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Abstract 
 
Diffusion-weighted (DW) magnetic resonance spectroscopy (MRS) suffers from a lower signal to 

noise ratio (SNR) compared to conventional MRS owing to the addition of diffusion attenuation. This 

technique can therefore strongly benefit from noise reduction strategies. In the present work, 

Marchenko-Pastur principal component analysis (MP-PCA) denoising is tested on Monte Carlo 

simulations and on in vivo DW-MRS data acquired at 9.4T in rat brain and at 3T in human brain. We 

provide a descriptive study of the effects observed following different MP-PCA denoising strategies 

(denoising the entire matrix versus using a sliding window), in terms of apparent SNR, rank selection, 

noise correlation within and across b-values and quantification of metabolite concentrations and fitted 

diffusion coefficients. MP-PCA denoising yielded an increased apparent SNR, a more accurate B0 

drift correction between shots, and similar estimates of metabolite concentrations and diffusivities 

compared to the raw data. No spectral residuals on individual shots were observed but correlations in 

the noise level across shells were introduced, an effect which was mitigated using a sliding window, 

but which should be carefully considered.  
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1. Introduction 
 
Magnetic resonance spectroscopy (MRS) is a powerful technique that provides unique information 

about brain metabolite concentrations in vivo. Combined with diffusion weighting (DW), information 

on metabolites’ diffusivities which are expected to reflect properties of the tissue microstructure
 
can 

be extracted
1–8

. These properties include cell geometry, characteristic sizes of compartments, cytosol 

viscosity and molecular crowding. Unlike water, metabolites are naturally compartmentalized and 

probe the intracellular space almost exclusively. Some metabolites are even considered to be largely 

specific to glial cells, such as glutamine (Gln) or myo-inositol (Ins), some to neurons, such as N-

acetyl aspartate (NAA) or glutamate (Glu)
4,5,9–11

, while others are found in all cell types, such as 

creatine in all its forms
12

 (total creatine: tCr). This intrinsic compartment specificity makes DW-MRS 

an extremely powerful tool to probe brain microstructure, in combination or in contrast to water 

diffusion MRI.
 

However, MRS is an inherently low signal-to-noise (SNR) technique due to the much lower 

concentration of metabolites relative to water, resulting in the need for substantial spectral averaging. 

For DW-MRS, even more extended averaging is needed to compensate for diffusion attenuation, and 

acquisition times become prohibitively long to parse multiple diffusion weightings (b-values), 

directions or diffusion times. DW-MRS data is typically acquired in single-voxel fashion. When fine 

spatial localization is required to study small structures, low SNR cannot be compensated by large 

voxel volumes. In this case, post-processing methods aiming to minimize the noise variance and its 

impact on the quantification of MRS signals are needed. 

 

Several denoising schemes have been proposed, but remarkably none of them has been fully adopted 

by the MRS community
13–25

. Some of these denoising techniques, typically based on singular value 

decomposition (SVD) or another sparse representation such as Fourier space or wavelets
23,24

, have 

been implemented for spectroscopic imaging data (MRSI)
16–21

, and mainly in clinical applications. 

These methods rely on linear predictability, partial separability of spatial-temporal modes, or both, of 

such data
17–20

. In addition, constraints on the spatial distribution of the signal with specific 

regularization, such as total generalized variation (TGV), has shown to further enhance the SNR in 

MRSI reconstruction
20

. TGV regularization aims to denoise by enforcing smooth spatial variations, 

however with known limitations in terms of detecting focal pathology
22

. 

The main challenge of sparse representations such as SVD resides in the determination of the 

appropriate thresholds that separate the noise from the signal. In MRS, this arbitrary threshold can 

lead to possible elimination of spectral features that are on the same order of magnitude as noise 

components. Other approaches based on smoothing using splines, sliding windows or Gaussian 

windows lead to a deterioration of spectral/temporal resolution as well as artefactual auto-
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correlation
24

. Finally, deep learning approaches have been very recently suggested
26,27

, but likely 

require more investigation to become robust. 

One solution to choosing a threshold in a sparse domain has been proposed recently, with the initial 

aim to denoise diffusion MRI data
28

. It is based on the Marchenko-Pastur principal component 

analysis (MP-PCA) technique, which exploits the fact that noise eigenvalues follow the asymptotic 

universal Marchenko-Pastur distribution, a result of the random matrix theory for noisy covariance 

matrices. This method thus provides a data-driven (more specifically, noise-driven) approach to 

distinguish noise from the signal components in SVD, since the cut-off is obtained by iteratively 

fitting the MP distribution to the tail of eigenvalues, and has shown its superiority to TGV for 

instance
28

. In practice, MP-PCA is suitable for the denoising of data with a high level of redundancy 

and a constant noise level across them. In the case of a diffusion MRI dataset for example, this could 

correspond to images acquired with different diffusion-weightings and directions. Since its initial 

development for diffusion MRI, its applications have been extended to functional MRI
29,30

, T2 

relaxometry
31

, preclinical 
1
H-MRSI

21
 and 

31
P-MRSI

32
. More recently, the NORDIC

33
 method has been 

introduced and addresses issues that are largely related to clinical diffusion MRI data, namely the use 

of multi-channel coils for image acquisition acceleration, whose recombination results in a spatially 

varying and non-Gaussian noise distribution (cf. g-factor maps), and the fact that most data are 

retrieved and processed in magnitude space, further skewing the noise distribution. In the field of 

MRS, these two issues are in general not problematic since the multiple coil data featuring Gaussian 

noise are linearly combined maintaining the Gaussian characteristics, and since complex-valued data 

is used. In the broader context of matrix denoising, soft thresholding and optimal shrinkage of 

singular values
34–36

 have shown to outperform hard thresholding like MP, especially in the case of low 

SNR input matrices.   

The aim of the present study was to implement and test the potential of MP-PCA for denoising 
1
H 

DW-MRS. The performance of MP-PCA was tested using Monte Carlo simulations and in vivo 

experiments in rat brain at 9.4 T and in human brain at 3 T. 

2. Methods 
 
The following terminology will be used throughout the manuscript. The SNR referred to as time-

domain SNR in simulations is defined as the magnitude (absolute value) of the first complex point of 

the FID over one standard deviation (SD) of noise, taken on the real part of the FID tail (time points 

1500 to 2048)
37

. The SNR referred to as spectral SNR or SNR corresponds to the SNR of the NAA 

singlet at 2.01 ppm, defined as the NAA peak height taken on magnitude spectra to avoid phasing and 

linewidth issues, over one standard deviation of noise taken in a noise-only region of the real part of 

the spectra (from 8.2 to 10.9 ppm for simulations and rodent data, and 13.0 to 20.1 for human data). 
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The term apparent SNR will be used to refer to the SNR after denoising. The term shot will be used to 

refer to every complex FID in each shell, i.e. of a row of matrix  , according to a recent consensus on 

terminology in MRS
37

. The terms shell will be used to designate a set of 100 (simulations), 128 (in 

vivo – rodent), and 32 (in vivo – human) shots for a given b-value. The term estimated spectral fit 

uncertainty (ESFU)
38

 will be used to refer to the estimated lower error bounds for the concentration 

estimates determined by LCModel, for which the term Cramer Rao Lower Bounds (CRLB) may not 

apply after denoising.  

