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Background:To reduce healthcare costs, it has become increasingly important

to shorten the length of stay in acute stroke units. The goal of this study

was to develop and externally validate a decision tree model applicable <48h

poststroke for discharge home from an acute stroke unit with a short length of

stay, and to assess the inappropriate home discharge rate.

Methods: A prospective study including two samples of stroke patients

admitted to an acute stroke unit. The outcome was discharge home (yes/no).

A classification and regression tree analysis was performed in Sample 1. The

model’s performance was tested in Sample 2.

Results: In total, 953 patients were included. The final decision tree included

the patients’ activities of daily living (ADL) performance <48h poststroke,

including motor function, cognition, and communication, and had an area

under the curve (AUC) of 0.84 (95% confidence interval 0.76, 0.91). External

validation resulted in an AUC of 0.74 (95% confidence interval 0.72, 0.77). None

of the patients discharged home were re-admitted < 2 months after discharge

to a hospital or admitted to a rehabilitation center for symptoms that had

needed inpatient neurorehabilitation.

Conclusions: The developed decision tree shows acceptable external validity

in predicting discharge home in a heterogeneous sample of stroke patients,

only based on the patient’s actual ADL performance <48h poststroke.

Importantly, discharge was safe, i.e., no re-hospitalization was registered.

The tree’s application to speed up discharge planning should now be

further evaluated.
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Introduction

A quick start of discharge planning for patients admitted

to an acute hospital stroke unit is essential in order to

reduce healthcare costs and to allow patients a trajectory

aiming for an optimized outcome. Prediction models can be

a useful tool to support objective decision-making regarding

the patient’s discharge destination. Different prediction models

for the discharge destination from an acute stroke setting have

been developed. Important predictors for discharge destination

were found to be the patient’s age, living situation prior to

stroke, dependence in the activities of daily living (ADLs) after

admission, including cognitive aspects thereof, and level of

neurological deficits (1, 2). Although an external validation of

prediction models in an independent, prospective sample of

patients is an essential step toward their clinical application,

externally validated models are however scarce. The importance

of external validation is supported by the observation that the

application of a prediction model in a sample of patients that

was not involved in the development of the model itself most

often results in poorer model performance (3).

Recently, Itaya et al. developed (4) and temporally validated

(5) a model that predicts the likelihood of being discharged

home in a sample of stroke patients who had a mean length of

hospital stay of 23.6 ± 12.8 days in the development study and

17.2± 9.3 days in the temporal validation study. The prediction

model included the patients’ premorbid living situation, type

of stroke, ADL independence at admission, and the presence

of a paresis. Although the discriminative power [i.e., the area

under the receiver operator characteristic curve (AUC)] of

0.88 and 0.80 in the development (4) and validation sample

(5), respectively, was good, this Asian model is not directly

applicable to hospital settings in which the length of stay is

considerably shorter, such as in Switzerland [median 7.6 days

(6)] or the United States [mean 5.3 days (7)]. As the length of

hospital stay after a stroke has been constantly decreasing over

time in order to reduce healthcare costs (7), this lack of model

transferability will become a more global problem. The authors

of the Itaya model (4) furthermore criticized the fact that they

did not possess information concerning the rate of patients who

were inappropriately discharged home. Getting insight into this

rate is important, as early and inappropriate discharge home

can result in adverse events, such as early hospital re-admissions

[an important quality indicator for hospital care (8)], increasing

healthcare costs (9), as well as negatively impacting on the

patients’ outcome and quality of life.

Therefore, our goal was to develop an easy-to-apply decision

tree applicable already within 48 h after stroke for discharging

patients safely home from an acute stroke unit setting, in the

context of a Swiss hospital with a short length of stay (<1 week).

The decision tree was externally validated in an independent,

heterogeneous sample of patients that was recruited at a later

time point (i.e., temporal external validation), to allow for a

broad application spectrum of the developed decision tree. In

addition, the inappropriate home discharge rate was evaluated.

