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Abstract: (1) Aim: To investigate the effect of synthetic bone substitutes, α-tricalcium phosphate
(α-TCP) or bi-layered biphasic calcium-phosphate (BBCP) combined with deproteinized bovine
bone mineral (DBBM), on bone formation. (2) Methods: Thirty critical size defects were randomly
treated with the following five different treatment modalities: (1) negative control (NC, empty),
(2) DBBM, (3) α-TCP + DBBM (1:1), (4) BBCP 3%HA/97%α-TCP + DBBM (1:1), and (5) BBCP
6%HA/94%α-TCP + DBBM (1:1). The samples, at four weeks post-surgery, were investigated
by micro-CT and histological analysis. (3) Results: A similar level of new bone formation was
demonstrated in the DBBM with α-TCP bone substitute groups when compared to the negative
control by histomorphometry. DBBM alone showed significantly lower new bone area than the
negative control (p = 0.0252). In contrast to DBBM, the micro-CT analysis revealed resorption of the α-
TCP + DBBM, BBCP 3%HA/97%α-TCP + DBBM and BBCP 6%HA/94%α-TCP + DBBM, as evidenced
by a decrease of material density (p = 0.0083, p = 0.0050 and p = 0.0191, respectively), without changing
their volume. (4) Conclusions: New bone formation was evident in all defects augmented with
biomaterials, proving the osteoconductive properties of the tested material combinations. There
was little impact of the HA coating degree on α-TCP in bone augmentation potential and material
resorption for four weeks when mixed with DBBM.

Keywords: in vivo; biomaterials; tricalcium phosphate; biphasic calcium phosphate; bone augmentation

1. Introduction

Bone augmentation techniques related to the placement of dental implants are common
clinical procedures performed in oral and maxillofacial surgery. Hence, over 50% of
dental implants are placed concomitantly with bone grafting procedures [1]. Guided bone
regeneration (GBR) using biomaterials underneath a membrane is a highly predictable
treatment to augment missing bone volume around implants, especially in the atrophic
jaws [2]. After more than 20 years of experimental and clinical evidence, the use of bone
graft substitutes has become a standard of care for bone augmentation [3]. In relation to
the type of defect, the graft should possess appropriate features to allow its fixation in the
recipient site and three-dimensional stability to withstand forces [4]. Hereby, autogenous
bone grafts are considered a “standard”. However, the main drawback of utilizing such
grafts, includes the need for a second surgical site and, therefore, donor site morbidity [5].
To avoid this, a granular form of bone substitutes (e.g., deproteinized bovine bone mineral,
DBBM) has been widely used [6,7]. The DBBM is one of the most commonly employed bone
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substitutes composed of spongy bovine bone with trabecular structure and internal voids,
completely free of organic components [8]. Bone grafts are biocompatible and preferably
also osteoconductive, allowing new bone formation [9]. Despite these benefits, knowledge
on the use of bone substitutes in the treatment of alveolar ridge atrophy is limited. In
general, the choice of applied biomaterials, as well as the time of implant placement, have
been derived from trial and error studies [10]. For example, healing times may be prolonged
when compared to grafting protocols that include autogenous bone grafts in particulate
form [11]. It is, therefore, of major clinical interest to elaborate on the healing process,
including the course of degradation of particulate bone substitutes and the rate of new
bone formation, with respect to the various compositions.

Several characteristics, such as the chemical composition, the granular size, the degree
of hydrophilicity, the capillarity, the intra- and inter-granular porosity, and, in particular, the
degradability, may have an impact on bone formation [12]. In that respect, it was demon-
strated that synthetic degradable bi-layered biphasic calcium-phosphate (BBCP) comprised
of a α-tricalcium phosphate (α-TCP) core coated with nanocrystalline biomimetic hydrox-
yapatite (HA) was biocompatible and osteoconductive leading to the healing of critical
size defects in rabbits [13]. Since a rapid degradation might lead to an insufficient amount
of newly formed mineralized bone [11], an assessment of a combined use with materi-
als known for long-term volume maintenance is warranted. DBBM provides long term
volume maintenance [14–16], being slowly resorbed by osteoclast cells [17]. The aim of
the present preclinical study was: (i) to assess the impact of BBCP and α-TCP on de novo
bone formation in combination with DBBM and (ii) to analyze the influence of HA coating
degree on resorptive potential of α-TCP in combination with DBBM after four weeks. The
null-hypothesis was that of no difference in the osteogenic potential of DBBM compared to
biomaterials composed of a mixture of α-TCP or BBCP with the DBBM.

