. We define training
round (or epoch) as the process of training the DNN over
all minibatches (i.e., the whole dataset) one time, and we
indicate each of them with 𝑘.

We consider SL where weight sharing is carried out
by the system through aggregation of all model weight at
the server. The frequency of carrying out weight sharing
can vary depending on the local model convergence rate

E. Samikwa et al.: Preprint submitted to Elsevier Page 4 of 15

Table 2
Symbol table

Symbol Description

Φ Number of devices in SL training task
𝑅 Total number of rounds in SL the task
𝑊𝜙 Dataset size on device 𝜙
𝜉 Minibatch size for the training
𝑁 Total number of layers of the model
𝐿𝑖 𝑖-th layer of the model
𝑉𝑠 Total volume of intermediate activations from layer

𝐿𝑠 of the model for the current minibatch of size 𝜉
𝑉 ′

𝑠 Total volume of intermediate gradients from layer
𝐿𝑠+1 during back propagation for the current mini-
batch of size 𝜉

𝑘 Training round 𝑘
𝛿(𝑘)𝑖 (𝜙) Forward propagation time for layer 𝐿𝑖 on device 𝜙

at round 𝑘
𝛿′(𝑘)𝑖 (𝜙) Backward propagation time for layer 𝐿𝑖 on device 𝜙

at round 𝑘
𝐷(𝑘)

𝑠 (𝜙) Total forward and backward propagation times for
a minibatch 𝜉 on device 𝜙 at round 𝑘

𝛾 (𝑘)𝑖 Forward propagation time for layer 𝐿𝑖 on the server
at round 𝑘

𝛾 ′(𝑘)𝑖 Backward propagation time for layer 𝐿𝑖 on the server
at round 𝑘

𝐶 (𝑘)
𝑠 Total forward and backward propagation times for

a minibatch 𝜉 on the server at round 𝑘
𝐵(𝑘)

𝜙 Network throughput (transmitting) at round 𝑘 for
device 𝜙

𝐵
′(𝑘)
𝜙 Network throughput (receiving) at round 𝑘 for

device 𝜙
𝑠(𝑘)𝜙 Split point for device 𝜙 at round 𝑘
𝑠𝑘 Round 𝑘 split vector of device-specific split points
Δ(𝑘)

𝑠 (𝜙) Training time at round 𝑘 for device 𝜙
Δ𝑘(𝑠𝑘) System-wide training time at round 𝑘
𝑃c(𝜙) Device 𝜙 power consumption during computation
𝑃t(𝜙) Device 𝜙 power consumption during data transmis-

sion
𝑃r(𝜙) Device 𝜙 power consumption during receiving
𝐸(𝑘)

𝑠 (𝜙) Total energy consumption for device 𝜙 for round 𝑘
𝛼 Energy sensitivity coefficient

or the type of application. This ensures that the models
for all devices have the same performance at the end of
the training and enhances convergence (similar technique
applied in [40, 11]). The system trains the model over a
number of consecutive rounds until the generalization error
of the DNN is minimized.

In order to distribute the learning task between IoT
devices and the edge server, the model is split in two sub-
models for each device participating in the training. During
training round 𝑘 on an IoT device 𝜙, the first 𝑠(𝑘)𝜙 layers
{𝐿𝑖|1 ≤ 𝑖 ≤ 𝑠(𝑘)𝜙 , 𝑖 ∈ ℕ} are executed on the IoT device 𝜙,
while the last 𝑁 − 𝑠(𝑘)𝜙 layers {𝐿𝑖|𝑠

(𝑘)
𝜙 + 1 ≤ 𝑖 ≤ 𝑁, 𝑖 ∈ ℕ}

: Conv layer

: Dense

Edge
Server

: Max pool

: Dense

: Conv layer

: Max pool

Devices

Device 1

: Conv layer

: Max pool

Device

 Wireless Channel

: Conv layer

: Max pool

Figure 3: Split Learning between Φ IoT devices and an edge
server where each IoT device 𝜙 has its own split point 𝑠(𝑘)𝜙 .

are executed on the edge server. We call 𝑠(𝑘)𝜙 the model split
point for the IoT device𝜙 at training round 𝑘. We assume that
during each training round 𝑘 the IoT device 𝜙 can transfer
data to the edge server with an average throughput 𝐵(𝑘)

𝜙 and
receive data from the edge server with an average throughput
𝐵′(𝑘)

𝜙 .
During forward propagation, an IoT device 𝜙 transmits

a total volume 𝑉𝑠(𝑘)𝜙
of data generated by layer 𝐿𝑠(𝑘)𝜙

(inter-
mediate activations) to the edge server for the minibatch
of size 𝜉, so that it can continue the forward propagation
from layer 𝐿𝑠(𝑘)𝜙 +1. During backpropagation, the edge server
transmits a total volume 𝑉 ′

𝑠(𝑘)𝜙
of data generated by layer

𝐿𝑠(𝑘)𝜙 +1 (intermediate gradients) to the IoT device 𝜙 for the
minibatch of size 𝜉, so that it can continue updating the
weights from layer 𝐿𝑠(𝑘)𝜙

.
Figure 3 shows an example of Split Learning over Φ

devices, where each device 𝜙 has its own split point 𝑠(𝑘)𝜙and carries out model training with a local dataset of size
𝑊𝜙. The sample model consists of five different DNN layers:
convolution (Conv layer) that convolve the input to produce
feature maps of inputs with the aim of learning features, max
pooling (Max pool) apply a predefined function (maximum
or average) to down sample the input, and dense layers
(Dense) connect every neuron to all neurons in the previous
layer with the aim of preforming high-leveled reasoning
(usually stacked at the end of the model). Device Φ is

E. Samikwa et al.: Preprint submitted to Elsevier Page 5 of 15

allocated more layers of the model than device 1, however,
the number and sequence of layers is the same for all devices.

For every minibatch of size 𝜉, the intermediate activa-
tions produced by the layer 𝐿𝑠(𝑘)𝜙

at the split point are trans-
ferred via wireless communications with throughput 𝐵(𝑘)

𝜙 to
the layer 𝐿𝑠(𝑘)𝜙 +1 on edge server. During backpropagation,
the intermediate gradients produced by layer 𝐿𝑠(𝑘)𝜙 +1 are
sent back to layer 𝐿𝑠(𝑘)𝜙

on the IoT device through the same
channel with throughput 𝐵′(𝑘)

𝜙 .
We consider that the computing resources on the edge

server and on the IoT devices can change over time due
to varying computation loads generated by third-party pro-
cesses. We define 𝛿(𝑘)𝑖 (𝜙) and 𝛿′(𝑘)𝑖 (𝜙) as the time taken by
the IoT device 𝜙 to execute forward and backward propaga-
tion, respectively, at layer 𝐿𝑖 of the model during training
round 𝑘 for a single entry of the dataset. If the first 𝑠 layers
of the model run on the IoT device 𝜙, the total time 𝐷(𝑘)

𝑠 (𝜙)
to perform the training task for all entries of a minibatch of
size 𝜉 during training round 𝑘 on the IoT device 𝜙 is the
sum of the time required to perform forward and backward
propagation on all layers between 𝐿1 and 𝐿𝑠 deployed
on the IoT device 𝜙, multiplied by the minibatch size 𝜉
(Equation 1). The approach taken to identify the forward
and backward propagation times 𝛿(𝑘)𝑖 (𝜙) and 𝛿′(𝑘)𝑖 (𝜙) on the
devices is discussed in Section 3.3.

