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Abstract

Background

Previous studies concerning humidified, heated high-flow nasal oxygen delivered in sponta-

neously breathing patients postulated an increase in functional residual capacity as one of

its physiological effects. It is unclear wheter this is also true for patients under general

anesthesia.

Methodology

The sincle-center noninferiority trial was registered at ClinicalTrials.gov (NCT

NCT03478774). This secondary outcome analysis shows estimated differences in lung

volume changes using electrical impedance tomography between different flow rates of

100% oxygen in apneic, anesthetized and paralyzed adults prior to intubation. One hun-

dred and twenty five patients were randomized to five groups with different flow rates of

100% oxygen: i) minimal-flow: 0.25 l.min-1 via endotracheal tube; ii) low-flow: 2 l.min-1 +

continuous jaw thrust; iii) medium-flow: 10 l.min-1 + continuous jaw thrust; iv) high-flow:

70l.min-1 + continuous jaw thrust; and v) control: 70 l.min-1 + continuous video-laryngos-

copy. After standardized anesthesia induction with non-depolarizing neuromuscular

blockade, the 15-minute apnea period and oxygen delivery was started according to the

randomized flow rate. Continuous electrical impedance tomography measurements were

performed during the 15-minute apnea period. Total change in lung impedance (an esti-

mate of changes in lung volume) over the 15-minute apnea period and times to 25%, 50%

and 75% of total impedance change were calculated.
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Results

One hundred and twenty five patients completed the original study. Six patients did not com-

plete the 15-minute apnea period. Due to maloperation, malfunction and artefacts additional

54 measurements had to be excluded, resulting in 65 patients included into this secondary

outcome analysis. We found no differences between groups with respect to decrease in

lung impedance or curve progression over the observation period.

Conclusions

Different flow rates of humidified 100% oxygen during apnea result in comparable

decreases in lung volumes. The demonstrated increase in functional residual capacity dur-

ing spontaneous breathing with high-flow nasal oxygenation could not be replicated during

apnea under general anesthesia with neuromuscular blockade.

Introduction

High-flow nasal oxygen (HFNO) is the administration of humidified, heated, and blended air/

oxygen via nasal cannulas at rates of up to 2 l.kg-1 min-1 or a maximum of 80 l.kg-1 min-1. It

was first described for the relief of sleep-related oropharyngeal airway obstruction [1]. It was

used later in neonatal intensive care units for treatment of apnea in premature infants [2].

Since then, it is used widely in pediatric intensive care medicine mainly for treatment of respi-

ratory distress [3], for respiratory support after extubation [4] in premature children, and for

treatment of bronchiolitis in infants [5].

In adult intensive care medicine it is used to improve oxygenation in hypoxemic respiratory

failure because it is easy to use and requires minimal cooperation from patients [6]. In anesthe-

sia it was first described in 2015 in a case series of 25 patients [7]. HFNO prolonged apnea

time, and was also suspected to improve ventilation during apnea. It was therefore named

transnasal humidified rapid-insufflation ventilatory exchange (THRIVE). HFNO gained popu-

larity for both adults and children for tubeless laryngeal surgery [7–9] and for prolongation of

apnea time during airway management for patients with potentially difficult airways [7, 10].

Proposed physiological mechanisms of increasing apnea time during HFNO include positive

airway pressure generation and an increase in functional residual capacity [11–13].

Multiple studies investigated the effects of high-flow nasal oxygen during respiratory dis-

tress [14, 15]. Spontaneously breathing patients using HFNO seem to benefit from decreased

inspiratory effort, improved lung volume and lung compliance [16]. Positive airway pressure

generation was absent in apneic patients with an open mouth, and minimal with a closed

mouth [17].

Two previous studies suggested active carbon dioxide washout during apnea because apnea

time was prolonged during HNFO and the rate of carbon dioxide was lower when compared

to historical data [7, 8]. However, two randomized controlled trials using different oxygen

flow rates in apneic pediatric patients detected no differences in carbon dioxide rise [10, 18].

In a single center randomized controlled trial in paralyzed adults, our group found no differ-

ences in carbon dioxide rise at different flow rates between 0.25 and 70 l.min-1 [19]. Therefore,

the postulated carbon dioxide washout could not be verified during apnea.

The present study is a secondary outcome analysis of this previously published randomized

controlled trial [19, 20]. We aimed to assess the dynamics of lung impedance using electrical
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impedance tomography (EIT) in apneic patients, to determine whether different oxygen flow

rates during apnea may cause less atelectasis formation and/or an increase in functional resid-

ual capacity.