2. Results

DBBM, the combination of DBBM with α-TCP or BBCP 3%HA/97%α-TCP or BBCP
6%HA97% α-TCP were of similar appearance, with the same size distribution of granules
and a rough surface (Figure 1). During surgeries, all tested materials were easily soaked in
blood, and well-handled in the defects.
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Figure 1. The images of the five tested groups: negative control (NC), DBBM alone, α-TCP + DBBM
(1:1), 3%HA/97%α-TCP + DBBM (1:1), and 6%HA/94%α-TCP + DBBM (1:1). The microscopic images
and micro-CT image of the substitutes before surgery and the implanted materials during surgery.

Among 30 defects of a total of 15 treated animals, the data of one defect was removed
due to the severe damage of the dura mater during surgery. No animals showed any signs
of local wound dehiscence, exposure, inflammation, or infection at the surgical sites.
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2.1. Micro-CT Analysis in Whole Defects

All the tested synthetic materials showed higher mineral density when compared to
DBBM at 4 weeks analyzed in volume of interest (VOI_1, Table 1, Figures 2 and 3). Micro-CT
revealed homogenously distributed mineralized structures throughout the whole defect
comprising bone substitute materials and newly formed bone. New mineralized bone had
formed at the borders of all defects. However, newly formed bone could not be precisely
distinguished from the residual bone substitute material because the material density was
very similar among those, especially for DBBM (Figures 2 and 3). Most of the implanted
materials appeared non-resorbed after 4 weeks of healing. All material groups showed
greater mineralized tissue volume/total tissue volume (MV/TV) and mineral density (MD)
when compared to negative control (NC) group (Table 1). Furthermore, material groups
could augment similar levels of MV/TV to reference intact bone (Table 1). A significantly
higher mineral density in the defects at 4 weeks was observed in α-TCP + DBBM when
compared to DBBM alone (p = 0.0319; Table 1). No significant MD differences could be
shown for BBCP_3 or BBCP_6 in comparison to DBBM. The percentages of horizontal defect
closure on a sagittal plane (HDC) with new bone were analyzed on the sagittal sections of
the defects (Figure 3) and the similar levels of HDC were observed among groups (Table 1).
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Figure 2. Micro-CT images of each group; 2D plane (upper row) and 3D-reconstructed views (lower
row); the blue color shows mineralized tissue in the bone defects). Homogenously distributed
mineralized structures comprising bone substitute materials and newly formed bone were observed
in the defects. Scale bar: 2 mm.

Table 1. Quantified micro-CT values in a 10-mm defect VOI (VOI_1).

Parameter

Group 1 Group 2 Group 3 Group 4 Group 5 Reference

NC (n = 6) DBBM (n = 6) α-TCP
+ DBBM (n = 6)

3%HA/
α-TCP +

DBBM (n = 6)

6%HA/
α-TCP +

DBBM (n = 5)

Intact Bone
(n = 8)

MV (mm3) 25.43 ± 7.73
59.31 ± 11.42 68.93 ± 16.17 64.30 ± 17.83 71.30 ± 9.62

71.53 ± 8.59vs. NC ** vs. NC # vs. NC # vs. NC #

MV/TV (%) 11.50 ± 1.71
29.06 ± 3.51 32.18 ± 6.43 29.83 ± 7.57 31.28 ± 2.88

35.94 ± 7.64vs. NC # vs. NC # vs. NC # vs. NC #
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Table 1. Cont.