𝐷(𝑘)
𝑠 (𝜙) = 𝜉

𝑠
∑

𝑖=1

(

𝛿(𝑘)𝑖 (𝜙) + 𝛿′(𝑘)𝑖 (𝜙)
)

(1)

We now define 𝛾 (𝑘)𝑖 and 𝛾 ′(𝑘)𝑖 as the time taken to execute
forward and backward propagation, respectively, of layer 𝐿𝑖of the model on the edge server during training round 𝑘 for
a single entry of the dataset. If the last 𝑁 − 𝑠 layers of the
model run on the edge server, the total time 𝐶 (𝑘)

𝑠 to perform
the training task for all entries of a minibatch of size 𝜉 during
training round 𝑘 on the edge server is the sum of the time
required to perform forward and backward propagation on
all layers between 𝐿𝑠+1 and 𝐿𝑁 deployed on the edge server,
multiplied by the minibatch size 𝜉 (Equation 2).

𝐶 (𝑘)
𝑠 = 𝜉

𝑁
∑

𝑖=𝑠+1

(

𝛾 (𝑘)𝑖 + 𝛾 ′(𝑘)𝑖

)

(2)

We model the transmission time of the intermediate
activations of volume 𝑉𝑠 for the current minibatch from the
IoT device 𝜙 to the edge server over a wireless channel with
bandwidth 𝐵(𝑘)

𝜙 , during training round 𝑘 as 𝑉𝑠∕𝐵
(𝑘)
𝜙 . We

model the transmission time of the intermediate gradients
of volume 𝑉 ′

𝑠 for the current minibatch from the the edge
server to the IoT device 𝜙 over a wireless channel with
bandwidth 𝐵′(𝑘)

𝜙 , during training round 𝑘 as 𝑉 ′
𝑠∕𝐵′(𝑘)

𝜙 . Once
the edge server has completed forward propagation for all
data entries in the minibatch it computes a loss function over

all outputs, which takes a time Θ(𝑘) for each minibatch in
training round 𝑘.

The process of forward propagation, intermediate data
transmission, and backward propagation is sequential. There-
fore, we can define the training time Δ(𝑘)

𝑠 (𝜙) to complete the
𝑘-th training round on the IoT device 𝜙 when the model is
split at layer 𝐿𝑠, as the sum of the minibatch-wise quantities
defined so far (training times on the IoT device, training time
on the edge server, transmission time from IoT device to edge
server and back, and loss function computation on the edge
server) divided by the minibatch size 𝜉 (to obtain the average
training time for each data entry), multiplied by the number
𝑊𝜙 of data entries in the dataset on 𝜙 (Equation 3). The
variables upon which Δ(𝑘)

𝑠 (𝜙) depends are either constant
or variable depending on the computing and networking
resources.

Δ(𝑘)
𝑠 (𝜙) =

𝑊𝜙

𝜉

⎛

⎜

⎜

⎝

𝐷(𝑘)
𝑠 (𝜙) + 𝐶 (𝑘)

𝑠 +
𝑉𝑠
𝐵(𝑘)
𝜙

+
𝑉 ′

𝑠

𝐵
′(𝑘)
𝜙

+ Θ(𝑘)
⎞

⎟

⎟

⎠

(3)
In our considered scenario, the energy consumed by IoT

device during the training process directly correlates with
the device’s lifetime before the battery must be replaced.
This is an inconvenient operation that should be avoided.
Therefore, it is important to model the energy consumption
of IoT devices so that it will be possible to minimize it. On
the other hand, we assume that the edge server does not
have any restriction regarding energy consumption because
the energy to run it is provided by the power grid and is
assumed to be stable and inexpensive. In other words, we
assume that the system-wide energy required to complete
the SL training of a model between IoT devices and the edge
server coincides with just the energy consumed by the IoT
devices.

We define 𝑃c(𝜙) as the computing power consumption
of the IoT device 𝜙, 𝑃t(𝜙) as the power required by the IoT
device 𝜙 to transmit data to the edge server over the wireless
channel, and 𝑃r(𝜙) as the power required by the IoT device
𝜙 to receive data from the edge server. We assume that
𝑃c(𝜙), 𝑃t(𝜙), and 𝑃r(𝜙) are device-specific characteristics
that do not change over time and that are known, for example
through a benchmark to be performed offline.

It is worth noting that the energy required by device 𝜙
to perform forward and back propagation for a minibatch
at training round 𝑘 is the product between its computing
power consumption 𝑃c(𝜙) and the time 𝐷(𝑘)

𝑠 (𝜙) needed to
compute the activations and updated weights for the first 𝑠
layers {𝐿𝑖|1 ≤ 𝑖 ≤ 𝑠, 𝑖 ∈ ℕ} of the model for all entries of a
minibatch of size 𝜉. We model the energy consumed by IoT
device 𝜙 to transmit the intermediate activations generated
by layer𝐿𝑠 for all entries of a minibatch of size 𝜉 (with a total
volume 𝑉𝑠) to the edge server through a wireless channel
with upload throughput of 𝐵(𝑘)

𝜙 bit∕s as the product between
the wireless upload power consumption 𝑃t(𝜙) and the time

E. Samikwa et al.: Preprint submitted to Elsevier Page 6 of 15

needed to upload a volume 𝑉𝑠 of data to the edge server
(𝑉𝑠∕𝐵(𝑘)

𝜙). Similarly, we model the energy consumed by IoT
device 𝜙 to receive the intermediate gradients generated by
layer 𝐿𝑠+1 for all entries of a minibatch of size 𝜉 (with a
total volume 𝑉 ′

𝑠) from the edge server through a wireless
channel with download throughput of 𝐵′(𝑘)

𝜙 bit∕s as the
product between the wireless download power consumption
𝑃r(𝜙) and the time needed to download a volume 𝑉 ′

𝑠 of data
to the edge server (𝑉 ′

𝑠∕𝐵′(𝑘)
𝜙).

We can now define the total energy consumption𝐸(𝑘)
𝑠 (𝜙) ∈

ℝ as the energy consumed by the IoT device 𝜙 during the
whole 𝑘-th training round of a model split at layer 𝐿𝑠. The
quantity 𝐸(𝑘)

𝑠 (𝜙) is the sum of the energy consumed by the
IoT device 𝜙 during forward and back propagation for all
entries of a minibatch of size 𝜉 during training round 𝑘 for the
first 𝑠 layers, plus the energy needed to exchange the interme-
diate activations and gradients for all entries of the minibatch
with the edge server, all multiplied by a normalization factor
𝑊𝜙∕𝜉 (Equation 4). The parameters 𝐷(𝑘)

𝑠 (𝜙), 𝐵(𝑘)
𝜙 , 𝐵

′(𝑘)
𝜙 can

vary according to the available computing and networking
resources.