We hypothesized that the patient’s actual ADL performance

at the acute stroke unit would be essential for predicting the

discharge destination, and that the temporal external validation

would result in an acceptable decision tree performance.

Materials and methods

Data disclosure statement

The data that support the findings of this study are available

from the corresponding author by qualified researchers upon

reasonable request.

Design

This work is based on data that were prospectively collected

within clinical routine in acute stroke patients consecutively

admitted to the Stroke Center of the Neurology Department of

the Luzerner Kantonsspital, Lucerne, Switzerland. This hospital

is the largest hospital in central Switzerland, with a catchment

population of 800,000 inhabitants. The data are stored in a local

registry. Sample 1 (i.e., the development cohort) includes data of

patients who entered the hospital between April and November

2019. Sample 2 (i.e., the validation cohort) includes patient data

collected between April 2020 and March 2022.

Ethical approval was obtained from the cantonal ethics

committee Northwest and Central Switzerland (EKNZ; BASEC-

ID 2017-00998). All patients signed the hospital’s general

consent form, which allows to analyze the data collected within

clinical routine for research purposes. The work adhered to

the World Medical Association Declaration of Helsinki (10)

and reporting adhered to the STROBE (11) and TRIPOD

statements (12).

Participants

Both samples included patients who suffered an acute

stroke. No in- or exclusion criteria (such as the number of

strokes, stroke type, presence of comorbidities, or pre-stroke

independence) were formulated. Patients received medical and

rehabilitative treatment according to Swiss national guidelines

(13). Occupational and physical therapy were problem- and

task-oriented and had a repetitive nature.

Discharge destination was decided by the physician in

charge in close collaboration with the other members of

the multidisciplinary team and was discussed with the

patient and/or caregivers. The recommendation was based on

multiple factors, such as the patient’s neurological impairments,
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ADL functioning, Montreal Cognitive Assessment, Functional

Ambulation Categories, premorbid modified Rankin Scale, and

premorbid living situation.

Data collection and variables

Dependent variable

This study’s dependent variable was discharge home

(no/yes). Discharge home was defined as living at home with

or without partner and/or family member(s), regardless of

whether support was needed. Patients who were transferred

into a rehabilitation center or a nursing home, another acute

hospital or to temporal transitional care, or those who died

during hospital stay were classified as not discharged home.

Independent variables

The following candidate predictors were considered, because

these have been shown to be most predictive for discharge

destination (1, 2, 4): age, sex, acute neurological deficits as

assessed with the National Institutes of Health Stroke Scale

(NIHSS) (14, 15) at hospital admission (or in the case of acute

reperfusion therapy: after thrombolysis and/or thrombectomy),

stroke type (ischemic/hemorrhagic), recurrent stroke (yes/no),

living at home with or without support (yes/no), and the

patient’s actual performance in the ADLs at the acute stroke

unit, including cognition and communication, as assessed with

the short version of the Lucerne ICF-Based Multidisciplinary

Observation Scale (Short-LIMOS) (16) < 48 h poststroke. In

brief, the Short-LIMOS is a 10-item observation scale that

includes motor, cognitive, and communication items and has

a score range of 10–50, with higher scores indicating a

better performance. The administration time of the Short-

LIMOS is <10min, and the scale is described in more

detail in the Supplementary material. Trained occupational

and physiotherapists performed the Short-LIMOS observation

during routine care in the pilot phase from 04–11/2019 and after

definite implementation from 04/2020 onwards. The patients

were observed by therapists within the previouslymentioned 48-

h time frame and the Short-LIMOS items were assessed once. In

case acute reperfusion therapies were applied, the Short-LIMOS

observation took place after application of these acute medical

therapies. The other data relevant for this study were extracted

from the electronic hospital information system.

Inappropriate discharge home

Additionally, inappropriate discharge home was defined

as early readmission (within the first 2 months after hospital

discharge) to any hospital or rehabilitation clinic because of

stroke-related symptoms (pneumonia after dysphagia, unable

to manage everyday life with or without support of caregivers

or home-care services, etc.) that would have required inpatient

neurorehabilitation. This information was collected as a quality

measure by means of a telephone call with the patient or

his/her caregiver.