Parameter

Group 1 Group 2 Group 3 Group 4 Group 5 Reference

NC (n = 6) DBBM (n = 6) α-TCP
+ DBBM (n = 6)

3%HA/
α-TCP +

DBBM (n = 6)

6%HA/
α-TCP +

DBBM (n = 5)

Intact Bone
(n = 8)

MD
(mgHA/ccm) 611.74 ± 18.66

689.05 ± 17.95 728.08 ± 27.65 716.13 ± 22.54 724.69 ± 18.26
680.37 ± 13.48vs. NC # vs. NC # vs. NC # vs. NC #

vs. DBBM *

HDC (%) 48.40 ± 27.37 25.80 ± 9.85 33.48 ± 5.83 32.33 ± 11.98 39.66 ± 7.24

Mean values with standard deviations. * statistically significant difference denotated by * at p < 0.05, ** at p < 0.01
and # at p < 0.001. MV; mineralized tissue volume, TV; total volume, MD; mineral density, HDC; horizontal defect
closure. The data of the intact calvarial bone without surgery is shown as a reference.
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Figure 3. Sagittal sections of the micro-CT images and the corresponding toluidine blue and fuchsin
staining at 4 weeks. All groups presented new bone in the peripheral areas (black arrows), and minor
mineralized bone formation with abundant connective tissues surrounding to the materials were
observed in the central areas of the defects (blue arrows). (Scale bars: 2 mm, A: Anterior, P: Posterior).

2.2. Histological Analysis

All groups presented new mineralized bone in the peripheral area (Figure 3 black
arrows), and minor bone formation with abundant connective tissues surrounding the
materials (Figure 3 blue arrows) were observed in the central area of the defects. The
magnified histological views further confirmed the osteoconductive potential of all tested
biomaterials, as well as DBBM in the peripheral area of the defects (Figure 4 black arrows).
Appositional bone formation was observed in the case of the DBBM granules, whereas
bone tissue infiltrated the granules of all different synthetic bone substitutes in a mesh
like pattern reminiscent of resorption via creeping substitution. In the central defect area,
multinucleated cells surrounded all types of the granules embedded in well vascularized
soft connective tissue (Figure 4 blue arrows).

Histomorphological analysis revealed that none of the groups induced bone formation
comparable to the reference, the intact bone (Table 2, Figure 5). However, the DBBM group
showed less new mineralized bone area (NBA) than the NC (p = 0.0252), while the addition
of the synthetic materials to DBBM increased the NBA to a level comparable to the NC. In
line with the micro-CT analysis, the histomorphometry showed no significant differences
in HDC among the tested groups (Table 2).
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Table 2. The histomorphometry in 10-mm defect ROI.

Parameter

Group 1 Group 2 Group 3 Group 4 Group 5 Reference

NC (n = 6) DBBM (n = 6) α-TCP
+ DBBM (n = 6)

3%HA/
α-TCP +

DBBM (n = 6)

6%HA/
α-TCP +

DBBM (n = 5)

Intact Bone
(n = 8)