 

2.1. Theory 
 

Let   be an initial noisy matrix in the temporal domain,        ( ), where   is the number of 

shots, and   is the number of time points in the FID signal:  

    ̃    

where  ̃       ( ) is the signal information and        ( ) the Gaussian, uncorrelated 

noise. For this section, we will assume that      and       (asymptotic condition of the 

MP law). The real and imaginary parts of   are concatenated on the first dimension ( ), and the 

resulting matrix         ( ) is centered, such that:  

       
  ̅ 

where         ( ),  ̅       ( ) is the column-wise mean of   and    
  is a column vector 

of    ones. Matrix   is then decomposed using the singular value decomposition:  

       

where          ( ),         ( ) and        ( ).  Columns of   are singular 

vectors of the first dimension (shots), columns of   are singular vectors of the second dimension 

(time points) and   contains the singular values of  , arranged in descending order, which are also 

the square root of the eigenvalues of     . Since        
  ̅, 

 

  
    is the covariance matrix of 

   The Marchenko-Pastur distribution is then fitted to the smallest non-zeros eigenvalues   of 
 

  
   :  

 ( |  (    )  ⁄ )  {
√(    )(    )

     (    )  ⁄
           

                                       

 

 

 

where   is the noise level estimated from the input matrix  ,   is the number of signal-carrying 

eigenvalues,    the smallest noise-related eigenvalue and    the largest.   corresponds to the 

number of values   such that     , with     
 (  √

    

 
)

 

. The matrix   can then be 

approximated by:  
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 ̂      
      

  ̅ 
 

where   has been truncated at rank  . 

 

2.2. Monte Carlo simulations 
 
Synthetic 

1
H MR spectra were created (Matlab, MathWorks, Natick, MA, USA) to mimic 

experimental conditions in the rat brain (see Section 2.3 below). 19 metabolites, listed with their 

corresponding concentrations in Table 1, were simulated using NMRSCOPE-B from jMRUI
39

, with 

published J-coupling and chemical shifts constants
40,41

 and the SPECIAL sequence (9.4T, echo time 

(TE)=2.8ms). The lineshapes of the individual signals were constructed using a sum of 0.2 Hz 

Lorentzian and 1.8 Hz Gaussian apodizations, and a full macromolecule spectrum acquired in vivo 

(MM, 1.3mM) was included
42

.                           

The free induction decays (FID) were generated with 2048 points. Diffusion weighting was simulated 

using Callaghan’s model of diffusion in randomly oriented sticks
43

, with ten b-values: 0.4, 1.5, 3.4, 6, 

7.6, 13.4, 15.7, 20.8, 25.2, 33.3 ms/μm
2
. Intra-stick free diffusion coefficients ranging from 0.265 to 

0.67 µm
2
/ms (Table 1) were attributed to the 19 metabolites and 0.005 µm

2
/ms to the MM. 

Metabolite free diffusivities were set to be five times the apparent diffusion coefficient (ADC) of the 

ensemble of randomly-oriented cellular processes in the rodent brain from literature
5
. These values 

were retrospectively found to be in the same range as the intra-stick free diffusion coefficients 

estimated in vivo in the present work. A residual water signal was added to each spectrum (16 Hz 

Lorentzian line width, mono-exponential decay with apparent diffusivity 0.2 µm
2
/ms, random phase). 

An additional 5 Hz Lorentzian line broadening was finally applied to all spectra. To simulate the full 

dataset for MP-PCA denoising (matrix  ), Gaussian noise was added to the real and imaginary parts 

of the FID, with a single shot time-domain SNR of 13. One hundred noisy FIDs were generated for 

each b-value (constituting a “shell”) and B0 drifts (random -15/+15Hz drift) and phase distortions 

(random 0/30° phase) were added on individual shots, mimicking high SNR experimental in vivo 

rodent DW-MRS data. The initial matrix   thus consisted of 1000 rows (10 b-values, 100 shots per b-

value) and 2048 columns (FID time points).  

Finally, the matrix   was generated 100 times with different noise realizations, water residual signal, 

B0 drifts and phase distortions, and the effect of denoising on simulations was assessed in terms of 

Table 1 - Simulated metabolites with their respective concentrations and diffusion coefficients used in the MC simulations. 
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variations across the MC iterations. 

2.3. In vivo rodent experiments 
 

All experiments were approved by The Committee on Animal Experimentation for the Canton de 

Vaud, Switzerland. 
1
H DW-MRS acquisitions were performed on a horizontal actively shielded 9.4 

Tesla system (Magnex Scientific, Oxford, UK) interfaced to a Varian Direct Drive console (Palo Alto, 

CA, USA) and equipped with 400 mT/m gradients using a home-built 14 mm diameter surface 
1
H-

quadrature transceiver. 

Four adult male Wistar rats were scanned under isoflurane anesthesia (~1.5%). During the DW-MRS 

experiments, animals were placed in an in-house-built cradle, and their head was fixed in a stereotaxic 

system (bite bar and a pair of ear bars). The respiration rate and body temperature were monitored 

using a small-animal monitor system (SA Instruments, New York, NY, USA). Body temperature was 

measured with a rectal thermosensor and maintained at 37.7 ± 0.2 °C by warm water circulation. 

First- and second-order shims were adjusted using FASTMAP
44

, achieving water linewidths of 18-21 

Hz in the volume of interest (VOI). DW-MRS data were acquired using a diffusion-weighted STEAM 

sequence
45–47

  (TE/mixing time (TM)/repetition time (TR)=15/112/4000 ms) in a VOI of 162 to 245μl 

depending on the animal. The water signal was suppressed by using the VAPOR module interleaved 

with outer volume suppression blocks
48

. Diffusion gradients were applied simultaneously along three 

orthogonal directions (δ=6 ms, Δ=120 ms). A total of eleven b-values with 128 shots were acquired: 

0.4, 1.5, 3.4, 6.0, 7.6, 9.3, 13.4, 15.7, 20.8, 25.2 and 33.3 ms/μm
2
.  

 

2.4. In vivo human experiments 

Human 
1
H DW-MRS acquisitions were performed on a 3 Tesla Magnetom Skyra Connectom-A 

system (Siemens Healthineers Erlangen, Germany), equipped with 300 mT/m gradients and using a 

32-channel head coil.  