𝐸(𝑘)
𝑠 (𝜙) =

𝑊𝜙

𝜉

⎛

⎜

⎜

⎝

𝑃c(𝜙)𝐷(𝑘)
𝑠 (𝜙) + 𝑃t(𝜙)

𝑉𝑠
𝐵(𝑘)
𝜙

+ 𝑃r(𝜙)
𝑉 ′

𝑠

𝐵
′(𝑘)
𝜙

⎞

⎟

⎟

⎠

(4)
In our scenario, we assume that each of theΦ IoT devices

has its own model split point 𝑠(𝑘)𝜙 ∈ {1,… , 𝑁}, which can
be different at each training round 𝑘 according to the variable
system context (e.g., available wireless throughput, compu-
tational load on IoT devices and edge server, etc.). We define
the system split vector 𝑠𝑘 as the vector of device-specific
split points 𝑠𝑘 =

(

𝑠(𝑘)1 ,… , 𝑠(𝑘)𝜙

)⊺
∈ 𝑆 = {1,… , 𝑁}Φ for

each IoT device 𝜙 during training round 𝑘. The symbol 𝑆
identifies the space of all possible split vectors. At the end of
each training round, the weights of the model’s layers must
be aggregated to obtain a global model for all IoT devices
Φ (weight sharing). The edge server collects all sub models
(i.e., their weights) from each IoT device 𝜙 via wireless
channel and executes an aggregating function on them to
obtain a single global model. This means that the edge server
must wait until all Φ IoT devices have completed their 𝑘-th
training round and have transmitted their sub models from
before starting the aggregation procedure. After the sub-
models from the IoT devices have been aggregated, they are
distributed back to the IoT devices so that the training pro-
cess can continue independently. Transferring the sub model
parameters between the IoT device and the edge server also
requires time and energy. However, for the scope of the
present work, we assume that the size of the considered
models corresponds to a negligible amount of time and
energy expenditure in comparison to the actual training and,
therefore, we do not consider it in the system model. We can
now define the system-wide training time Δ𝑘(𝑠𝑘) for training

round 𝑘 and split vector 𝑠𝑘 as the maximum training time
for all Φ IoT devices in the system (Equation 5). It is worth
noting that reducing the training time of the slowest device
(straggler) reduces the total training time for training round
𝑘.

Δ𝑘(𝑠𝑘) = max
𝜙∈{1,…,Φ}

Δ(𝑘)
𝑠(𝑘)𝜙

(𝜙) (5)

Similarly, we define the system-wide energy consumption
𝐸(𝑘) as the sum of the energy consumed by all IoT devices
in the system during training round 𝑘 (Equation 6).

𝐸𝑘(𝑠𝑘) =
∑

𝜙∈Φ
𝐸(𝑘)
𝑠(𝑘)𝜙

(𝜙) (6)

3.2. Problem Formulation
The main goal of ARES is to compute, for each training

round 𝑘, a split vector 𝑠𝑘 that jointly optimizes two ob-
jectives: minimizing the global model’s training time and
minimizing the energy consumption on the devices. Mini-
mizing the global model training time Δ𝑘 and minimizing
the IoT devices’ total energy consumption 𝐸𝑘 are potentially
conflicting objectives: for an IoT device 𝜙, a split point that
minimizes energy does not necessarily coincide with the
split point that minimize global model training time [26].
Therefore, the actual value of the split vector that jointly
optimizes model training time and energy depends on the
considered application requirements. In particular, some ap-
plications may be energy-sensitive, meaning that extending
the devices’ lifetime is more important than reducing the
global model training time. Some other applications may
be more time-sensitive, meaning that minimizing training
time is more important than extending device lifetime. To
this end, we define the energy sensitivity 𝛼 ∈ [0, 1] as
a coefficient that represents the application’s preferences
between reducing training time or energy. We define 𝛼 such
that the closer 𝛼 is to zero (𝛼 → 0) the lower the system’s
energy consumption. Conversely, the closer 𝛼 is to one (𝛼 →
1) the shorter the global model’s training time. In this work,
we assume that the particular value of 𝛼 does not change over
time and is initially fixed by a policy maker that interprets the
application’s requirements.

This definition of 𝛼 allows us to convert a multi-objective
optimization problem, that aims at minimizing energy and
training time separately, in a single-objective optimization
problem. In particular, we design a round cost function
𝑈𝑘(𝑠𝑘) ∈ ℝ, which depends on the split vector 𝑠𝑘 at
training round 𝑘, as a linear combination of the training
time and energy consumption, mediated by the coefficient
𝛼 (Equation 7).

𝑈𝑘(𝑠𝑘) = 𝛼 ⋅ Δ𝑘(𝑠𝑘) + (1 − 𝛼) ⋅ 𝐸𝑘(𝑠𝑘) (7)
It is worth noting that when 𝛼 = 1 the round cost function
will consider only the global model training time, while
when 𝛼 = 0 the round cost function will consider only the
system energy consumption, coherently with the meaning

E. Samikwa et al.: Preprint submitted to Elsevier Page 7 of 15

Network
Module

Estimation
Module

Optimization
Module

Round Round
Split Learning Rounds

Edge
Server

Wireless Channel

Device 1 Device 2 Device

Observations

Figure 4: Adaptive REsource-aware Split-learning architecture, the network throughput is monitored at each training round 𝑘 and
computing resources information is periodically observed and utilized for training acceleration and minimizing energy consumption.

of the energy sensitivity coefficient 𝛼. For a training round
𝑘, the optimal split vector 𝑠∗𝑘 = argmin𝑠𝑘∈𝑆 𝑈𝑘(𝑠𝑘) that
minimizes the round cost function 𝑈𝑘 achieves the best
tradeoff between global model training time and system
energy consumption. Let us now assume that the global
model needs 𝑅 training rounds for its generalization error to
be minimized (model convergence). The ultimate goal of our
proposed approach is to compute a split vector 𝑠𝑘 for each
of the 𝑅 training rounds so that the global model training
time and the system energy consumption until convergence
is minimized. We introduce the split matrix 𝜎 ∈ 𝑆𝑅 =
{1,… , 𝑁}Φ×𝑅 as a matrix with Φ rows and 𝑅 columns,
in which the 𝑘-th column contains the elements of the split
vector 𝑠𝑘. In other words, the element 𝜎𝜙𝑘 of the split matrix
is the split point 𝑠(𝑘)𝜙 of IoT device 𝜙 at training round 𝑘.
We also define a general cost function 𝑈 (𝜎) =

∑𝑅
𝑘=1 𝑈𝑘(𝑠𝑘)as the sum of the 𝑅 round cost functions for every training

round 𝑘 until convergence. The optimal split matrix 𝜎∗
that minimizes the general cost function 𝑈 , as presented in
Equation 8, achieves the best tradeoff between global model
training time and system energy consumption for all rounds
until convergence.

𝜎∗ = argmin
𝜎∈𝑆𝑅

𝑈 (𝜎) (8)

3.3. ARES Architecture and Operation
Our proposed scheme, ARES, is designed to compute the

optimal split matrix 𝜎∗ over time, taking into account the
variability of the system context. ARES operates through
the interaction of three modules: the Estimation Module,
the Network Module, and the Optimization Module. During
each training round 𝑘, the Estimation Module and Network
Module compute the information about the system context
and then the Optimization Module computes an optimal
split vector 𝑠𝑘 that minimizes training time and energy
consumption.