Sample size

The number of patients included in the present study

matches previous work in the field using classification

and regression tree (CART) analyses (17–19). For external

validation, a minimum number of events was set to 100 (20, 21).

Statistical analysis methods

Patient characteristics of both samples were analyzed by

means of descriptive statistics (medians with 1st and 3rd

quartiles, or frequencies with percentages), and non-parametric

tests were applied to determine differences between them

(Mann-Whitney U test, Chi-squared test).

A CART analysis (22) was performed in Sample 1

(development sample) in order to develop a decision tree for

discharge home (yes/no) and the above-mentioned independent

variables (see Section Independent variables) were used without

transformation or dichotomization. In this approach, the data

on the predictors are partitioned to create homogeneous groups

on the dependent categorical variable. The tree starts with the

parent node and each split of the tree results in two subsequent

(child) nodes. For each split of the tree, the CART analysis selects

the best predictor with its cut-off that represents the highest

improvement (i.e., the largest decrease) in the Gini index by

subtracting the weighted mean of the two child nodes from the

value of the node from which the two child nodes originate.

The Gini index is a measure for impurity of a node, based on

the dependent variable: the higher the value, the higher the

impurity of that node (22, 23). This partitioning is repeated

recursively until no further improvement can be made or until

pre-defined stopping rules are met (e.g., no less than five patients

in a node). In our case, first, a tree was built unrestrictedly, and

FIGURE 1

Flow-chart. N, Number.
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FIGURE 2

Pruned classification and regression tree. Light blue filled boxes represent the terminal nodes. Short-LIMOS, Short Version of the Lucerne

ICF-Based Multidisciplinary Observation Scale. In case of missing Short-LIMOS data, age was used as a surrogate marker (<55.5 for discharge

home vs. ≥55.5 years for no discharge home).

internally validated using a 10-fold cross-validation. To prevent

overfitting, this tree was subsequently pruned by selecting

the lowest cross-validation error with its corresponding cost-

complexity parameter, which is defined by the number of nodes

in the tree and the error rate. An advantage of the CART

analysis is that it is non-parametric, can deal with missing

predictor data by using surrogate markers (i.e., taking the next-

best splitting predictor with corresponding cut-off that has the

next-best improvement in Gini index), and results in an easy-

to-interpret decision tree. The surrogate marker is only taken

in patients for which data on the predictor that was selected by

the CART analysis was not available. This means that patients

with missing data were not removed (i.e., not a complete-

case analysis), which reduces bias (24) and, in addition, reflects

clinical practice.

The decision tree’s performance was assessed in terms of

overall accuracy, sensitivity, specificity, positive and negative

predictive values, and AUC. The AUC was classified as

inappropriate (∼0.50), acceptable (0.70 ≤ AUC < 0.80),

excellent (0.80 ≤ AUC < 0.90), and outstanding (≥0.90)

(25). Thereafter, the decision tree’s performance was externally

validated in Sample 2 (validation cohort). In Sample 2,

differences in baseline characteristics between patients with and

without missing predictor data of the developed decision tree

were analyzed by non-parametric statistics.

Descriptive statistics were applied in order to investigate

inappropriate discharge home.

R was used for all analyses (26) and the R package “rpart”

(27) was used for the CART analysis. A p-value of <0.05 (two-

tailed) was considered as statistically significant.

Results

A total of 121 patients were included in Sample 1

(development cohort) and 832 patients were analyzed in Sample

2 (validation cohort). The study’s flow-chart is presented in

Figure 1. In Sample 1, the patients had a median age of 77 (66–

82) year and 51 patients (42.4%) were female. One-hundred

fourteen patients (94.2%) had suffered an ischemic stroke and

8 (6.6%) a recurrent stroke. A median NIHSS of 1 (1–7) was

recorded. In Sample 2, the median age was 73 (61–82) year,

427 (56.7%) were female, 743 (89.3%) had suffered an ischemic

stroke and 126 (15.1%) a recurrent stroke. The median NIHSS

amounted 3 (1–6).