To achieve this we estimated the changes in lung volume by EIT during HFNO at different

flow rates in apneic, anesthetized and paralyzed adult elective surgical patients prior to

intubation.

Methods

The Cantonal Ethics Committee of Bern approved the study (2018–00293). It was registered at

ClinicalTrials.gov (NCT NCT03478774, Primary Investigator: Lorenz Theiler. Registration

date March 27, 2018. Written informed consent was obtained by the research team from all

participants. This single-center randomized controlled trial was performed in the Department

of Anaesthesiology and Pain Medicine, at the Bern University Hospital in Bern, Switzerland

between March 2018 and December 2019. The primary outcome and the protocol of this proj-

ect, including detailed methodology, inclusion and exclusion criteria, were published [19, 20].

Eligible study participants were adult patients aged 18 to 80 years with an ASA physical sta-

tus of 1–3 who were able to speak German or French, and were scheduled for elective surgery

under general anesthesia. After screening for inclusion and exclusion criteria, patients were

recruited during the standard preadmission clinic.

Study procedure

The detailed methods are published elsewhere [18, 20]. In brief, patients were monitored

according to the local standard of anesthesia care with additional placement of two transcuta-

neous sensors for carbon dioxide and oxygen measurements (TCM 4 and TCM 5; both Radi-

ometer, Krefeld, Germany), and a thoracic EIT belt (PulmoVista 500; Dräger, Lübeck,

Germany). A lose-fitting belt with 16 evenly spaced electrodes was placed around the chest of

each patient between the 4th and 6th intercostal space, in a thoracic median plane.

After standard pre-oxygenation, anesthesia was induced using a target-controlled infusion

of propofol and remifentanil. Neuromuscular blockade was induced using Rocuronium; ade-

quacy was verified with a train-of-four value of 0 before onset of apnea, every 5 minutes

throughout the procedure, and by visual absence of even small diaphragmatic movements on

the EIT screen. The patient’s position remained unchanged during the study period.

After verification of successful facemask ventilation, patients were randomized to one of

five study groups using a computer-generated sequence kept in sealed envelopes. The random-

ization list was generated by a study nurse of the Department of Anaesthesiology and Pain

Medicine of the Bern University Hospital, who was not a member of the study group. Then

the apneic period was started. The five studied groups were:

(i) Minimal-flow group: 0.25 l.min-1 oxygen via endotracheal tube

(ii) Low-flow group: 2 l.min-1 oxygen + continuous jaw thrust

(iii) Medium-flow group: 10 l.min-1 oxygen + continuous jaw thrust

(iv) High-flow group: 70 l.min-1 oxygen + continuous jaw thrust

(v) Control group: 70 l.min-1 oxygen + continuous laryngoscopy with a McGrath MAC video

laryngoscope (Medtronic, Dublin, Ireland).

Blinding of study personnel was not feasible, but patients were blinded to their group allo-

cation. All patients received 100% oxygen. We delivered high-flow humidified oxygen via a
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high-flow nasal cannula (Optiflow™ MR 850 system Fisher&Paykel™, Auckland, New Zealand).

Medium and low-flow humidified oxygen was delivered using Aquapak Hudson RCI (Teleflex,

Wayne, Pennsylvania, USA) and a flow-meter (Carbamed digi-flow, Switzerland) using a stan-

dard nasal cannula (O2-Star nasal cannula curved, Dräger, Lübeck, Germany). Minimal-flow

oxygen was delivered via a standard tracheal tube, using the circuit of a Dräger Primus anes-

thesia machine (Dräger, Lübeck, Germany) to ensure the delivery of exactly 0.25 l.min-1.

We confirmed upper airway patency visually using a nasopharyngeal fiberscope (EF-N

slim, Acutronic, Hirzel, Switzerland) immediately after the start of apnea, and at 7 and 14 min

of apnea. If the airway was not patent, an oropharyngeal tube (Guedel airway, Intersurgical,

Workingham, Berkshire, UK) was inserted [21]. If the airway was then still not patent, the

study intervention was terminated.

There were several pre-defined study termination criteria: SpO2 <92%, transcutaneous

CO2 >100 mmHg, pH<7.1, potassium >6 mmol l-1, and apneic period reaching 15 min. If

any of these occured, immediate bag-mask ventilation was started. The attending anesthesiolo-

gists then performed airway management at their discretion. After successful intubation, the

anesthesiologist performed a standardized manual airway recruitment maneuver (sustained

manual inflation to an airway pressure of 40 mbar for 15 seconds) [22]. The patient was then

connected to the circuit of a Dräger Primus anesthesia machine (Dräger, Lübeck, Germany)

and mechanical ventilation was commenced with tidal volumes of 6 ml.kg-1 lean body weight.