The Estimation Module is designed to periodically esti-
mate the time needed by each layer {𝐿𝑖|1 ≤ 𝑖 ≤ 𝑁, 𝑖 ∈ ℕ}
of the model to perform forward and back propagation on
the edge server and on each of the Φ IoT devices. At each
training round 𝑘, an Estimation Module deployed on the IoT
device 𝜙 estimates the quantities 𝛿(𝑘)𝑠 (𝜙) and 𝛿′(𝑘)𝑠 (𝜙),∀𝑠 ∈
{1,… , 𝑁}, which denote the time needed by the IoT device
𝜙 to execute forward and back propagation on each single
layer {𝐿𝑖|1 ≤ 𝑖 ≤ 𝑁, 𝑖 ∈ ℕ}, respectively. Similarly, at

E. Samikwa et al.: Preprint submitted to Elsevier Page 8 of 15

each training round 𝑘, an Estimation Module deployed on
the edge server estimates the quantities 𝛾 (𝑘)𝑠 and 𝛾 ′(𝑘)𝑠 ,∀𝑖 ∈
{1,… , 𝑁}, which denote the time needed by the edge server
to execute forward and back propagation on each single layer
{𝐿𝑖|1 ≤ 𝑖 ≤ 𝑁, 𝑖 ∈ ℕ}, respectively. Both edge server
and IoT devices estimate forward and back propagation time
of each layer of the model through benchmarking: each
Estimation Module deploys a copy of the entire global model
in its local memory and performs multiple forward and back
propagations on the local model while measuring the time
needed by each layer to execute them. For each layer of
the model, the mean time needed to perform forward and
backward propagation is estimated by averaging the time
measured for each of the benckmarking propagations and
fed to the Optimization Module. In most cases, it is not
necessary to update at every training round. Therefore, we
assume that the Estimation Module performs a benchmark
for IoT devices and edge server, respectively, every 𝑀D and
𝑀C training rounds and sets all the estimates for all training
rounds between two consecutive benchmarks to the same
values. Thus, 𝑀D and 𝑀C represent the device and server
computation benchmark intervals respectively.

The Network Module is designed to periodically esti-
mate the quantities 𝐵(𝑘)

𝜙 and 𝐵′(𝑘)
𝜙 ,∀𝜙 ∈ {1,… ,Φ}, which

denote the average throughput of the wireless channel from
the IoT device 𝜙 to the edge server and vice versa, respec-
tively, at each training round 𝑘. The Network Module is de-
ployed and executed on the edge server. For each minibatch
fed to model split at layer 𝐿𝑠 during training round 𝑘, a vol-
ume 𝑉𝑠 of intermediate activations is transmitted by the IoT
device to the edge server and a volume𝑉 ′

𝑠 of intermediate ac-
tivations is transmitted by the edge server to the IoT device.
For each minibatch, the Network Module measures the time
needed to transfer the volume 𝑉𝑠 of intermediate activations
to the edge server and computes the average wireless channel
throughput as the ratio of the volume 𝑉𝑠 and the time needed
to transfer it to the edge server. Similarly, for each minibatch,
the Network Module measures the time needed to transfer
the volume 𝑉 ′

𝑠 of intermediate gradients to the IoT device
and computes the average wireless channel throughput as the
ratio of the volume𝑉 ′

𝑠 and the time needed to transfer it to the
IoT device. At the end of the training round 𝑘, the Network
Module estimated the average wireless channel throughput
during the whole training round 𝑘 as the average of the
throughput values measured to transmit each minibatch’s
intermediate activations and gradients. Then, the uplink and
downlink wireless channel throughput estimates are fed to
the Optimization Module.

The Optimization Module takes as input the estimates
from the Estimation Module and the Network Module and
solves the optimization problem described in Equation 8
by exploring the split vector space 𝑆 to find the optimal
split vector 𝑠∗𝑘 that globally minimizes the cost function 𝑈𝑘according to the current estimated system context for every
training round 𝑘. The Optimization Module is deployed and
executed on the edge server. After the optimal split vector
𝑠∗𝑘 is computed, the edge server communicates the new split

Algorithm 1: ARES Operation
Input:
𝜏(𝑘)𝑖 : returns the average time needed to transmit
activations from the 𝑖-th layer during round 𝑘
𝑓 (𝑘)

device(𝐿𝑖), 𝑓 (𝑘)
edge(𝐿𝑖): return the average 𝑖-th layer’s

computation time on the IoT device and server
Ω ∶ ℝ → ℕ,Ω(𝑥) = ⌊𝑥∕𝑄⌋: discretizes throughput
in equal intervals of 𝑄 bit∕s
Γ ∈ ℕ: throughput measurement window size
𝑀D,𝑀C: device and server computation
benchmark intervals
𝛼 ∈ [0, 1]: energy sensitive coefficient
Output:
𝑠𝑘 ∈ 𝑆 = {1,… , 𝑁}Φ : split vector for each round
/* Initialization: throughput vectors */

1 𝑏(1) ← 𝑄
2 𝐵(0) ← −𝑄
/* Loops for each round 𝑘 */

3 for 𝑘 ∈ 𝑅 do
4 if 𝑘 mod 𝑀D = 1 then

/* Devices computation benchmark */

5 for 𝜙 ∈ Φ do
6 for 𝑖 = 1,⋯ , 𝑁 do
7 𝛿(𝑘)𝑖 (𝜙) ← 𝑓 (𝑘)

device(𝐿𝑖)
8 𝛿′(𝑘)𝑖 (𝜙) ← 𝑓 ′(𝑘)

device(𝐿𝑖)
9 if 𝑘 mod 𝑀C = 1 then

/* Edge server computation benchmark */

10 for 𝑠 = 1,⋯ , 𝑁 do
11 𝛾 (𝑘)𝑖 ← 𝑓 (𝑘)

edge(𝐿𝑖)
12 𝛾 ′(𝑘)𝑖 ← 𝑓 ′(𝑘)

edge(𝐿𝑖)
13 if 𝑘 > 1 then
14 𝑏(𝑘) ← 𝑉𝑠(𝑘−1)∕𝜏

(𝑘−1)
𝑠(𝑘−1)

15 𝑏′(𝑘) ← 𝑉 ′
𝑠(𝑘−1)∕𝜏′

(𝑘−1)
𝑠(𝑘−1)

/* Rolling window throughput estimations */

16 𝑗 ← max{1, 𝑘 − Γ + 1}
17 𝐵(𝑘) ← 1

𝑘−𝑗+1
∑𝑘

𝑖=𝑗 𝑏
(𝑖)

18 𝐵′(𝑘) ← 1
𝑘−𝑗+1

∑𝑘
𝑖=𝑗 𝑏

′(𝑖)

/* Changed resources? */

19 if Ω(𝐵(𝑘−1)) = Ω(𝐵(𝑘)) and
Ω(𝐵′(𝑘−1)) = Ω(𝐵′(𝑘)) and

20 𝑘 mod 𝑀D ≠ 1 and 𝑘 mod 𝑀C ≠ 1 then
21 𝑠(𝑘) ← 𝑠(𝑘−1)

22 else
23 for 𝜙 ∈ Φ do
24 Compute {Δ(𝑘)

1 (𝜙),… ,Δ(𝑘)
𝑁 (𝜙)}

25 Compute {𝐸(𝑘)
1 (𝜙),… , 𝐸(𝑘)

𝑁 (𝜙)}

26 𝑠𝑘 ← argmin 𝛼Δ(𝑘) + (1 − 𝛼)𝐸(𝑘)

E. Samikwa et al.: Preprint submitted to Elsevier Page 9 of 15

points to each of the Φ IoT devices in the system via the
downlink wireless channel. Figure 4 shows ARES architec-
ture, the interaction between its modules, the monitoring of
the system context, and the updating of the split vector 𝑠𝑘 at
each training round 𝑘.