NBA (%)
18.82 ± 5.36 8.94 ± 3.38 12.74 ± 4.76 13.25 ± 7.77 13.62 ± 3.41 52.35 ± 6.32

vs. NC *

BMA (%) 3.99 ± 1.51 1.72 ± 1.08 2.91 ± 1.77 2.37 ± 2.16 3.36 ± 0.67 38.02 ± 7.64

CTA (%) 77.19 ± 6.78 63.66 ± 3.90 60.97 ± 3.63 62.33 ± 7.21 59.53 ± 3.16 9.63 ± 2.59

RMA (%) 25.68 ± 2.38 23.38 ± 3.50 22.05 ± 4.58 23.49 ± 5.98

RMA-D (%)
25.68 ± 2.38 16.15 ± 2.27 18.26 ± 4.46 18.25 ± 4.55

vs. DBBM # vs. DBBM ** vs. DBBM *

RMA-S (%) 7.22 ± 2.41 3.79 ± 1.71 5.24 ± 3.26

HDC (%) 52.66 ± 27.30 31.85 ± 13.66 51.19 ± 30.99 54.14 ± 21.14 51.62 ± 20.64

Mean values with standard deviations. Statistically significant difference denoted by * at p < 0.05), ** at p < 0.01
and # at p < 0.001. NBA; new bone area, BMA; bone marrow area, CTA; connective tissue area, RMA; residual
material area, RMA-D; residual DBBM material area, RMA-S; residual synthetic material area, HDC; horizontal
defect closure. The data of the intact calvarial bone without surgery is shown as a reference.
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2.3. Material Resorption Assay by Micro-CT Analysis in the Central Area of the Defects

Histology revealed no significant differences in HDC despite the presence of osteoclast
like cells, indicative of a resorption process in the center of the defects. Thus, the mineral
density in the center of the defect, as an additional indicator for degradation, was measured.
To this end, the change of the MD from day 0 (=initial material density of the material at
implantation) to week 4 was calculated. The newly formed bone rarely proliferated into
the central 5-mm defect area at 4 weeks (Figures 2 and 3). The respective values of MD and
mineralized tissue volume (MV) in VOI_3 represented the agglomerate of newly formed
bone and residual non resorbed material, whereas the MD and MV in VOI_2 represented
the osteoclast induced resorption of the materials at 4 weeks (Tables 3 and 4).

Table 3. Quantified micro-CT values in a central 5-mm defect VOI (VOI_2).

Parameter
(Central
5 mm)

Group 2 Group 3 Group 4 Group 5

DBBM (n = 6) α-TCP
+ DBBM (n = 6)

3%HA/
α-TCP + DBBM (n = 6)

6%HA/
α-TCP + DBBM (n = 5)

MV (mm3) 9.55 ± 3.25 12.77 ± 4.94 10.27 ± 3.21 11.04 ± 3.08

MV/TV (%) 18.57 ± 4.47
24.03 ± 9.36 18.93 ± 5.25 19.34 ± 4.99
vs. DBBM # vs. DBBM # vs. DBBM #

MD (mgHA/ccm) 666.13 ± 21.76
735.48 ± 47.90 722.77 ± 26.96 748.83 ± 23.59
vs. DBBM ** vs. DBBM * vs. DBBM **

Mean values with standard deviations. Statistically significant difference denoted by * at p < 0.05, ** at p < 0.01
and # at p < 0.001. MV; mineralized tissue volume, TV; total volume, MD; mineral density.

Table 4. Quantified micro-CT values in a peripheral 2.5-mm defect VOI (VOI_3).

Parameter
(Peripheral 2.5-mm)

Group 2 Group 3 Group 4 Group 5

DBBM (n = 6) α-TCP
+ DBBM (n = 6)

3%HA/
α-TCP + DBBM (n = 6)

6%HA/
α-TCP + DBBM (n = 5)

MV (mm3) 49.76 ± 9.31 56.16 ± 13.69 54.03 ± 14.98 60.26 ± 6.91

MV/TV (%) 32.56 ± 4.35 34.90 ± 7.06 33.46 ± 8.59 35.26 ± 2.21

MD (mgHA/ccm) 692.76 ± 18.94 724.74 ± 23.15 711.32 ± 23.31 720.29 ± 17.85

Mean values with standard deviations. MV; mineralized tissue volume, TV; total volume, MD; mineral density.
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The initial MD of the materials at week 0 was 670.69 ± 8.66 mgHA/ccm in DBBM,
803.84 ± 10.38 mgHA/ccm in α-TCP + DBBM, 795.16 ± 6.05 mgHA/ccm in BBCP3%HA,
and 812.62 ± 28.57 mgHA/ccm in BBCP_6, respectively. Compared to the MD of VOI_1
after 4 weeks, all materials, except DMMB, showed reduced values. In the central area
(VOI_2) all combination materials, including α-TCP + DBBM, BBCP_3 and BBCP_6 groups,
showed significantly lower MD at week 4 when compared to 0 week 0 (p = 0.0083 in
α-TCP + DBBM, p = 0.0050 in BBCP_3, p = 0.0191 in BBCP_6, respectively), while DBBM
maintained similar MD values at weeks 0 and 4 (Table 3). Importantly, significantly lower
MD values of DBBM were observed when compared with the other synthetic combined
material groups at weeks 0 and 4. Despite the loss of MD observed in the combinations,
there were no statistically significant differences in residual MV, as well as in MV/TV in the
central 5-mm defect area (VOI_2), between any material groups at 4 weeks, corresponding
to the histological findings.