Four healthy volunteers (3 males/1 female) out of the twelve in the cohort of ref  
49

, featuring the 

highest water SNR at b=1.4 ms/μm
2 

and the least drop for the 0.9 ppm MM signal, were selected to 

test the denoising procedure. All experiments had been approved by the competent ethical review 

board. A voxel (23 2 cm
3
) was positioned in the occipito-parietal cortex and DW-MRS acquisitions 

were performed with an ECG-triggered diffusion-weighted STEAM sequence 

(TE/TM/TRmin=30/65/1800 ms). Eleven b-values were acquired (0.37, 1.4, 2.7, 5.4, 8.2, 10.9, 15.5, 

18.4, 21.6, 23.3 and 25.1 ms/μm
2
) using metabolite cycling, where some of the b-values had multiple 

sets of thirty-two shots. Thirty-two metabolite and thirty-two water spectra (4000 Hz spectral width, 

4096 complex points) were constructed from 64 shots per b-value by difference and summation, 

respectively.  
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2.5. MP-PCA denoising 
 
The raw data individual spectra in matrix   were first eddy-current- and phase-corrected 

(maximization of the area of the metabolite region for each spectrum). The details of the processing 

steps specific to the human data are presented in supplementary materials. The resulting complex-

valued FID were split into real and imaginary parts and organized into a matrix   where the second 

dimension contained the time domain sampling and the first dimension a concatenation of all shots/b-

values/real and imaginary parts. This was done in order to balance the number of rows with the 

number of columns and to increase the smallest dimension of  . The matrix   was centered column-

wise and assigned to matrix  . A summary of the denoising strategies and of the study design is 

presented in Figure 1. 

MP-PCA denoising performances were first tested on shots with no diffusion weighting (“single-

shell”) and different noise generations on the MC simulations, and compared to summation of the 

individual shots. A matrix   of size 200x2048 was made of 100 single shots of the same shell (here: 

b=0), for multiple noise levels (SNR 13 – Figure 2 and SNR 1, 2 and 5 – Error! Reference source not 

found.), as well as without or with phase/frequency drifts in the original spectrum (Figure 2 and 

Error! Reference source not found., respectively).  

For denoising heterogeneous matrices   composed of all b-values (“multi-shells”), two strategies 

were compared, both on MC simulations and on in vivo data: 

1) Multi-shell full matrix denoising - strategy 1: MP-PCA denoising was performed on the full 

matrix. For MC simulations, the matrix   to denoise was of size 2000x2048: 10 shells with 100 

shots (i.e. noise realisations), and recreated 100 times. For in vivo rodent data, the matrix   to 

denoise was of size 2816x2048: 11 shells with 128 shots. For in vivo human data, the matrix   to 

denoise was of size 832 to 960x3481: 13 to 15 shells with 32 shots. 
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2) Multi-shell sliding window (sw) denoising - strategy 2: MP-PCA denoising was performed on a 

subset of the full matrix, using a sliding window of sub-blocks of three shells among all shells, 

and the denoised spectra output is selected when the shell is the middle of the 3-shell sub-block 

(similarly to the dMRI procedure
28

). The first and last shells were selected together with the 

second shell and one before last from the first and last sub-blocks, respectively (Figure 1).  

 

 

The same denoising procedure as strategy 2 but using only half of available shots (strategy 3) was 

tested on simulations and on in vivo rodent data, with 50 and 64 shots per b-value, respectively. This 

strategy aimed at assessing whether a reduction in scan time for the same data quality could be 

achieved, comparing datasets with fewer and denoised shots to the original complete sets.  

 

2.5. Quantification and modelling 
 
Raw and denoised simulations and rodent spectra were further corrected for B0 drifts (alignment of 

the tCr peak at 3.03 ppm or NAA at 2.01 ppm in each spectrum to its position in the first spectrum 

after 8 Hz apodization) and summed (for each b-value).  

Metabolite concentrations were quantified using LCModel. The metabolite basis set was composed of 

the noiseless simulated signals for the MC study, and of spectra simulated using the acquisition 

parameters for the in vivo acquisitions, all basis sets containing an in vivo-acquired macromolecule 

Figure 1. Study design and denoising strategies. A: Matrix organization for denoising a single-shell. This approach led to a 
similar result as summation of the shots on MC simulations (see Figure 2). B: Matrix organization for multi-shell full matrix 
(strategy 1) and sliding window denoising (strategy 2), the latter showing a reduced noise heterogeneity across shells. 
Strategy 3 (identical to strategy 2 with half the number of shots) is not displayed, showing similar results as strategy 3, yet 
with an increased number of outliers in the diffusion decay estimates. NS: number of shots, Nbval: number of b-values. 
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signal. In addition, for the in vivo rodent data, separately simulated MM and lipid components from 

LCModel were included to compensate for possible lipid contamination due to the large size of the 

voxel and its position close to the scalp
50,51

. The LCModel parameter controlling the baseline 

stiffness, DKNTMN, was set to 0.25. 

The randomly oriented stick model was fitted to the decay of each metabolite concentration as a 

function of b-value using a non-linear least squares algorithm in Matlab (fit function, Trust-Region 

method). The concentration decays as a function of b-value were fitted for each of the 100 MC 

iterations for simulations, and for each rat or volunteer individually for the in vivo data. The median 

estimated diffusion coefficients Dintra with SD (across the 100 MC iterations or across the 

animals/volunteers) were extracted. Percentage bias is reported for the concentrations and Dintra 

((Valuemethod-Valuenoiseless)/Valuenoiseless). 

 

Statistical tests were performed in RStudio (RStudio, PBC, Boston, MA). For simulations, Dintra 

estimates based on raw and denoised data (from each denoising strategy) were compared to the Dintra 

estimate from the noiseless data using a repeated-measures one-way ANOVA, and p-values were 

corrected for multiple comparisons with Dunnett’s post-hoc test. For in vivo data, Dintra estimates 

based on raw and denoised data (from each denoising strategy) were compared using a repeated-

measures one-way ANOVA, and pairwise p-values were corrected for multiple comparisons with 

Tukey’s post-hoc test. The following statistical significance values were used: * p<0.05, ** p<0.01, 

*** p<0.001, **** p<0.0001. 

 

Data availability statement: the MP-PCA Matlab code had been made publicly available by the 

authors of ref. 
28

, on the following repository: https://github.com/NYU-DiffusionMRI/mppca_denoise. 

The Matlab code used to generate the simulation data is available on the following repository: 

https://github.com/jessie-mosso/DWMRS-MPPCA and linked to the MRSHub (https://mrshub.org). 

Rodent experimental data used in the present manuscript are available upon reasonable request to the 

Corresponding Author. 

3. Results 
 

The performance of the denoising strategies was assessed in terms of apparent SNR, spectral residuals 

(denoised summed spectra minus raw summed spectra for a given shell), rank selection, noise 

correlation within and across shells, as well as precision and accuracy of metabolite quantification for 

each b-value and of resulting diffusivity estimation.  

 

3.1 Monte Carlo simulations 
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This section aims to study the effect of MP-PCA denoising on simulated DW-MRS data while having 

access to the ground truth.  

 

3.1.1 Single-shell: MP-PCA denoising versus summation       

 

 

Figure 2 shows the performance of MP-PCA denoising on a single-shell matrix, i.e. NS=100 shots of 

a spectrum with no diffusion weighting. Since summation (accumulation of spectra with different 

noise realisations but the same signal content) is a very efficient denoising strategy, it will be 

compared to MP-PCA. For a single-shell, denoising performs similarly to averaging on the summed 

spectra (NS=100, Figure 2A, top) and a rank     is selected by the MP fit. Single shots are also 

strongly denoised (NS=1, Figure 2A, bottom) but this representation should be handled with care 

since single shots are reconstructed from the entire denoised matrix and thus are not an equivalent 

representation of single shot raw data. The spectral residuals (100 shots x 2048 real spectral points) 

follow a Gaussian distribution and no structure in the metabolites’ region was observed (Figure 2B). 