The overall operation of ARES and the order of inter-
action between its modules is described in Algorithm 1. At
every training round 𝑘, ARES first checks whether the esti-
mation module should perform benchmark. The estimation
module determines the values 𝛿(𝑘)𝑠 (𝜙) and 𝛿′(𝑘)𝑠 (𝜙),∀𝑠 ∈
{1,… , 𝑁}, and 𝛾 (𝑘)𝑠 and 𝛾 ′(𝑘)𝑠 ,∀𝑖 ∈ {1,… , 𝑁} for forward
and back propagation times (from line 4 to 12). The periods
for measuring the values, 𝑀D and 𝑀C, can be adjusted
according to the variability of the available computing re-
sources on the edge server or the IoT devices. Then, ARES
estimates the average uplink and downlink throughput val-
ues 𝐵(𝑘)

𝜙 and 𝐵′(𝑘)
𝜙 ,∀𝜙 ∈ {1,… ,Φ} at every training round

𝑘 between each IoT device 𝜙 and the edge server through
rolling-window averages (lines 17 and 18). Using rolling-
window averages increases the channel estimations accu-
racy because observing throughput changes in a window
reduces the influence of noisy instantaneous variations of
the throughput. For all Φ devices, if any benchmark has
been performed during the current training round, or the
throughput state has changed, the optimal split vector is
recomputed, otherwise the old value is used (from lines 22
to 26).

4. Performance Evaluation
In this section, we evaluate the performance of ARES.

First, we provide details, hardware specifications of the
testbed setup and outline the tools used in implementing
ARES prototype. Then, we present the procedure and results
for the evaluation of ARES in terms of training time and
energy consumption for various bandwidth and computing
resources scenarios. Furthermore, we examine the model
convergence and accuracy while applying ARES on the
training process.
4.1. Experimental Testbed Setup

For all the performed experiments, we deployed a real
testbed made of five heterogeneous IoT devices (2 Raspberry
Pi 3B, 3 NVIDIA Jetson Nano) and one edge server, as
shown in Figure 5. Table 3 outlines the specifications of
testbed devices.

Each Jetson Nano is equipped with onboard power sen-
sors, located at the power input of the board which can be
read automatically with the tegrastats tool 2 or manually
by reading Sysfs pseudo-file system 3 on Linux. We utilize
the power measurements of Sysfs pseudo-file found in the
I2C folder of the Jetson Nano. We utilize a power consump-
tion benchmarking class with multithreading to monitor
the power changes from the I2C during difference training
operations on the Jetson Nano. We employ a plugin power

2https://github.com/topics/tegrastats
3https://man7.org/linux/man-pages/man5/sysfs.5.html

Edge Server

Jetson Nano Pi

Router IEEE 802.11

Figure 5: Overview of the testbed used for the evaluation.

Table 3
Testbed Specifications

Raspberry Pi 3B

CPU 1.2GHz core ARM Cortex-A53
RAM 900MHz 1GB LPDDR2
Operating System Raspbian GNU/Linux 10 (Buster)

NVIDIA Jetson Nano

CPU Quad-core ARM Cortex-A57 MPCore
RAM 900MHz 2GB LPDDR4
Nano GPU NVIDIA Maxwell arch. CUDA core
Operating System NVIDIA JetPack SDK

Jetson Linux Driver package (L4T)

Edge Server

CPU 2.80GHz 8-Core Intel i7-10510U
RAM 2666MHz 16GB DDR4
Operating System Ubuntu 20.04.2 LTS

Table 4
Jetson Nano Power Modes

Modes HIGH MEDIUM LOW

CPUS ONLINE 4 2 1
CPU MAX FREQ 1200MHz 900MHz 900MHz
GPU MAX FREQ 900MHz 600MHz 600MHz
MEM MAX FREQ 900MHz 600MHz 600MHz

monitor to measure the power consumption for Raspberry
Pi.

All Raspberry Pis have the same version of Raspbian
GNU/Linux 10 (Buster) operating system, Python version
3.7 and PyTorch version 1.4.0. All Jetson Nanos have the
same version of NVIDIA JetPack SDK, software which

E. Samikwa et al.: Preprint submitted to Elsevier Page 10 of 15

Table 5
Parameter table

Parameter Value

Φ 5
𝑁 10
𝑅 100
𝜉 100
𝑊𝜙 10,000
𝑊 50,000
𝛼 [0, 1]

includes the Jetson Linux Driver package (L4T), which
provides the Linux kernel, NVIDIA drivers for manipulating
hardware resources and power management. The Jetson
Nanos and the server have the same version of Python
and PyTorch. All devices are connected to the server in a
network using a router. The IoT devices and the edge server
can directly communicate via a IEEE 802.11 wireless link,
whose available throughput can be controlled by a traffic
shaping tool (Linux tc 4).

We assume that all devices in the system cooperate to
train a global model for image classification. We select the
Visual Geometry Group (VGG) DNN model [41] as the
global model deployed on the edge server and IoT devices.
The VGG model is well-suited to assess a split learning
scenario, as the compared algorithms can select a split point
among 10 layers (VGG-8). We implement the considered
model using Pytorch5. We selected VGG as the evaluation
model because it is widely adopted in IoT applications based
on edge intelligence. These include image classification in
industrial IoT [42], smart security [4], smart vehicles [43],
edge based speech commands processing [10], and smart
health applications such as Electrocardiography [11], and
COVID-19 screening [44]. Furthermore, SL models a DNN
as a sequential connection of independently executable lay-
ers and not as an indivisible executable unit: therefore, our
approach is generalizable and can be applied to any other
sequential DNNs composed of any different arrangement of
independently executable layers. This evaluation approach is
commonly used in the related literature [31, 40, 33, 10].

We select the CIFAR-10 [45] dataset for training and
testing. The CIFAR-10 dataset consists of 60k 32x32 colour
images in 10 classes, with 6k images per class. The dataset
contains a large set of 50k training and 10k testing labeled
images. To generate a local dataset for each IoT device,
we split the CIFAR-10 dataset in five disjoint partitions of
size 𝑊1 = … = 𝑊5 and then we load each of them on
a different IoT devices. Table 5 shows a summary of the
general parameters used in the evaluation.

4https://man7.org/linux/man-pages/man8/tc.8.html
5https://pytorch.org/

HIGH MEDIUM LOW

2

4

6

8

Jetson Nano Power Modes

P
ow

er
[W

]

𝑃𝑐 𝑃𝑡 𝑃𝑟

Figure 6: Computing, network transmission and receiving
power for the three Jetson Nano configurations (power modes)

HIGH MEDIUM LOW
0

0.2

0.4

0.6

0.8

Jetson Nano Power Modes

𝜉
⋅Δ

(𝑘
)

𝑠
(𝜙
)∕
𝑊

𝜙
[s

]

ARES SL FL

Figure 7: Average training time on Jetson Nano for minibatch
with size 𝜉 = 100.

4.2. Variable Computing Resources and Power
Monitoring

We utilize the NVIDIA drivers for manipulating hard-
ware resources and power management on Jetson Nano.
Available computing resources on the Jetson Nano are mod-
ified by tuning the power modes. The JetPark software offers
two default power modes and the possibility for custom
power modes using the NVIDIA drivers. We define three
configurations of CPU, GPU, and Memory clock speed
to represent three classes of power consumption modes,
namely HIGH, MEDIUM and LOW. The corresponding
hardware resource configurations are shown in Table 4. We
monitored the parameters 𝑃c, 𝑃t, and 𝑃r through running
separated computing (forward and back propagation) and
recorded power readings from the I2C sensors for the dif-
ferent operations. Figure 6 shows the power consumption of
the Jetson Nano for computing, transmitting and receiving
for the three power mode configurations (HIGH, MEDIUM,
LOW).