The comparison of the MD values at week 0 with those of week 4 in the peripheral
defect areas (VOI_3) revealed a decrease for all groups, except for the DBBM that yielded
an obvious increase. On the other hand, no significant differences were observed in the MV
and MV/TV between groups in peripheral 2.5-mm defects at 4 weeks (VOI_3; Table 4).

3. Discussion

The long-term success of bone augmentation procedures depends on the volume
maintenance capacity of the bone substitute applied, the latter being critically dependent
on its degradation kinetics. Hence, too slow degradation decreases the amount of newly
formed bone [11]. As it is known for its long-term volume maintenance, DBBM was
applied in combination with autogenous bone [3]. The BBCPs used in the present study
were developed to fine-tune α-TCP degradation. The aim of the present study was to assess
the effect of a combined use of a DBBM with a rapidly degrading α-TCP and two α-TCP
based newly developed BBCPs on biomaterial degradation and new bone formation. As
there were no previous data available, a 1:1 ratio was chosen arbitrarily. A critical-size
calvaria defect model was used to study the early bone forming capacity of the combined
biomaterials at 4 weeks after surgery. Both histological preparations, as well as micro-CT
scans, were assessed for potential differences in bone formation and resorption on the
DBBM combinations applied. Histologically, all tested biomaterials were osteoconductive.
New mineralized bone volume slightly increased when DBBM was applied in combination
with α-TCP or BBCP 3%HA/97% α-TCP, or BBCP 6%HA/94% α-TCP (Table 2). The
absence of a statistically significant difference, however, did not refute the null hypothesis.
Nonetheless, DBBM alone showed significantly lower volumes of new bone compared to
the NC group.

Micro-CT analysis revealed no significant differences in MV, MV/TV and HDC be-
tween any groups, neither when analyzed for the whole defects nor for the peripheral or
central regions of the defects. The MD measurements in the center of the defects, however,
showed significant differences among the groups. Mineral density of the combinations
measured at week 0 significantly decreased when compared to week 4 in contrast to the
DBBM alone, the latter showing similar MDs at both time points. The analysis of the
effect of the biomimetic HA coating of α-TCP revealed no significant differences on its
resorption level when applied in combination with DBBM. The mineralized tissue volume
was, thus, maintained, despite ongoing resorption of all the combination products in situ
after 4 weeks.

The effect of a biomimetic HA coating for α-TCP on resorption and concomitant new
bone formation has been previously presented using the same calvaria model [13]. Three
different compounds, namely, 3%HA/97%α-TCP, 12%HA/88%α-TCP and 23%HA/77%α-
TCP, were tested for the parameters of new bone formation at 3 weeks and at 3 months.
After 3 weeks, no significant differences between the BBCPs with different levels of HA
coating could be observed [13]. In contrast, samples with BBCP_3 showed significantly
less residual material and promoted more new bone volume as compared to the other
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groups at 3 months. When compared to the previous study [13], the addition of DBBM
appeared not to influence the kinetics of the BBCP_3 resorption and bone formation volume
within the first weeks after augmentation. It might be assumed that the effect of DBBM,
as a very slow resorbing and, thus, volume maintaining bone substitute, would become
evident at a later time point, most likely after the complete resorption of the BBCP_3 within
the remodeling phase. Nevertheless, it has to be emphasized that mineral density and
histological data reminiscent of creeping substitution indicated that within the first 4 weeks,
the combination products experienced some resorption in comparison to DBBM alone.
Despite this resorption activity, the combination products maintained the volume inside
the defects similar to DBBM alone. Hence, the addition of α-TCP or BBCP 3%HA/97%
α-TCP or BBCP 6%HA/94% α-TCP to DBBM in a 1:1 ratio did not jeopardize their early
volume maintenance capacity, despite comprising a reduced amount of DBBM.