When phase and frequency drifts are applied across shots on the simulated spectrum, and at 

sufficiently high SNR, a rank     is retained by the MP fit (Supplementary Error! Reference 

source not found.B).  

 

Figure 2. MP-PCA denoising performance on NS=100 shots of the same shell (with different noise realizations and no 
phase/frequency drifts). A: Raw (blue) and denoised (orange) spectra, of the summed 100 shots (top) and of a single shot 
(bottom): SNRraw,100=101.9, SNRraw,1=11.0, appSNRdn,100=101.8, appSNRdn,1=51.2. B top: Residuals (Denoised minus raw 
matrix) for the real part of the spectra. B bottom: Quantile-quantile (Q-Q) plot of the spectral residuals. Denoising a single-
shell performs similarly to the summation of single shots (rank 𝑃    selected by the MP fit) and yields a Gaussian 
distribution of residuals. 
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3.1.2 Multi-shell - strategy 1: MP-PCA denoising on the entire diffusion-weighted 
matrix 
 
Figure 3A shows simulated diffusion-weighted spectra at 10 b-values. 11 principal components were 

retained by the MP fit (Figure 3B and Error! Reference source not found.C for their 

representation). The raw and denoised spectra for the two extreme b-values are shown in Figure 3C, 

for a single shot (bottom) and for the sum of the 100 shots (top). Denoising yields an improved 

spectral apparent SNR, on individual shots and on their sum. The central panel of Figure 4A shows 

that the noise level is non-uniform across shells after denoising with strategy 1, the shell containing 

Figure 3. MP-PCA denoising performances on the full diffusion-weighted matrix 𝑋 made up of 10 shells, with 100 shots (NS) 
each (10x100x2 x 2048 FID points – ‘x2’ is for the concatenation of real and imaginary parts of the FID) – strategy 1. A: 
Simulated diffusion-weighted spectra at each b-value. B: Example MP fit on matrix 𝑋 for strategy 1 for one MC iteration. C: 
Example raw and denoised spectra, at low and high b-value, of the sum of the 100 shots (top) and of a single shot 
(bottom). SNRraw,100,bmin=90.4, SNRraw,1,bmin=11.9, SNRraw,100,bmax=24.0, SNRraw,1,bmax=4.3, appSNRdn,100,bmin=229.3, 
appSNRdn,1,bmin=41.8, appSNRdn,100,bmax=155.4, appSNRdn,1,bmax=27.7. Denoising improves apparent spectral SNR. 
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the higher b-value experiencing a stronger denoising effect, as evidenced by the ratio of spectral noise 

variances at bmin and bmax. Although the noise level is shell-dependent, its distribution in a noise-only 

spectral region within one shell remained Gaussian after denoising. 

 

3.1.3 Multi-shell - strategy 2 versus strategy 1 
 
An alternative strategy of denoising using a sliding window of 3 shells, denoted as a “sub-block”, is 

proposed (strategy 2), and aims at reducing the non-uniform noise level across shells introduced by 

strategy 1. This resulted in minimal SNR heterogeneity within each sub-block on which the denoising 

was applied and is similar to what is used in dMRI
26

 where the columns of matrix   are composed of 

a sliding spatial kernel of voxels. However, here we strive to reduce heterogeneity in the diffusion 

dimension (row-wise). 

Although strategy 2 shows smaller noise reductions versus raw compared to strategy 1 (at bmin, 2.3 

apparent SNR increase for strategy 2 versus 2.7 for strategy 1, at bmax, 3.6 apparent SNR increase for 

strategy 2 versus 6.8 for strategy 1, Figure 4C), it reduced the non-uniform noise levels across shells 

(Figure 4A). On the summed spectra:  
     

     
      for strategy 1 and 

     

     
      for strategy 2, 

whereas this ratio before denoising was close to 1 since single shots were created with the same noise 

level in each shell. The excessive noise reduction at high b-values (and potential wiping of signal) is 

also manifest, yet reduced with strategy 2. Noise levels on single shots display the same overall 

pattern as on the sum (Figure 4A, bottom). These observations suggest that some correlation is 

introduced in the noise, also shown in Figure 5.  

The decreasing number of signal-carrying components retained by the MP fit as a function of sub-

block number (Figure 4B) highlights that, at low SNR (i.e. the noisiest sub-matrix, containing the 

highest b-values), less meaningful information can be separated from the noise (also shown in Error! 

Reference source not found.). In strategy 2, the apparent spectral SNR (Figure 4C) increases by a 

factor of 2.3 at bmin and 3.7 at bmax and follows a similar trend as in the raw data. However, it reaches a 

maximum for central b-values in strategy 1, possibly resulting from a “decay” of the apparent noise 

levels, as detailed in Error! Reference source not found.. The term SNR after denoising should be 

used carefully in the light of the noise correlations described below (Figure 5). 

The summed residuals across shots (Figure 4D) show hardly any structure in the metabolites’ region. 

The weak residuals around the NAA and Cr peaks may be caused by differences between the phase 

and frequency drift correction factors estimated from the raw or denoised data, or a change in 

linewidth after denoising, leading to spectral misalignment before summation
52

.  
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Figure 4. Comparison of MP-PCA denoising performance on the full matrix (strategy 1) or using a sliding window of 3 shells 
over the diffusion-weighted matrices (strategy 2). A: Histograms of spectral noise between 8.2 and 10.9 ppm (a region with 
no signals), for a single shot (bottom) and for the sum of the 100 shots (top), before and after denoising using strategies 1 
and 2, for the lowest (red) and highest (green) b-values. The mean ratio across MC iterations of the noise level at bmin over 
the one at bmax is displayed in each case. Standard deviations across MC associated to the mean ratios displayed: for 
𝑁𝑆     , 0.04 (raw), 0.24 (dn full), 0.15 (dn sw), and for 𝑁𝑆   , 0.05 (raw), 0.33 (dn full), 0.40 (dn sw). B: Number of 
principal components retained as signals (i.e. the rank P) by the MP fit, in strategy 1 (orange) and for each sub-block in 
strategy 2 (yellow), as mean and SD across MC iterations. C: Spectral (apparent) SNR on the summed spectra for each shell 
of raw and denoised data (strategy 1 & 2), as mean and SD across MC iterations. D: Spectral residuals on the summed 
spectra for the two denoising strategies at low (top) and high (bottom) b-values, shifted downwards for display. Both 
denoising strategies gave heterogeneous noise levels and increases in apparent SNR with no structure in spectral residuals. 
Strategy 2 mitigates some effects of strategy 1, namely the non-uniform SNR gain and variance across shells. 
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We further analysed the correlations of the NAA peak amplitude and of the noise between single 

shots and the sum of NS=100 introduced by MP-PCA (Figure 5). The NAA peak amplitude at bmin 

(top left) scales with the number of shots (NS=100), as expected, both for raw and denoised data. At 

lower SNR (bmax, bottom left), the NAA peak amplitude on the raw data does not exactly scale with 

NS because of possible artefacts in the summation, such as improper frequency/phase drifts 

correction, leading to partially incoherent summation. For the denoised data, the coherent summation 

property seems to be restored (amplitude ratio close to 100), which can be due to an improved 

frequency/phase drifts correction after denoising (Figure 6) and/or to the creation of more self-similar 

spectra after rank truncation. The noise level in the raw data displays a ratio that scales with √  , as 

expected, both for bmax and bmin. For the denoised data, some correlation in the noise across shots is 

introduced by both denoising strategies, leading to a noise ratio scaling with a factor greater than 

√  .  