Patients’ median length of hospital stay was 6 (4–8) and

6 (4–9) days in Sample 1 and 2, respectively. In Sample

1, ∼36% of the patients were directly discharged home, in

Sample 2 this percentage was ∼42%. Taking together both

samples, 80 (20.6%) out of the 389 patients discharged home

were living alone after stroke and 309 (79.4%) with family.

A more detailed description of both samples is provided

in Table 1.

A statistical comparison of both samples showed that

patients in Sample 1 were significantly older, were less often

female, had more often suffered a first-ever stroke, were assessed

earlier poststroke, and had a slightly lower Short-LIMOS score.

A full overview of the p-values for all comparisons can be found

in Table 1.

Supplementary Figure 1 shows the unpruned CART

analysis. The final tree after pruning has one split and is

visualized in Figure 2. The best splitting criterion for discharge

home was found to be the Short-LIMOS score with a cut-off of

39/50 points. Patients with a Short-LIMOS score of ≤39/50 had

a probability of 0.15 to be discharged home and patients with

a Short-LIMOS score of >39/50 had a probability of 0.94 to be

discharged home. The best surrogate split was age (<55.5 for

discharge home vs. ≥55.5 years for no discharge home). The

decision tree’s AUC (95% confidence interval) was 0.84 (0.76,

0.91) in the development sample and 0.74 (0.72, 0.77) in the

validation sample. An overview of all performance measures is

presented in Table 2.
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TABLE 1 Patients’ characteristics.

Characteristic Development

cohort

(N = 121)

N (%)

missing data

Validation

cohort

(N = 832)

N (%)

missing data

P-value

Between

groups

Age, years† 77 (66–82) 0 (0) 73 (61–82) 0 (0) 0.0420

Sex, female/male‡ 51 (42.2)/70 (57.9) 0 (0) 472 (56.7)/360 (43.3) 0 (0) 0.0036

Stroke type, ischemic/haemorrhagic‡ 114 (94.2)/7 (6.8) 0 (0) 743 (89.3)/89 (10.7) 0 (0) 0.1296

Recurrent stroke, yes/no‡ 8 (6.6)/113 (93.4) 0 (0) 126 (15.1)/706 (84.9) 0 (0) 0.0172

Thrombolysis, yes/no‡ 23 (19)/98 (81) 0 (0) 212 (25.5)/620 (74.5) 0 (0) 0.1526

Thrombectomy, yes/no‡ 10 (8.3)/111 (91.7) 0 (0) 102 (12.3)/730 (87.7) 0 (0) 0.2610

Time between stroke onset and hospital

admission†

0 (0–0) 0 (0) 0 (0–0) 0 (0) 0.2745

Time between stroke onset and assessment

poststroke, days†

1 (1–2) 0 (0) 1 (1–3) 0 (0) 0.0073

Length of hospital stay, days† 6 (4–8) 0 (0) 6 (4–9) 0 (0) 0.7386

Living at home with or without support before

stroke, yes/no‡

113 (93.4)/8 (6.6) 0 (0) 782 (94)/50 (6) 0 (0) 0.9559

Clinical scales

NIHSS (0–42)†

3 (1–7) 0 (0) 3 (1–6) 43 (5.2) 0.1602

Short-LIMOS (10–50)† 32 (20.42–39.08) 0 (0) 34.21 (24.38–41.94) 124 (14.9) 0.0195

Discharge destination 0 (0) 0 (0)

Home, alone‡ 11 (9.1) 69 (8.3)

Home, with family‡ 32 (26.5) 277 (33.3)

Rehabilitation‡ 61 (50.4) 384 (46.2)

Temporal transitional care‡ 0 (0) 3 (0.4)

Other acute hospital‡ 0 (0) 4 (0.5)

Nursing home‡ 14 (11.6) 70 (8.4)

Died‡ 3 (2.5) 25 (3.0)

Outcome 0 (0) 0 (0)

Discharge home, yes/no‡ 43 (35.5)/78 (64.5) 346 (41.6)/486 (58.4) 0.2436

†Median (1st and 3rd quartiles).
‡N (%); Short-LIMOS, Short Version of the Lucerne ICF-Based Multidisciplinary Observation Scale; N, Number; NIHSS, National Institutes of Health Stroke Scale.