In the central 5-mm defect area at 0 versus 4 weeks, it was found that α-TCP, BBCP_3
and BBCP_6 absorbed to the same level regardless of their HA coating (Table 3). In addition,
the defects filled with BBCP_3 or BBCP_6 yielded very similar bone formation volumes
at 4 weeks to those obtained for DBBM + α-TCP. Thus, the biomimetic coverage of the
α-TCP with hydroxyapatite, expected to prolong the degradation of α-TCP granules, did
not have a major impact on resorption levels or bone neo-formation during early healing.
These findings were in line with the results of the study by Kunert-Keil et al., comparatively
analyzing β-TCP and the respective derived biphasic calcium phosphate in a rat calvaria
defect model after 4 weeks [18]. New bone formation did not differ between the two
differently augmented defects; however, significantly higher mRNA levels of the bone
resorption marker Acp5 and the osteogenic differentiation marker Runx2 was detected
in the β-TCP group as opposed to the biphasic calcium phosphate. The histological
evaluation of bone at early time points in that study was obviously not sufficient to detect
differences in bone formation comparing pure TCP-based substitutes and their respective
biphasic counterparts.

The reduced new bone formation observed after 4 weeks in the DBBM-group com-
pared to the non-augmented control group was in line with previous published data [13].
Using a porcine calvaria defect model, Titsinides et al. reported the reduced bone formation
in a case of a defect filled with DBBM or β-TCP after 8 and 12 weeks [19]. New bone formed
at the expense of β-TCP, which was found to be in the process of degradation, while DBBM
remained almost intact. These findings were in agreement with a limited DBBM resorption
previously reported by other authors [14,15]. However, the data on long-term stability and
degradation kinetics in pre-clinical settings are still missing. Given that the combination of
DBBM with α-TCP or BBCP 3%HA/97% α-TCP or BBCP 6%HA/94% α-TCP resulted in
a slight increase of new bone volume when compared to DBBM alone, the α-TCP based
synthetic materials might possibly achieve a better balance between resorption of the bio-
material and new bone formation. In this respect, the addition of α-TCP based materials to
DBBM may provide two benefits: counteracting the DBBM-caused delayed bone formation
and opening more space for new bone formation upon resorption.

There were several limitations inherent in the present study. Although the critical-
sized calvaria defect model of rabbits is commonly applied in the study of bone formation,
this model cannot completely mimic the clinical situation of the GBR techniques, due to the
limited space available. Hence, other models forming bone beyond the skeletal envelope
may shed more light on the regenerative capacity of these biomaterials [20]. Only one time
point and one ratio of DBBM + α-TCP, BBCP 3%HA/97%α-TCP and BBCP 6%HA/94%α-
TCP were tested. To fully elucidate the effect of tested combinations on the performance of
DBBM, preferably 3- and 6-months data need to be generated. Moreover, it may be possible
that various ratios of the two components may depict more clearly the effect of the addition
of synthetic compounds to DBBM. The tested sample size (n = 6) was calculated by power
analysis before starting the experiments, but the sample size had to be decreased due to a
severed dura mater during surgery. In summary, the effect of combination of the α-TCP
based bone substitute materials with the DBBM on de novo bone formation was minor in
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the chosen experimental settings. Similar effects were observed for the different levels of
biomimetic HA coating of α-TCP on its resorption.

4. Materials & Methods
4.1. Materials

The tested materials were provided by Geistlich Pharma AG, Wolhusen, Switzerland.
Four different substitutes: (1) NC (empty), (2) DBBM alone, (3) α-TCP + DBBM (1:1),
(4) 3%HA/97%α-TCP + DBBM (1:1) (BBCP_3), and (5) 6%HA/94%α-TCP + DBBM (1:1)
(BBCP_6) were investigated (Figure 1).