 

 

Figure 5. Increased correlation in NAA peak amplitude and noise level after denoising, for low and high diffusion weighting, 
between one shot and the sum of NS shots within a shell. Mean and SD across MC are displayed. The region of noise 
correlation is shaded in grey. 

                  



 

16 
 

 

3.1.4. Estimation of metabolite concentrations as a function of b-value 
 

In our post-processing pipeline, denoising was performed before B0 drift correction. This allowed for 

a more accurate realignment of spectra within each b-value, most noticeably at bmax (Figure 6): the 

correction factors derived from the denoised data were closer to ground truth (RMSE: 2.7Hz) 

compared to the ones derived from the raw data (RMSE: 6.0Hz), although the latter yielded a higher 

amplitude of the summed signal. Metabolite concentrations at bmin and bmax for all denoising 

strategies, together with  

Figure 6. Spectral realignment (B0 drift correction) after denoising. The B0 drift correction was performed by aligning the 
frequency-domain position of the tCr peak to its position on the first spectrum, using a Lorentzian apodization of 8 Hz, on 
raw and denoised data, for 1 MC iteration (left panels, before/after, for bmin and bmax). The central panel shows the 
summed raw spectra with corrections derived either from the raw or the MP-PCA data, as compared to the summed raw 
spectra where the negative input B0 drifts have been applied. Denoising yields no benefit of on B0 drift correction in the 
case of sufficient SNR (e.g. at bmin). At low SNR (e.g. bmax), the summed raw spectra with corrections derived from MP-PCA 
is closely matching to the one reconstructed from the input B0 drift values, yet with a smaller amplitude than the summed 
spectra with corrections from the raw data. Denoising before B0 drift correction led to a better accuracy of the B0 drift 
estimates with respect to the input drifts (right panel) at bmax, and a worse accuracy at bmin. 

𝑅𝑀𝑆𝐸𝑚𝑒𝑡ℎ𝑜𝑑   √
 

𝑁𝑆
 (𝐵0𝑐𝑜𝑟𝑟 𝑚𝑒𝑡ℎ𝑜𝑑  𝐵0 𝑖𝑛𝑝𝑢𝑡)

 𝑁𝑆
𝑖= . 
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relative ESFU, are presented in Error! Reference source not found.. They highlighted an overall 

stronger bias introduced by the denoising strategies with respect to the one of the raw data for low-

concentrated metabolites, but a weaker one for high-concentrated metabolites, even with strategy 3. 

Fit precision (ESFU) is strongly improved after denoising for all metabolites. When comparing 

strategies 1 and 2 on concentration decay curves, their impact was metabolite-dependent (Figure 7A-

Figure 7. A: Representative concentration decay curves for three metabolites: Lac, Gln, NAA, normalized to the 
concentration at the lowest b-value. Overlaid curves are: mean and SD of concentrations across MC iterations (blue), 
Callaghan model fit using the mean Dintra estimated across MC iterations (black) and Callaghan model fit of the quantified 
noiseless concentration decay (red). B: Zoom-in of panel A for b-values between 20 and 33 ms/µm

2
. C: Estimated 

metabolite Dintra from Callaghan’s model using raw or denoised data, for various denoising strategies. The values labelled 
as “truth” represent the diffusion coefficients given as input in the simulations, and the values labelled as “noiseless” 
represent the LCModel concentrations fit from the noiseless data. D: % bias on Dintra and number of outliers between all 
methods and the noiseless fit ((Dmethod-Dnoiseless)/Dnoiseless). The Dintra that differ from the noiseless values by more than 
 10% bias are highlighted in orange. The cases where denoising reduces or equalizes the number of outliers found with 
their raw data counterparts (raw or raw ½ av) are highlighted in green. Some metabolite-dependant bias on the 
concentrations and on Dintra estimates is either introduced or reduced compared to the raw data after denoising. 
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B). In the case of Lac, strategy 1 introduced a systematic bias (overestimated concentration) with 

respect to the noiseless fit, an effect largely mitigated using strategy 2. For Gln, however, both 

strategies (1 and 2) improved the decay curve accuracy, while no benefit was brought by any of the 

strategies for NAA.  

In terms of Dintra estimation (Figure 7C-D), although p-values highlighted a systematic bias (versus 

noiseless data, Error! Reference source not found.), strategy 2 led to an improvement in accuracy 

for some metabolites compared to the raw data and strategy 1 (Ala, tCho, Ins, Tau), a deterioration for 

some low concentrated metabolites (GABA, GSH, Lac) and similar accuracy for the remaining ones. 

The number of outliers was slightly reduced by all the denoising strategies.  

Unfortunately, strategy 3, using half the data (i.e. NS = 50) to assess if the total duration of the scan 

could be reduced without a significant compromise in accuracy and precision of metabolite 

concentration and Dintra, yielded worse or at best similar accuracy and precision for Dintra as the full 

raw data (NS = 100) but also as half the raw data (NS = 50) depending on the metabolite. 

 

3.2 In vivo rodent data 
 
The same analyses were performed on in vivo data from four animals and MP-PCA denoising effects 

were compared to the ones observed in simulations. 

 

Figure 8. In vivo rodent data - spectral quality and apparent SNR gain, before versus after denoising. A: Representative 
summed spectra for one animal, at low (dark colors) and high (light colors) b-values, based on raw and denoised data, with 
strategies 1 to 3. NAA singlet SNR is displayed for each case. B: Relative apparent SNR gain from the denoising strategies 1 
to 3, expressed in % increase compared to the raw data SNR, with mean and SD across animals. Orange: strategy 1, yellow: 
strategy 2, purple: strategy 3. Increased apparent spectral SNR was observed in vivo. 
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3.2.1 Apparent SNR 
 
The summed spectra for the two extreme b-values before and after denoising using all three strategies 

are shown in Figure 8A. Denoising improved the apparent SNR at all b-values, yet to a smaller extent 

compared to simulations (Figure 8B): on average, the SNR gain is     at bmin and      at bmax for 

strategy 1 and     at bmin and      at bmax for strategy 2. The apparent SNR gain follows a similar 

b-value dependence to the one in simulations, with a maximum for a central b-value for strategy 1 and 

a constant gain for strategy 2. 

 

3.2.2 Noise properties 
 
For strategies 1 and 2, the noise level on in vivo data after denoising was non-uniform across shells, 

both on the sum and on the single shots (Figure 9A), and strategy 2 attenuated this effect: on the 

summed spectra:  
     

     
      for strategy 1 and 

     

     
      for strategy 2. A rank      for 

strategy 1 and   [    ] for strategy 2 was selected by the MP fit (Figure 9B), which was consistent 

among rats (strategy 1: P=11.5 0.58, strategy 2: Pbmin=11.25 0.5 and Pbmax=3.5 1) and similar to the 

ranks found in simulations (Figure 3B). Similarly to the effect observed in simulations, the noise 

level distribution in a noise-only spectral region within one shell remained Gaussian after denoising. 