A comparison between patients with and without

missing data on the Short-LIMOS showed that those

with missing data had significantly less often received a

thrombectomy, a lower NIHSS score, a shorter length of

hospital stay, and were more often discharged home. The

p-values for all between-groups comparisons can be found in

Supplementary Table 1.

At 2-month follow-up, 375 out of the 389 patients who were

discharged home could be contacted by telephone, and none of

them was inappropriately discharged home.

Discussion

An easy-to-apply decision tree for early and safe discharge

home after an acute stroke was developed in a sample of

stroke patients, and externally validated in an independent,

prospective, heterogeneous sample of patients who were

discharged on a median of 6 days after admission. An

excellent discrimination in the development sample and

an acceptable discrimination in the validation sample was

achieved by only assessing the patients’ performance in the

ADL with the Short-LIMOS <48 h poststroke. Furthermore,

none of the patients were re-hospitalized due to their

stroke symptoms during the first 2 months after hospital

discharge. Since patients were included regardless of the

presence or absence of common exclusion criteria (e.g.,

presence of prior strokes, comorbidities, prestroke dependence

in the ADL, and inability to follow instructions), the

decision tree is applicable in regular care, virtually without

any restrictions.

The fact that the discriminative ability of the decision tree

was somewhat lower in the validation sample as compared to

the development sample is not surprising. This phenomenon
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TABLE 2 Discrimination of the decision tree in the development and

validation cohorts.

Decision tree

performance

Development

cohort

Validation

cohort

(N = 121) (N = 832)

Accuracy (95% CI) 0.88 (0.80, 0.93) 0.77 (0.74, 0.80)

Sensitivity 0.70 (0.54, 0.83) 0.59 (0.54, 0.64)

Specificity 0.97 (0.91, 1.00) 0.90 (0.87, 0.92)

Positive predictive value 0.94 (0.79, 0.99) 0.81 (0.75, 0.85)

Negative predictive value 0.85 (0.76, 0.92) 0.75 (0.72, 0.79)

AUC (95% CI) 0.84 (0.76, 0.91) 0.74 (0.72, 0.77)

Acc, Accuracy; AUC, Area Under the Receiver Operator Characteristic Curve; CI,

Confidence Interval.

is well described in the literature because of, for example,

overfitting in the development cohort or a different case mix, in

which the patient characteristics in the validation cohort differ

from those in the development cohort (28). A different case

mix was also found in our validation sample, which included

younger patients, more females, and more recurrent strokes

than the development sample. Furthermore, patients in the

validation sample were assessed at a slightly later timepoint

poststroke and had a marginally higher Short-LIMOS score.

Despite these differences, the AUC is still acceptable and,

for a clinical application, the PPV and NPV are particularly

important, as they inform about the probability that an

individual patient will (or will not) be discharged home (29).

A PPV of 0.81 in the validation cohort can be classified as

good and indicates that patients with a Short-LIMOS score of

>39 are mostly correctly classified as being discharged home.

The NPV of 0.75 is somewhat lower, but still acceptable. The

NPV represents patients with a Short-LIMOS of ≤39 points

who were not discharged home. Since the mean length of stay

in the stroke unit was 6 days, it is conceivable that some

patients, who were severely impaired in their ADL performance

within 48 h, further improved over time and thus could be

discharged home (i.e., false negatives). In our sample, the

patients with a Short-LIMOS of ≤39 points who were falsely

classified as “no discharge home” had a median length of stay

of 6 (5–8) days.