We examine the performance of ARES in a scenario with
variable computing resources. To achieve this, we observe
the performance of ARES under the three power modes
of the Jetson Nano for their variability in the computing

E. Samikwa et al.: Preprint submitted to Elsevier Page 11 of 15

5 15 25 35 45

1
2

4

6

𝐵(𝑘)
𝜙 [Mbit∕s]

𝑠(
𝑘) 𝜙

𝛼 = 1
𝛼 = 0(a)

5 15 25 35 45

5

6

7

𝐵(𝑘)
𝜙 [Mbit∕s]

𝑠(
𝑘) 𝜙

𝛼 = 1
𝛼 = 0

(b)

Figure 8: Optimal split point 𝑠(𝑘)𝜙 computed by ARES for
the Raspberry Pi (a) and Jetson Nano (b) for different link
throughputs 𝐵(𝑘)

𝜙 .

resources. We monitor the average minibatch training time
𝜉 ⋅Δ(𝑘)∕𝑊𝜙 for a minibatch of size 𝜉 on the Jetson Nano for
the three scenarios with different available resources. We set
the minibatch size 𝜉 to be 100 for all the training evaluation
scenarios. We compare the average minibatch training time
achieved by ARES to the average average minibatch training
time for FL and SL. Figure 7 shows the average training time
for a minibatch of the ARES, FL, and SL approaches under
difference computing resources on the Jetson Nano. The
confidence intervals are set at 95% minimum significance
level. ARES achieves the lowest average minibatch training
time compared to FL and SL for all the three power modes.
The best performance is observed for the LOW power mode
configuration with 44% and 41% reduction in training time
compared to FL and SL respectively.
4.3. Training Time and Energy Optimization for

Heterogeneous Devices
We examine the optimal split points for minimizing

training time and energy consumption for the two device
types: Raspberry Pi and Jetson Nano. We adjust the available
network throughput between the device and the server for the
range 5Mbit∕s to 45Mbit∕s and observe the split point for
minimizing training time and energy consumption by setting
the energy sensitivity coefficient 𝛼 to 0 and 1 for always
optimal training time and energy consumption respectively.

Figure 8 shows the optimal split point 𝑠(𝑘)𝜙 computed
by ARES for the Raspberry Pi (a) and Jetson Nano (b) for
different link throughputs 𝐵(𝑘)

𝜙 during training round 𝑘. The
two curves correspond to two extreme and opposite policies,
namely energy minimization (𝛼 = 0) and training time
minimization (𝛼 = 1). The curves corresponding to any
other value of 𝛼 always are between the two extreme curves.

40 30 20 10
0

100

200

𝐵(𝑘)
𝜙 [Mbit∕s]

Δ
𝑘(
𝑠 𝑘
)
[s

]

ARES SL FL

Figure 9: Average training time per round for the system with
energy sensitivity coefficient set at 𝛼 = 1.

40 30 20 10
0

5

10

15

𝐵(𝑘)
𝜙 [Mbit∕s]

𝜉
⋅𝐸

(𝑘
)

𝑠
(𝜙
)∕
𝑊

𝜙
[W

s]

ARES SL FL

Figure 10: Average energy consumption for training minibatch
with size 𝜉 = 100 on Raspberry Pi with 𝛼 = 0.

For both cases, the optimal split points remain constant or
change depending on the network throughput changes.

The optimal split point for minimizing training time
𝛼 = 1 and minimizing energy consumption 𝛼 = 0 are
is the same for some cases while different in most cases.
This happens because the link throughput impacts the trans-
mission and receiving time and consequently the energy
consumption and the training time. Furthermore, the differ-
ences in computation power 𝑃c, transmission power 𝑃t and
receiving power 𝑃r for the considered IoT device affects the
variability of the split point when optimizing for training
time and energy consumption. This signifies the importance
of the energy sensitivity coefficient 𝛼 to mitigate the tradeoff
between optimizing for training time and energy consump-
tion depending on the application requirements. Depending
on the application requirements, the coefficient 𝛼 can be
modified to suit the scenario, for example in the event where
the training on the device is carried out at night when the
IoT system is not in use, the value of 𝛼 can be set to optimize
more towards energy consumption rather than time.

E. Samikwa et al.: Preprint submitted to Elsevier Page 12 of 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10

20

30

40

Round 𝑘

𝐵
(𝑘
)

𝜙
[M

bi
t∕
s]

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

100

150

200

250

Round 𝑘

Δ
𝑘(
𝑠 𝑘
)
[s

]

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0.2

0.4

0.6

0.8

1

Round 𝑘

𝐸
(𝑘
)

𝑠
(𝜙
)
[k
J]

(c)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

50

100

150

Round 𝑘

𝐸
(𝑘
)

𝑠
(𝜙
)
[J
]

SL FL ARES

(d)

Figure 11: Impact of the system context on the (b) training
time Δ(𝑘), (c) energy consumption 𝐸(𝑘)

𝑠 (𝜙) on the Raspberry Pi,
and the (d) energy consumption 𝐸(𝑘)

𝑠 (𝜙) on the Jetson Nano
to complete training the VGG model at each round 𝑘.

It is worth noting that the optimal split points on Rasp-
berry Pi (a) and Jetson Nano (b) are not the same for
corresponding network throughput values. The split points
on the Jetson Nano are on average higher in the model than
the split points on the Raspberry Pi. This means ARES
allocates more training computation on the device for the
relatively powerful Jetson Nano compared to the Raspberry
Pi. This demonstrates the capacity of ARES to generate
device-targeted split vector and to minimize the effect of
stragglers on the training process.
4.4. Adaptability to Changing Network Conditions

We examine the training time and energy consumption
optimization of ARES through different available network
throughput. First, we adjust the available network throughput

0 20 40 60 80
0.5

0.6

0.7

0.8

Round

A
cc

ur
ac

y

ARES
FL

Figure 12: Model convergence and test accuracy for ARES and
FL for VGG.

between the IoT devices and the server for the range 10
Mbit∕s to 40 Mbit∕s and observe the training time opti-
mization by ARES with the energy sensitivity coefficient
𝛼 set to 1. Figure 9 shows the results for the evaluation.
ARES achieves the lowest average training time compared
to FL and SL for the all throughput levels. ARES reduces
the training time up to 48% and 37.5% compared to FL and
SL respectively. Then, we observe the energy consumption
on the Raspberry Pi to complete training a minibatch of size
𝜉 through the network throughput changes (10 Mbit∕s to 40
Mbit∕s).

Figure 10 shows the average energy consumption 𝜉 ⋅
Δ(𝑘)∕𝑊𝜙 by the Raspberry Pi to complete a minibatch train-
ing. ARES achieves the lowest average energy consumption
compared to FL and SL for the all throughput levels. ARES
reduces the average energy consumption up to 62.8% and
49.8% compared to FL and SL respectively.