The spectral residuals for both strategies showed no distinct structure around metabolite frequencies 

(Figure 9C), suggestive of a homogeneous denoising in the spectra.  

 

3.2.3 Estimation of metabolite concentrations as a function of b-value 
 
All denoising strategies yielded similar concentrations and reduced ESFU compared to the raw data 

for the 6 quantified metabolites at bmin and bmax (Error! Reference source not found.). Similar trends 

to those identified in simulations are observed between estimates of Dintra from raw and denoised data 

(Figure 10). In the multiple comparison post-hoc test, only tCr Dintra showed a significant difference 

between strategy 1 and 3. For the high-concentrated metabolites (Glu, NAA and tCr), strategy 2 

reduced the variability of Dintra estimates across animals, as compared to that from the raw data. 
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Figure 9. In vivo rodent data - MP-PCA denoising performance using strategy 1 and strategy 2. A: Histograms of spectral 
noise for one example animal in the 8.2-10.9 ppm noise-only region, for a single shot (bottom) and for the sum of the 128 
shots (top), before and after each denoising strategy, for the smallest (red) and highest (green) b-values. The ratio of the 
experimental noise level at bmin over bmax is displayed in each case, averaged over the four animals. Standard deviations 
across animals associated to the mean ratios displayed: for 𝑁𝑆     , 0.04 (raw), 0.28 (dn full), 0.25 (dn sw), and for 
𝑁𝑆   , 0.06 (raw), 0.44 (dn full), 0.65 (dn sw). B: MP fit for both strategies. C: Residuals between the denoised and raw 
spectra at the two extreme b-values, after summation of the 128 shots available, shifted downwards for display. The same 
trends as the ones for simulations can be observed: heterogeneous noise level across shells, increase in apparent SNR with 
no structure in spectral residuals after denoising, with strategy 2 mitigating some effects of strategy 1. 
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Figure 10. In vivo rodent data - concentration decays after quantification with LCModel, and resulting Dintra fit, for raw 
and denoised data with the three strategies. A: Representative decays across b-values for three metabolites: NAA, 
Glu, Gln, for each animal (circles), with concentrations normalized to the lowest b-value, and individual fits of 
Callaghan’s model (solid line). B: Estimated Dintra from Callaghan’s model for a few metabolites, for all strategies. Raw 
and denoised data provide similar estimates for most metabolites. 
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3.3 In vivo human data 

The Connectom gradients allowed to reach strong diffusion weighting, making the human DW-MRS 

b-value range and the data quality comparable to the rodent ones. Figure 11A shows representative 

spectra at increasing b-values for one volunteer’s dataset. The NAA spectral SNR decays with 

increasing b-values for the raw data, as expected (Figure 11B). In the case of strategy 1, the apparent 

spectral SNR is higher after denoising at all b-values and reaches a maximum for b 3 ms/μm
2
, an 

effect which is mitigated by strategy 2. There is hardly any structure in the spectral residuals for either 

strategy (Figure 11C). As observed in the simulations and in the rodent data, the denoising effect is 

stronger at bmax compared to bmin. The concentrations (Error! Reference source not found.) and the 

Dintra estimates (Figure 11E) show no significant difference between the raw and denoised data, 

confirming the observation made in rodent DW-MRS data.  The fit error (root mean square error 

between the fit and the experimental decay) is reduced after denoising for tNAA, tCho and tCr, with 

strategies 1 and 2. 
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4. Discussion  
 
The aim of this work was to evaluate the performance of MP-PCA denoising on synthetic and 

experimental datasets of single-voxel diffusion-weighted 
1
H-MRS comprising spectra at multiple 

diffusion-weightings (b-values), as compared to conventional averaging across each b-value. We 

investigated three denoising strategies, comparing their impact on the data structure (apparent SNR 

increase, spectral residuals, noise correlation), and evaluating their potential for improved diffusion 

coefficient estimates. Similar characteristics of the denoised spectra were observed between 

simulations and in vivo data (similar SNR on the raw data between simulations, rodent and human 

data, noise ratios between first and last shells, apparent SNR gain and evolution as a function of b-

value, spectral residuals) thus ensuring that conclusions drawn from simulations with respect to the 

ground truth are relevant for the in vivo datasets.  

 

4.1 Increased apparent spectral SNR  
 
Simulations revealed that denoising all DW-spectra together significantly improved apparent spectral 

SNR for each b-value compared to averaging (Figure 3 and Figure 4 for simulations and Figure 8 for 

in vivo rodent data and Figure 11 for human data). Remarkably, denoising also provided the 

following two valuable features vs averaging.  

First, the correction for B0 drifts between individual shots of high b-value shells was more reliable 

after denoising especially at low SNR (Figure 6). Whether a stronger apodization or spectral 

registration at high b-values could mimic the benefit of denoising prior to B0 drift correction should 

be further tested with multiple datasets. Interestingly, the correction for phase drifts did not improve 

after denoising. From this perspective, denoising could be used to determine the optimal frequency 

drift corrections on individual spectra, and apply it to raw spectra, as previously described in a simpler 

spectral pattern
53

.  

Second, the individual spectra after denoising displayed dramatically higher apparent SNR than raw 

spectra, even at the highest b-value. This single-shot SNR increase, however, results from a 

Figure 11. In vivo human data - effects of denoising in terms of apparent spectral SNR, residuals, fit and Dintra 
estimation.  A: Representative diffusion-weighted raw spectra for one volunteer (LB=2Hz). B: Evolution of (apparent) 
spectral SNR as a function of the b-value, mean and standard deviation across the 4 volunteers. C: Overlap of raw, 
denoised full (strategy 1) and denoised with a sliding window (strategy 2) spectra and residues shifted downwards for 
display. D: Representative experimental decays across b-values for tCho with strategy 2 (circles), with concentrations 
normalized to the lowest b-value, and individual fits of Callaghan’s model for all volunteers (solid line). E: Estimated 
median and population variance for Dintra from the Callaghan’s model for a few metabolites for the raw data and the 
two denoising strategies. The fit error (root mean square error between the fit and the experimental decay) was 
reduced after denoising for tNAA, tCho and tCr, with both strategy 1 (median RMSE normalized to the one of raw, for 
tNAA: 0.91 [range 0.79-0.93], for tCho: 0.84 [range 0.64-0.99] and for tCr: 0.90 [range 0.88-1.01]) and strategy 2 (for 
tNAA: 0.90 [range 0.87-1.02], for tCho: 0.92 [range 0.73-1.09] and for tCr: 0.89 [range 0.78-0.95]). Denoising improves 
apparent SNR, yields no spectral residual and the same Dintra estimates for raw and denoised. 
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correlation with spectra from other shells. Whether this improvement on single shots may benefit 

other applications where averaging multiple spectra is detrimental, such as functional MRS, where it 

could provide a boost in temporal resolution, should be the subject of future work.  