Measurements

Thoracic EIT measurements were continuously recorded at a frame rate of 30 Hz during the

whole study period. We excluded patients with incomplete measurements due to malfunction

of the EIT device, if total malfunction of the device occurred, if there were major artefacts in

the EIT signal, and if any of the predefined study termination criteria (especially SpO2 <92%

before end of the 15 minutes apnea time) were reached. The EIT images were reconstructed

from the raw data based on the Graz consensus reconstruction algorithm for electrical imped-

ance tomography (GREIT) using the torso mesh function [23, 24].

The change in lung volume was estimated by calculating lung impedance change, normal-

ized to the impedance amplitude during mechanical ventilation at 6 ml.kg-1 using adapted cus-

tomized code (Matlab R2021a; The MathWorks Inc., Nattick, MA, USA) [25, 26].

Additionally, to detect potential differences in curve progression of the change in lung imped-

ance, the time to 25%, 50% and 75% of total impedance reduction from baseline was calculated

(Fig 1). All analyses were performed for the global impedance signal as well as for 4 regions of

interest (anterior, mid-anterior, mid-posterior, and posterior).

Statistical analysis

The necessary sample size was calculated for the main outcome of the original study (difference

in carbon dioxide increase). It was 22 patients per group; 25 patients were recruited per group

[19]. No additional sample size calculation was performed for this secondary outcome analysis.

Data are reported as median [IQR] or mean ± SD. A probability of less than 0.05 was con-

sidered significant. Differences between groups were analyzed using Kruskal-Wallis test, cor-

rected for multiple comparisons. All statistical analyses were performed with StatsDirect 3.3.5

(StatsDirect Ltd, Wirral, UK).

Results

From the 125 participants of the original study, 65 could be included in the present analysis

(six patients were excluded because of malfunction of the measurement device resulting in
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incomplete measurements; eight patients were excluded due to total malfunction of the device,

40 patients had to be excluded because of major artefacts in the EIT signal (sudden, unex-

plained steps in impedance; movement artefacts), and 6 patients reached the predefined study

termination criterion of SpO2 below 92% before the end of the 15-minute apnea period). The

number of patients per randomized group included in this analysis was: (i) minimal-flow: 15

patients; (ii) low-flow: 10 patients; (iii) medium-flow: 12 patients; (iv) high-flow: 17 patients;

(v) control: 11 patients (Fig 2). For baseline characteristics see Table 1.

The reduction in lung impedance normalized to the amplitude during mechanical ventila-

tion at tidal volumes of 6ml.kg-1 lean body weight for all patients was 1.45 ± 0.72. Fig 3 shows

the lung impedance change for each group, without significant differences between them, nei-

ther for the whole lung (p = 0.34) nor for the different regions of interest: p = 0.94 (anterior),

p = 0.41 (mid-anterior), p = 0.48 (mid-posterior), and p = 0.27 (posterior). Time to 25%, 50%

and 75% of total impedance change from baseline also did not differ significantly between

groups (Table 2). We could not detect an impact of the tracheal tube on lung impedance in the

minimal-flow group.

Discussion

This secondary outcome analysis of a previously published single-center randomized con-

trolled non-inferiority trial on different flow rates of high-flow nasal oxygenation, demon-

strates that the decrease in lung volume during apnea measured with electrical impedance

tomography is independent of flow rates between 0.25 l.min-1 and 70 l.min-1.

HFNO was first applied in spontaneously breathing preterm infants and pediatric patients with

respiratory distress (mainly caused by viral bronchiolitis) [27, 28]. Later, studies showed beneficial

outcomes in adult patients with acute lung injury and post-extubation [29, 30]. Different

Fig 1. Example of a typical impedance signal time course. t25, t50 and t75 define the time to 25%, 50% and 75% respectively of total impedance

reduction from baseline.

https://doi.org/10.1371/journal.pone.0273120.g001

PLOS ONE Changes in lung volume with different flow rates during apnea

PLOS ONE | https://doi.org/10.1371/journal.pone.0273120 September 28, 2022 5 / 11

https://doi.org/10.1371/journal.pone.0273120.g001
https://doi.org/10.1371/journal.pone.0273120


physiological mechanisms have been postulated to be responsible for the clinical benefits of HFNO

including reduction in work of breathing, carbon dioxide clearance, humidification of the air/oxy-

gen mixture and increased lung volumes [31]. Researchers demonstrated an increase in end-expi-

ratory lung impedance, which is a surrogate parameter for lung volume, that was independent of

body position in healthy adults [32]. Others found similar lung recruitment with HFNO compared

to non-invasive ventilation in a crossover study on adult patients with acute respiratory failure

[33]. A different research group showed continuous lung recruitment with increasing flow rates up

to 60 l.min-1 in high risk patients after extubation [34]. Our data shows that while in spontaneously

breathing patients the increase of flow rates of HFNO generates an increase in functional residual

Fig 2. Consolidated standards of reporting trials flow diagram.

https://doi.org/10.1371/journal.pone.0273120.g002
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capacity, the same phenomenon seems not to occur in apneic, anaesthetized and muscle relaxed

patients. Lung volume loss as a surrogate parameter for atelectasis formation occured indepen-

dently of flow rates and was similar in all groups studied in this analysis.