We further investigate the selected solutions’ adaptive-
ness, i.e., how their performance changes according to vari-
ations in link throughput over time. Therefore, we utilize the
traffic shaper to set the network throughput, for every round
𝑘, to a random value extracted by a uniform distribution
from 10 Mbit∕s to 40 Mbit∕s during the training. The ARES
energy sensitivity coefficient is set at 𝛼 = 0.5.

Figure 11 shows the impact of the system context on
the training time and energy consumption of IoT devices at
each training round 𝑘. The (a) link throughput 𝐵(𝑘) changes
at each round 𝑘, following a uniform distribution from 10
Mbit∕s to 40 Mbit∕s. The (b) training time Δ(𝑘), (c) energy
consumption𝐸(𝑘)

𝑠 (𝜙) on the Raspberry Pi, and the (d) energy
consumption 𝐸(𝑘)

𝑠 (𝜙) on the Jetson Nano to complete a
training for the VGG model at each round 𝑘. The energy
consumption by the Jetson Nano and Raspberry Pi are shown
separately in accordance the heterogeneity. ARES achieves
the lowest average energy consumption compared to FL and
SL for the all throughput levels. ARES reduces minimizes
training time and energy consumption up to 48% and 61.4%
respectively compared to FL and SL.

E. Samikwa et al.: Preprint submitted to Elsevier Page 13 of 15

4.5. Model Accuracy Comparison: ARES and FL
Model accuracy is a key aspect of every training oper-

ation, hence each training optimisation methods needs to
take into consideration the convergence of the model and
its accuracy. We monitored the resulting test accuracy and
the convergence rate for the VGG model for ARES and
FL approaches. Figure 12 compares the test accuracy of
ARES and classic FL for 90 rounds. ARES achieves the
same convergence speed and final accuracy as classic FL
while optimizing the training time and energy consumption.
Distributed model training techniques are highly beneficial
when they have less significant impact on the resulting
model accuracy since the training optimization does not
compromise the integrity of the IoT system.

5. Conclusion
Implementing ML in edge IoT environments remains

attractive for achieving robust and reliable intelligence in
IoT systems. Studies have proposed SL for distributed model
training with limited resources in IoT systems. However, the
heterogeneity of IoT devices, variable network and comput-
ing resources, application constraints and training optimiza-
tion tradeoffs are major challenges for efficient implementa-
tion of SL in IoT. We presented ARES, a scheme for efficient
model training in IoT systems. ARES jointly accelerates
model training time and minimizes energy consumption in
resource-constrained IoT devices and minimizes the effects
of stragglers on the training through device-targeted split
points while accounting for time-varying network through-
put and computing resources. ARES takes into account
application constraints/objectives to mitigate training op-
timization tradeoffs in terms of minimizing energy con-
sumption and training time. We evaluated ARES prototype
on a real testbed comprising of heterogeneous resource-
constrained IoT devices. ARES accelerates model training
time on IoT devices up to 48% and minimizes the energy
consumption up to 61.4% compared to FL and SL, without
sacrificing the model convergence and accuracy.

Limitations and Future Work: our proposed scheme can
be combined with existing model compression techniques
such as pruning for more efficient distributed training in
resource-constrained IoT devices. ARES can also be further
extended to determine whether an alternate model can be
selected to improve the training performance instead of
partitioning only a given DNN, in scenarios with wide het-
erogeneity of network and computing resources. Exploring
techniques of reducing the communication overhead during
the training is another area of interest since SL relies on com-
munication between IoT devices and server. Techniques such
as parameter quantization and adaptive gradient threshold
mechanisms may reduce the communication cost.

References
[1] Xiaofei Wang, Yiwen Han, Victor CM Leung, Dusit Niyato, Xueqiang

Yan, and Xu Chen. Convergence of edge computing and deep

learning: A comprehensive survey. IEEE Communications Surveys
& Tutorials, 22(2):869–904, 2020.

[2] Ahmed Imteaj, Urmish Thakker, Shiqiang Wang, Jian Li, and M Hadi
Amini. Federated learning for resource-constrained iot devices:
Panoramas and state-of-the-art. arXiv preprint arXiv:2002.10610,
2020.

[3] Aluizio F Rocha Neto, Flavia C Delicato, Thais V Batista, and Paulo F
Pires. Distributed machine learning for iot applications in the fog. Fog
Computing: Theory and Practice, pages 309–345, 2020.

[4] Farzad Samie, Lars Bauer, and Jörg Henkel. From cloud down to
things: An overview of machine learning in internet of things. IEEE
Internet of Things Journal, 6(3):4921–4934, 2019.

[5] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas. Communication-efficient learning of
deep networks from decentralized data. In Artificial Intelligence and
Statistics, pages 1273–1282. PMLR, 2017.

[6] Zhongnan Qu, Cong Liu, Junfeng Guo, and Lothar Thiele. Deep
partial updating. arXiv preprint arXiv:2007.03071, 2020.

[7] Zhongnan Qu, Zimu Zhou, Yun Cheng, and Lothar Thiele. Adaptive
loss-aware quantization for multi-bit networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7988–7997, 2020.

[8] Jiasi Chen and Xukan Ran. Deep learning with edge computing: A
review. Proceedings of the IEEE, 107(8):1655–1674, 2019.

[9] Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer
Applications, 116:1–8, 2018.

[10] Yansong Gao, Minki Kim, Sharif Abuadbba, Yeonjae Kim, Chandra
Thapa, Kyuyeon Kim, Seyit A Camtepe, Hyoungshick Kim, and
Surya Nepal. End-to-end evaluation of federated learning and split
learning for internet of things. arXiv preprint arXiv:2003.13376,
2020.

[11] Yansong Gao, Minki Kim, Chandra Thapa, Sharif Abuadbba, Zhi
Zhang, Seyit A Camtepe, Hyoungshick Kim, and Surya Nepal. Evalu-
ation and optimization of distributed machine learning techniques for
internet of things. arXiv preprint arXiv:2103.02762, 2021.

[12] Wiebke Toussaint and Aaron Yi Ding. Machine learning systems in
the iot: Trustworthiness trade-offs for edge intelligence. In 2020 IEEE
Second International Conference on Cognitive Machine Intelligence
(CogMI), pages 177–184. IEEE, 2020.

[13] Stefano Savazzi, Monica Nicoli, and Vittorio Rampa. Federated
learning with cooperating devices: A consensus approach for massive
iot networks. IEEE Internet of Things Journal, 7(5):4641–4654, 2020.

[14] Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala.
Asynchronous online federated learning for edge devices with non-
iid data. In 2020 IEEE International Conference on Big Data (Big
Data), pages 15–24. IEEE, 2020.

[15] Zirui Xu, Fuxun Yu, Jinjun Xiong, and Xiang Chen. Helios:
Heterogeneity-aware federated learning with dynamically balanced
collaboration. arXiv preprint arXiv:1912.01684, 2019.

[16] Ido Hakimi, Saar Barkai, Moshe Gabel, and Assaf Schuster. Tam-
ing momentum in a distributed asynchronous environment. arXiv
preprint arXiv:1907.11612, 2019.

[17] Prince Abudu and Andrew Markham. Learning distributed com-
munication and computation in the iot. Computer Communications,
161:150–159, 2020.

[18] Luke Lockhart, Paul Harvey, Pierre Imai, Peter Willis, and Blesson
Varghese. Scission: Context-aware and performance-driven edge-
based distributed deep neural networks. arXiv e-prints, pages arXiv–
2008, 2020.