Error! Reference source not found. also provides a perspective: a reduction in voxel size could be 

acceptable (reduced SNR by a factor 2 to 3 while preserving the number of shots yielding to a similar 

rank and fit RMSE). This could help improving spatial resolution with little penalty in quantification.  

 

4.2 Strategy 1 versus strategy 2 
 

For large heterogeneities across the dataset to be denoised, such as the extreme case of very low and 

very high b-values (in our case         and up to              ), more leakage from high to low-

SNR data is expected after denoising, which may bias high b-values concentration estimates.  

Two approaches can, however, mitigate this effect.  

The first approach is to denoise using a sliding-window along b-values, so that the spectra used in 

each denoising matrix are more similar to each other in terms of SNR. Here we tried a sliding window 

of three b-values (effectively leading to 3x2xNS rows, accounting for real and imaginary parts of the 

signal, where NS is the number of shots acquired for each b-value). While this approach resulted in a 

more limited noise reduction, especially at high b-values (apparent SNR increase compared to raw of 

575% for strategy 1 and 265% for strategy 2 at bmax in simulations, 241% for strategy 1 and 161% for 

strategy 2 at bmax in rodents and 166% for strategy 1 and 66% for strategy 2 at bmax in humans), it 

preserved noise variance better across b-values. The apparent SNR increase is higher in simulations 

compared to in vivo data, possibly owing to sources of non-Gaussian noise or distortions present in 

raw in vivo spectra and absent in simulations. Additionally, in human data, motion and spurious echoe 

artefacts at low b-values (even after cutting out the water region) are more prominent than in rodent 

data. These variations will not be captured in the noise principal components, thus increasing the 

selected rank and leading to a smaller denoising effect. The number of components retained (P) as 

signal-carrying decreased across blocks, both in simulations and in vivo (Figure 4C for simulations,  

Figure 8Error! Reference source not found.B for rodent data and from Pbmin=71.0 9.6 to 

Pbmax=7.3 2.1 for human data). One reason is that at high b-values, the variance created by the actual 

(low SNR) signal is close to the noise floor. An additional hypothesis is that sources of 

structural/physiological noise in the spectra (e.g. frequency drifts) are more discernible at low b-value 

than at high b-value and contribute to signal-carrying components. Possibly also, in the shells 

containing the highest b-values, the variations in the input data are more Gaussian-distributed than the 

ones observed in the shells containing the lowest b-values. This may further improve the separation of 

the signal from the artefacts and the noise. 

The second mitigating approach, which remains to be tested, could be to diversify the DW-MRS 

acquisition scheme not only into multiple b-values, but also directions and diffusion times instead of 
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plain repetitions. While working with only a small range of b-values (with similar SNR) – as for the 

sliding window above - the denoising matrix construct could nonetheless collect multiple directions 

and diffusion times. This would also enable to generate large matrices, improving the MP-PCA 

performance by fulfilling the asymptotic condition of the random matrix theory. 

 

4.3 Assessment of denoising quality 
 
One important aspect of MP-PCA denoising is the assumption of Gaussian, constant and uncorrelated 

entry noise. This assumption can be easily violated for MR imaging in clinical setups where multi-

channel receiver coils are recombined using sum-of-squares algorithms, following which the 

magnitude of the complex signal is retained. In contrast, our in vivo preclinical setup was ideal to 

fulfil this criterion, as the receiver coil was a quadrature circuit whose signals were recombined 

physically prior to amplification. Each channel (real and imaginary) of the complex signal retained 

Gaussian noise properties. Despite the apparent SNR increase and homogenous residuals within each 

shot, some noise correlation within (Figure 5) and across shells (“noise decay”, Figure 4A and 

Figure 9A) introduced by MP-PCA were identified in the current study. Consequently, noise 

estimation with a prior of uncorrelated Gaussian noise should be avoided in denoised spectra, as well 

as quality assessment based on noise amplitude, such as CRLB or the fit quality number (FQN)
37

. A 

bootstrapping approach for the estimation of metabolites concentration uncertainty has been recently 

proposed
19

, where multiple fits of the same spectrum corrupted by correlated noise estimated from the 

denoised data, are performed.   

 

4.4 Noise properties 
 

Spectral residuals: When comparing denoising to averaging on a single-shell without distortions 

(Figure 2), we observed no patterns in the spectral residuals and their distribution was Gaussian. For 

the multi-shell case, hardly any pattern was observed with the exception of small artefacts (spikes), 

likely due to a B0-drift correction mismatch between raw and denoised data (Figure 4D for 

simulations, Figure 9C). Remarkably, these artefacts are not present in human data (Figure 11C) 

where the B0-drift correction was performed before denoising.  

 

Uniform noise level across spectral points: In the entire study (single-shell, multi-shell, simulations 

and in vivo data), the noise in a noise-only region on single shots was Gaussian-distributed after 

denoising. When investigating the variance on each spectral point across MC iterations, the authors of 

ref. 
19

, who investigated different low-rank denoising methods for MRSI data, reported a non-uniform 

variance. Concretely, the standard deviation of the spectrum across MC iterations is higher in the 

metabolite region of the spectrum and smaller in the noise region. In the present study, in the case of 
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an input matrix with only one signal information (single-shell), which is not centered (see 2.1. Theory 

section), and when a rank     is manually selected, a non-uniform variance on spectral points is 

also observed. When the matrix is not centered, the only singular value selected will be an estimate of 

the mean of the input matrix, which might be biased. Remarkably, no non-uniform variance across 

spectral points was observed in our work when denoising a matrix comprised of multi-shell data, even 

without centering, with any of the strategies. The high number of principal components selected, 

       , probably mitigates this effect. 

 

Non-uniform noise level across b-values: In the present work, the noise level was b-value dependent 

after MP-PCA denoising (less noise in the high b-value spectra), an effect which was reduced by 

using a sliding-window across b-values. The evolution of the spectral SNR after denoising with 

strategy 1 is very similar between simulations, rodent data and human data, reaching a maximum 

value for intermediate b-values,              for the simulations (Figure 4C),           

   for in vivo rodent data (Figure 8B), and            for in vivo human data (Figure 11B). 

Error! Reference source not found. gives a tentative explanation of this effect. After MP-PCA, the 

time evolution of the spectral points in a noise-only region will be reconstructed from one of the first 

signal-carrying singular vectors in the shot dimension (   Error! Reference source not found.B), 

representing the overall decay of metabolites across b-values (strongest contribution to the variance). 

Consequently, the noise points will decay with increasing b-values. Due to the initial positive/negative 

distribution of these noise points (Error! Reference source not found.D-E), the noise level (standard 

deviation of the noise points across a spectral region) will decrease at intermediate b-values and 

increase again at higher b-values. Meanwhile, the NAA concentration decay is similar for raw and 

denoised data, which results in a maximum apparent SNR at intermediate b-values. With a similar 

argument in the other dimension, the first signal-carrying singular vectors in the spectral dimension 

will represent high SNR spectra (   in Error! Reference source not found.B). The closer the 

metabolite information to the noise level, the more likely it will be reconstructed from a linear 

combination of high SNR spectral information, and even more so when   is small. This observation 

challenges the use of MP-PCA denoising for extracting low-concentrated metabolites information 

from the noise floor using the entire range of b-values. The sliding window approach can however 

mitigate these effects, as shown throughout the present work. 