4.2. Animals

Nineteen New Zealand White female rabbits, approximately 16 weeks of age (3.0–3.4
kg), were used in the present study. During the acclimatization period and throughout the
experiment, the animals were housed in the Central Animal Care Facility at the University
of Berne (temperature 19–21 ◦C, humidity 45% ± 10%, a light/dark cycle of 12:12 h). The
animals were housed without excessive or disturbing noises and fed with a standard diet
and water ad libitum. The study considered the NC3Rs, UK guidelines, and is reported ac-
cording to the ARRIVE guidelines for preclinical in vivo studies. The study was submitted
to and approved by the Committee for Animal Research, Canton of Berne, Switzerland (Nr:
BE 89/17). Thirty critical size defects were used for the calvarial surgeries, and the 8 intact
parietal bones discs were harvested and used as a reference.

4.3. Anesthesia

The animals were premedicated subcutaneously (s.c.) with methadone (0.3 mg/kg),
dexmedetomidine (100 g/kg) mixed with ketamine 15 mg/kg (Narketan®, Vetoquinol AG,
Bern, Switzerland). After reaching an appropriate depth of sedation, the eyes of the animals
were lubricated (Bepanthen® Augen- und Nasensalbe, Bayer Vital GmbH, Leverkusen,
Germany) and pure oxygen was administered through a facemask. An intravenous (i.v.)
catheter was inserted in one of the marginal auricular veins. Ropivacaine 0.75% was locally
administered on the surgery site. General anesthesia was maintained with isoflurane
(Forene®, Abbvie AG, Baar, Switzerland) vaporized in pure oxygen through a Jackson Rees
modified T-piece breathing system targeting a maximal Et Iso of 1–1.3%.

4.4. Surgical Procedures

The skin of the rabbit was incised from the nasal bone to the mid-sagittal crest, and
the periosteum was elevated to expose the parietal bone. Two critical-size 10-mm diam-
eter calvaria bone defects were prepared with a trephine under copious irrigation with
sterile saline. Maximal care was taken to avoid injury to the dura mater. Allocation of the
5 applied treatment modalities, (1) NC, (2) DBBM, (3) α-TCP + DBBM, (4) BBCP_3 and
(5) BBCP_6 (n = 6, each) was randomized according to the systematic random protocol
(www.randomization.com (accessed on 17 January 2019)). The 600 µL of blood were col-
lected from the auricular artery per animal. The 300 µL of blood were used to mix with each
granule and implanted into a defect, and the 300 µL filled up into the NC. After implanta-
tion of the materials, the 12.5 mm × 13.0 mm-sized resorbable collagen barrier membrane
(BioGide®, Geistlich Pharma AG, Wolhusen, Switzerland) was used to cover the defect
sites. The wound was closed in two layers with interrupted sutures using 4–0 Vicryl® and
4–0 Monocryl® sutures (Ethicon, Somerville, NJ, USA), respectively. Wound surfaces were
further sealed with a spray film dressing (OPSITE® SPRAY, Smith & Nephew, London, UK).

4.5. Postoperative Procedures

The rabbits were left to recover under infrared lights and administration of oxygen fol-
lowing surgery. Peri-operative antimicrobial prophylaxis (procaine penicillin 150,000 IU/mL
+ benzathine penicillin 150,000 IU/mL; 0.01 mL/kg s.c, Duplocillin®, MSD Animal Health,
Luzern, Switzerland) were applied. Postoperative analgesia consisted of meloxicam

www.randomization.com
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(Metacam®, Boehringer Ingelheim, Ingelheim, Germany) 0.5 mg/kg i.v. administered
after surgery and repeated once daily for 4 days. Regular monitoring included assessment
of water and food consumption and assessment of pain at regular intervals (composite
pain scale and grimace scale). If indicated, Buprenorphine (Temgesic®, Rechitt Benckiser,
Wallisellen, Switzerland) was administered at 20 g/kg s.c. every 8 h during the postopera-
tive 3 days. The animals were sacrificed after a healing period of 4 weeks with an overdose
of pentobarbital 120 mg/kg i.v. (Streuli Pharma AG, Uznach, Switzerland) following the
premedication with ketamine 65 mg/kg and xylazine 4 mg/kg s.c. in the neck area.