[19] Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Junshan Zhang.
Coedge: Cooperative dnn inference with adaptive workload partition-
ing over heterogeneous edge devices. IEEE/ACM Transactions on
Networking, 29(2):595–608, 2020.

[20] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and
Seyit A Camtepe. Advancements of federated learning towards
privacy preservation: from federated learning to split learning. In
Federated Learning Systems, pages 79–109. Springer, 2021.

E. Samikwa et al.: Preprint submitted to Elsevier Page 14 of 15

[21] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen.
Fedmask: Joint computation and communication-efficient personal-
ized federated learning via heterogeneous masking. In Proceedings of
the 19th ACM Conference on Embedded Networked Sensor Systems,
pages 42–55, 2021.

[22] Cong Wang, Yuanyuan Yang, and Pengzhan Zhou. Towards efficient
scheduling of federated mobile devices under computational and sta-
tistical heterogeneity. IEEE Transactions on Parallel and Distributed
Systems, 32(2):394–410, 2020.

[23] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan
Li, Xu Liu, and Bingsheng He. A survey on federated learning
systems: vision, hype and reality for data privacy and protection. IEEE
Transactions on Knowledge and Data Engineering, 2021.

[24] Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia.
Split computing and early exiting for deep learning applications:
Survey and research challenges. arXiv preprint arXiv:2103.04505,
2021.

[25] Hao Song, Jianan Bai, Yang Yi, Jinsong Wu, and Lingjia Liu. Ar-
tificial intelligence enabled internet of things: Network architecture
and spectrum access. IEEE Computational Intelligence Magazine,
15(1):44–51, 2020.

[26] Eric Samikwa, Antonio Di Maio, and Torsten Braun. Adaptive early
exit of computation for energy-efficient and low-latency machine
learning over iot networks. In 2022 IEEE 19th Annual Consumer
Communications & Networking Conference (CCNC), pages 200–206.
IEEE, 2022.

[27] Abhishek Singh, Praneeth Vepakomma, Otkrist Gupta, and Ramesh
Raskar. Detailed comparison of communication efficiency of split
learning and federated learning. arXiv preprint arXiv:1909.09145,
2019.

[28] Chandra Thapa, Mahawaga Arachchige Pathum Chamikara, and Seyit
Camtepe. Splitfed: When federated learning meets split learning.
arXiv preprint arXiv:2004.12088, 2020.

[29] Ali Abedi and Shehroz S Khan. Fedsl: Federated split learning
on distributed sequential data in recurrent neural networks. arXiv
preprint arXiv:2011.03180, 2020.

[30] Di Wu, Rehmat Ullah, Paul Harvey, Peter Kilpatrick, Ivor Spence,
and Blesson Varghese. Fedadapt: Adaptive offloading for iot devices
in federated learning. arXiv preprint arXiv:2107.04271, 2021.

[31] Mounssif Krouka, Anis Elgabli, Chaouki Ben Issaid, and Mehdi
Bennis. Energy-efficient model compression and splitting for col-
laborative inference over time-varying channels. arXiv preprint
arXiv:2106.00995, 2021.

[32] Enzo Baccarelli, Michele Scarpiniti, Alireza Momenzadeh, and
Sima Sarv Ahrabi. Learning-in-the-fog (lifo): Deep learning meets
fog computing for the minimum-energy distributed early-exit of in-
ference in delay-critical iot realms. IEEE Access, 9:25716–25757,
2021.

[33] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai: On-demand
accelerating deep neural network inference via edge computing. IEEE
Transactions on Wireless Communications, 19(1):447–457, 2019.

[34] Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu,
and Furu Wei. Bert loses patience: Fast and robust inference with
early exit. arXiv preprint arXiv:2006.04152, 2020.

[35] Liekang Zeng, En Li, Zhi Zhou, and Xu Chen. Boomerang: On-
demand cooperative deep neural network inference for edge intelli-
gence on the industrial internet of things. IEEE Network, 33(5):96–
103, 2019.

[36] Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer.
Deepthings: Distributed adaptive deep learning inference on resource-
constrained iot edge clusters. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2348–2359, 2018.

[37] Sun Mao, Jinsong Wu, Lei Liu, Dapeng Lan, and Amir Taherko-
rdi. Energy-efficient cooperative communication and computation for
wireless powered mobile-edge computing. IEEE Systems Journal,
2020.

[38] Mu Li, Tong Zhang, Yuqiang Chen, and Alexander J Smola. Efficient
mini-batch training for stochastic optimization. In Proceedings

of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 661–670, 2014.

[39] Katarzyna Janocha and Wojciech Marian Czarnecki. On loss func-
tions for deep neural networks in classification. arXiv preprint
arXiv:1702.05659, 2017.

[40] Ahmad Ayad, Melvin Renner, and Anke Schmeink. Improving the
communication and computation efficiency of split learning for iot
applications. In 2021 IEEE Global Communications Conference
(GLOBECOM), pages 01–06. IEEE, 2021.

[41] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv e-prints
arXiv:1409.1556, 2014.

[42] Xing Liu, Wei Yu, Fan Liang, David Griffith, and Nada Golmie.
Toward deep transfer learning in industrial internet of things. IEEE
Internet of Things Journal, 8(15):12163–12175, 2021.

[43] Zhongqin Bi, Ling Yu, Honghao Gao, Ping Zhou, and Hongyang Yao.
Improved vgg model-based efficient traffic sign recognition for safe
driving in 5g scenarios. International Journal of Machine Learning
and Cybernetics, 12(11):3069–3080, 2021.

[44] Harshit Kaushik, Dilbag Singh, Shailendra Tiwari, Manjit Kaur,
Chang-Won Jeong, Yunyoung Nam, and Muhammad Attique Khan.
Screening of covid-19 patients using deep learning and iot framework.
Cmc-Computers Materials & Continua, pages 3459–3475, 2021.

[45] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of
features from tiny images. 2009.

Eric Samikwa is a Ph.D. candidate at the Com-
munication and Distributed Systems (CDS) group,
Institute of Computer Science, University of Bern,
Switzerland. He received his MSc in computer
science and engineering from the Royal Institute
of Technology (KTH), Sweden, and BSc from Uni-
versity of Malawi. His research interests are in the
areas of distributed machine learning, split learn-
ing, edge computing, and the Internet of things.

Antonio Di Maio is a postdoctoral researcher in
mobile networks with the Communication and Dis-
tributed Systems (CDS) group at the University
of Bern, Switzerland. He obtained his PhD degree
in Computer Engineering from the University of
Luxembourg in 2020, with a thesis on routing and
content dissemination in software-defined vehic-
ular networks. His current research interests fall
within the areas of network modeling, scheduling,
routing, and channel access.

Torsten Braun is currently director at the In-
stitute of Computer Science, University of Bern,
where he has been a full professor since 1998.
He got the Ph.D. degree from University of Karl-
sruhe (Germany) in 1993. From 1994 to 1995, he
was a guest scientist at INRIA Sophia-Antipolis
(France). From 1995 to 1997, he worked at the IBM
European Networking Centre Heidelberg (Ger-
many) as a project leader and senior consultant. He
has been a vice president of the SWITCH (Swiss
Research and Education Network Provider) Foun-
dation from 2011 to 2019. He has been a Director
of the Institute of Computer Science and Applied
Mathematics at University of Bern between 2007
and 2011, and from 2019 to 2021.

E. Samikwa et al.: Preprint submitted to Elsevier Page 15 of 15

	1