The number of principal components retained with strategy 1 was        for simulations and in 

vivo data, which was also the rank found when using optimal shrinkage of the principal components
34

. 

The high number of components was mostly due to the B0 drift distortions which were not corrected 

for prior to denoising, to the random water residual, and to possible sources of non-Gaussian noise in 

in vivo data. Structural noise, retained as signal component, which has a larger impact on low-b 
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spectra (in particular the water residual which is completely suppressed at high b-values) may 

therefore serendipitously limit the impact of noise reduction across shells.  

 

4.5 Estimation of diffusion coefficients 
 

From the perspective of metabolite quantification, MP-PCA denoising reduced the concentration 

ESFU (Error! Reference source not found. and Error! Reference source not found.). After 

denoising, the ESFU are not equivalent to the Cramer Rao Lower Bounds, representing the lower 

bounds of the fitting error, and which are based on a correct model and Gaussian uncorrelated noise, a 

prior which may be violated after denoising. Simulations showed that denoising based on the full 

range of b-values could also introduce bias for some metabolite concentration decays, such as lactate 

(Figure 7A-B), and an over-estimation of the concentrations at high b-values compared to the same 

concentrations on the raw data (Error! Reference source not found.). Interestingly, this over-

estimation is not systematic anymore when comparing denoised vs noiseless data: although beyond 

the scope of this work, this observation highlights some systematic underestimation of concentrations 

with LCModel for raw data with realistic SNR and Lorentzian broadening, as shown in a MRS fitting 

challenge
38

. The sliding-window approach (strategy 2) introduced less bias on metabolite 

concentrations at high b-values than the full-range denoising and the raw data for high-concentrated 

metabolites, in addition to better preserving the noise structure. The observations made on the 

accuracy and precision of metabolite quantification could not be directly transposed to the estimations 

of the free diffusion coefficients Dintra. Overall, the sliding window-denoising followed the raw data 

estimates for most metabolites: whether or not bias (>10%) existed in the raw data estimates, the same 

was observed for strategy 2. The only exceptions are GABA, GSH, Lac, for which more bias was 

introduced with strategy 2 and Glc, Ins, Tau for which less bias was introduced with strategy 2. 

However, this performance may depend on the underlying diffusivity values chosen in our 

simulations.  

In simulations, the variability across MC iterations was also reduced after denoising (when compared 

to the raw data with the same number of shots) for all metabolites (Figure 7C). Remarkably, in rodent 

data, MP-PCA denoising also contributed to reducing the variability in metabolite concentration 

decay curves across the different rats (which were all part of a homogeneous control group) for some 

metabolites (NAA, tCr, Glu on Figure 10). The estimated metabolite diffusivities were systematically 

lower with MP-PCA denoising vs raw data, though the ground truth is not known in this case. This 

could reflect the systematic under-estimation of the raw data concentrations found in simulations 

(mentioned above), yielding lower concentration values at the tail of the curve and thus a higher 

estimated diffusivity. For human data, the datasets were not fitted individually in ref 
49

, owing to their 

low SNR, but after doing a cohort average. The present study shows the feasibility of individual 

volunteer fitting, yet no difference in Dintra between the raw and denoised data with any strategy and 
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no reduction in the group variability across volunteers was observed, possibly owing to the high  . 

Though, the difference between the diffusion decay fitted with Callaghan’s model and the 

experimental data tended to be reduced after denoising. 

It should also be noted that Callaghan’s model of randomly-oriented sticks may not be well-suited to 

describe the diffusion of certain metabolites in vivo, e.g. if they are also extracellular and/or if the 

radius of the dendrites cannot be assumed to be effectively zero. For human data, in addition, there is 

substantial contribution of white matter where the randomly oriented stick model may not apply for 

the current case where only one arbitrary diffusion direction was acquired.  

Simultaneous spectral and diffusion modelling
49,54–56

– though possibly more challenging - may also 

offer increased fit stability, but may not readily be combined with MP-PCA denoising given the noise 

correlation between shells. A sliding-window approach along the spectral dimension instead of the 

diffusion-weighting dimension could also be considered. This would however lead to issues in 

LCModel quantification, and multiple resonances of the same metabolite (thus sharing common 

features) could be denoised separately, thereby decreasing the redundancy. Finally, the strong spectral 

overlap of some metabolite resonances also prevents the selection of a denoising window which could 

contain only one metabolite.     

 

Conclusion 
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Overall, we have shown that MP-PCA denoising improves apparent SNR and B0 drift correction and 

thus spectral averaging. For highly concentrated metabolites, which are the ones typically considered 

in DW-MRS studies, we have shown that denoising improves the within-group homogeneity of 

estimated diffusivities with little penalty to the diffusivity estimates – future work could focus on 

testing whether the between-group differences are thus reinforced by comparing a control to a patient 

group. However, for low-concentrated metabolites, we have also shown that denoising biases their 

estimated diffusivity due to signal leakage from the high-concentrated metabolites.  

In agreement with previous studies, we suggest that PCA-denoising for diffusion MRS should be used 

with caution and we recommend that all effects should be tested in simulations prior to drawing 

conclusions on in vivo data. Uniform variance along the spectrum was preserved due to the matrix 

centering and the selection of a high rank P by the MP fit (with uncorrected B0 drift prior to 

denoising), but noise correlation across rows were introduced as a consequence of the rank truncation, 

which should prevent the use of the term CRLB after denoising. We recommend the use of an across-

shell sliding window denoising approach (i.e. denoising more self-similar matrices) to mitigate the b-

value dependent noise level post-denoising.  

For DW-MRS acquisitions that include multiple diffusion times and diffusion directions, it remains to 

be established whether signal can be separated from noise more efficiently due to higher self-

similarity of different measures.   
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Table 1 
Metabolite;Concentration 
(mM);Dintra 
(µm2/ms);Metabolite;Concentra
tion (mM);Dintra (µm2/ms) 

    

Alanine (Ala) ;0 8;0 2695;Lactate (Lac);0 8;0 
6
5 

Ascorbate (Asc);1 5;0 

3115;N-
acetylaspartate 
(NAA);9;0 4 

 

Aspartate (Asp);2;0 67;scyllo-Inositol (Scyllo);0 1;0 
380

5 
 

Creatine (Cr);4;0 5;Taurine (Tau);4 5;0 55 
 

Phosphocreatine (PCr);4 5;0 5;Glucose (Glc);1 7;0 
5
7 

gamma-Aminobutyric acid 
(GABA);1 6;0 

378;N-
acetylaspartylglutam
ate (NAAG);0 3;0 4 

Glutamine (Gln);3;0 
384;Phosphatidylethanolam
ine (PE);0 5;0 318 

 

Glutamate (Glu);10;0 
5;Glycerophosphocholine 
(GPC);0 8;0 45 

 

Glutathione (GSH);1 5;0 
2655;Phosphocholine 
(PCho);0 2;0 

4
5 

myo-inositol (mIns);6 5;0 45;;; 
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