4.6. Micro-CT Analysis

The collected calvaria specimens were fixed in 10% neutral formalin for 7 days at
room temperature and replaced in 70% ethanol at 4 ◦C. The specimens were then subjected
to micro-CT scans using a desktop cone beam scanner (µCT 40, ScancoMedical AG, Brüt-
tisellen, Switzerland). The X-ray source was set at 70 kV with 114 µA. An isotropic voxel
size of 18 µm showed an image matrix of 2048 Å~2048 pixels. The micro-CT images were
then analyzed and reconstructed by using 3D structural analysis software (Amira, Visual-
ization Sciences Group, Düsseldorf, Germany). The primary volume of interest (VOI_1)
were 10-mm diameter, full thickness cylinders, selected corresponding to the dimensions
of the defect sites (Supplementary Figure S1). Furthermore, a central 5-mm diameter full
thickness cylinder in the defect sites as the secondary VOI (VOI_2), and the peripheral
2.5-mm diameter full thickness cylinder in the defect sites as the third VOI (VOI_3) were
chosen. The parameters included MV (mm3), MV/TV, %), MD (mgHA/ccm, initial material
at week 0 and, in the defect site, at week 4). Moreover, HDC (relative % to whole defect
length; 10 mm) weas calculated by two experienced examiners who were blinded to the
treatment modalities. The intact calvarial bone (intact bone, n = 8) was also evaluated
for reference.

4.7. Histological Processing and Histomorphometric Analysis

All specimens were trimmed, dehydrated in ascending concentrations of ethanol,
and embedded in methyl methacrylate without decalcification. The embedded tissue
blocks were cut sagittally in the middle of the defects at approximately 1000-µm thick
ground sections using a slow-speed diamond saw (VC-50; LECO, St. Joseph, MI, USA).
After mounting on acrylic glass slabs, the sections were ground and polished to a final
thickness of 200 µm (Knuth Rotor-3; Struers, Ballerup, Denmark). The sections were stained
with toluidine blue combined with fuchsin and the images photographed under a digital
microscope (VHX-6000, Keyence, Osaka, Japan). Morphometric analysis was performed by
a graphic software (Photoshop CC; Adobe, San Jose, CA, USA) using the corresponding
10-mm initial defect area as the region of interest (ROI). The parameters included new
bone area (NBA, %), bone marrow area (BMA, %), connective tissue area (CTA, %), total
residual material area (RMA, %), residual DBBM material area (RMA-D, %), residual
synthetic material area (RMA-S, %), and HDC (%). These were calculated as a relative %
to the total augmentation area (mm2) by two experienced examiners, while blinded to the
treatment groups.

4.8. Statistical Analysis

The data represented the means and standard deviations (SD) for all quantitative
data in the tables. The statistical analysis was performed by one-way analysis of variance
(ANOVA) with Tukey test by using a statistical program (GraphPad Prism X9 software:
GraphPad Software, Inc., La Jolla, CA, USA). The level of significance was set at α = 0.05.

5. Conclusions

Within the limits of this 4-weeks preclinical in vivo study, the addition of the α-TCP
based bone substitutes to DBBM tended to improve new bone formation when compared
to DBBM alone. Very limited resorption of the α-TCP based bone substitutes independent
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of their HA content, was observed indicating similar levels of osteoconductivity of the
combination products compared to the DBBM alone. In conclusion, the impact of the
combination, as well as differences of α-TCP based material components, in the bone
augmentation potential was minor. Further preclinical studies with a larger sample size
and long-term healing periods will be necessary to elucidate the potential benefits of the
combination biomaterials and clarify the relationship between material resorption and
bone neoformation.
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com/article/10.3390/ijms231810516/s1.
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