Multiple studies showed that HFNO prolongs safe apnea time and improves apneic oxygen-

ation during intubation and airway management in adult and pediatric patients under general

anesthesia [9, 10, 35–38]. However, none of these studies investigated changes in lung volume

or compared different flow rates. A recent study investigated airway pressures during apneic

HFNO. The researchers did not find an increase in airway pressure when the mouth of the

patients remained open [17]. Our study adds further evidence that prolongation of the apnea

period with HFNO occurs by an “aventilatory mass flow” of oxygen independently of the gen-

erated airway pressures or lung volumes as already described over 60 years ago [39]. Despite

the evident usefulness of HFNO to prolong the safe apnea period, it is now clear that the insig-

nificant pressures generated in the airway cannot prevent atelectasis formation, which could

be even provoked by the use of a high oxygen concentrations [22, 40, 41].

Table 1.

minimal-flow low-flow medium-flow high-flow controls

n = 15 n = 10 n = 12 n = 17 n = 11

Female 6 (40) 5 (50) 7 (58) 7 (41) 6 (55)

Age y 44 ± 17 46 ± 15 47 ± 18 49 ± 20 48 ± 20

Weight kg 76 ± 15 75 ± 17 73 ± 17 77 ± 19 69 ± 14

Height cm 172 ± 9 171 ± 8 172 ± 10 170 ± 13 169 ± 11

Body mass index kg.m-2 25 ± 3.7 24 ± 3.5 23 ± 3.5 25 ± 4.2 22 ± 3.9

Smoker/ex-smoker 5 (33) 5 (50) 3 (25) 4 (24) 5 (45)

ASA physical status

I 7 (47) 2 (20) 2 (17) 4 (24) 3 (27)

II 7 (47) 7 (70) 10 (83) 12 (70) 7 (64)

III 1 (4) 1 (10) 0 (0) 1 (6) 1 (9)

Values given as number (percentage) or mean ± standard deviation; ASA American Society of Anesthesiologists

https://doi.org/10.1371/journal.pone.0273120.t001

Fig 3. Total reduction in lung impedance normalized for impedance amplitude at tidal volumes of 6ml.kg-1 lean

body weight at different flow rates. No significant differences between groups.

https://doi.org/10.1371/journal.pone.0273120.g003
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Our study shows additionally that the decrease in lung volume is very rapid after the onset

of apnea. Within less than 10 seconds half of the total reduction in lung volume occured in

most patients. Thereafter the decline slowed down, with 25% of volume reduction after

approximately 40 seconds. This fast decrease in lung volume is most likely caused by the loss

of functional residual capacity approaching residual volume. Later we expect atelectasis forma-

tion during ongoing apnea. These results have two major consequences. First, no matter how

fast the airway was secured in apneic patients, a substantial reduction in lung volume has

already occurred. Second, the amount of lung volume loss seems to justify the performance of

a recruitment maneuver after airway instrumentation [42, 43]. No patient in our study desatu-

rated within five minutes of apnea with supplemental 100% oxygen independently of flow

rates. This supports the recommendation to use any form of supplemental 100% oxygen

administration during airway management [44, 45]. However, providers need to take the

extensive exclusion criteria list of this study into account [19, 20].

One limitation of this secondary analysis is the high number of measurements that had to

be excluded due to technical reasons. EIT is a technique developed to measure tidal ventilation.

During apnea the low signal-to-noise ratio is a disadvantage because minor disturbances often

lead to relevant artefacts [46, 47]. Other limitations are the single-center study design and the

extensive exclusion criteria list. Those limitations should be considered in judging the gener-

alizability of our results.

In conclusion, this study provides first insights into the decrease in lung volume in anesthe-

tized and paralyzed adults during apneic oxygenation with 100% oxygen at flow rates between

0.25 l.min-1 and 70 l.min-1. It was comparable between all groups. The reduction in lung vol-

ume happens rapidly after the onset of apnea, which justifies routine lung recruitment maneu-

vers after airway instrumentation.
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