Although we hypothesized that ADL would be an essential

predictor for discharge home, we were somewhat surprised

that only ADL performance < 48 h poststroke (in terms of

motor, cognitive, and communication abilities) needs to be

assessed to make an accurate prediction. This contrasts with the

findings of several reviews on this topic and the Itaya model,

in which also age, living situation prior to stroke, and level of

neurological deficits were found to be highly predictive (1, 2, 4).

Although we selected these variables as candidate predictors

in our analysis, they were not retained in the final decision

tree. A possible explanation could be that the patients’ age,

premorbid living situation, stroke type, and neurological deficits

could already per se impact their actual ADL performance (i.e.,

a negative effect of higher age, not living at home, having

suffered a hemorrhagic stroke, and more severe neurological

deficits would be already included and reflected by lower Short-

LIMOS scores). A post-hoc analysis showed indeed a moderate

negative correlation between age and the Short-LIMOS in our

sample (rs −0.36, p < 0.0001). Furthermore, patients with a

hemorrhagic stroke had significantly lower Short-LIMOS scores

than those with an ischemic stroke [median 26.08 (14.83–

35.04) vs. 34.75 (24.67–42), p < 0.0001], and patients not

living at home prior to their stroke had significantly lower

Short-LIMOS scores than those who did live at home [median

19.17 (13.33–26.83) vs. 34.71 (24.92–42), p < 0.0001]. When

considering how ADLs were measured, a comparison of our

decision tree with the Itaya model shows that the motor part

of the Functional Independence Measure had more weight

than its cognitive counterpart (4). Contrary to this, the Short-

LIMOS in our decision tree has an equal weighting between—

on the one hand—the patients’ cognitive and communication

abilities and—on the other hand—their motor capabilities.

In addition, the Short-LIMOS assessment shows no floor or

ceiling effects, because it includes cognitive, communication,

and motor tasks of both higher and lower-order complexity

(16). These could be further reasons as to why only the

Short-LIMOS score was retained in the final classification and

regression tree.

The Functional Independence Measure (30) and the

(extended) Barthel Index (31) are two well-established measures

for assessing stroke patients’ ADL performance, whereas the

Short-LIMOS is a new assessment tool. Nevertheless, we

advocate the use of the Short-LIMOS at acute stroke units,

as the instrument is short and compact. Moreover, due to its

multidisciplinary nature, the Short-LIMOS allows to gain a

more comprehensive picture of the patient’s ADL performance

than with both the above-mentioned, established scales (16). In

particular, the observation of patients’ performance in complex

tasks, as well as the patients’ cognitive and communication

abilities (16), are of central importance, as these are typically a

prerequisite for an independent functioning at home.

The strengths of the present study reside in its wide inclusion

criteria, allowing a broad application of the decision tree in

clinical practice, in the prospective nature of data collection in

the clinical routine, in the presence of both a development and

a validation cohort that were separated by an interval of time

[instead of using a split sample method to define two samples

(20)], and in its adequate sample size. A potential limitation is

the moderate percentage of missing data on the main predictor

(Short-LIMOS) in the validation cohort (∼15%). An advantage

of the applied CART analysis is that surrogate markers are

automatically used when data on the retained predictor variables

are missing. In case of missing data on the Short-LIMOS, age
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(<55.5 vs.≥55.5 years) was used as a surrogate marker and thus

also patients with missing Short-LIMOS data could be included

in our analysis. The advantage is that this reflects clinical

practice—as also there, some data may be missing—and the

results are not biased due to a complete-case analysis. It should,

however, be noted that this surrogate marker is less good in

splitting into homogeneous groups than the Short-LIMOS itself.

With that, our external validation is rather conservative and

does not overestimate the decision tree’s performance. Closer

inspection of the patient characteristics showed that patients

with missing Short-LIMOS data were more often treated

with a mechanical thrombectomy, showed less neurological

deficits, had a shorter length of hospital stay, and were

discharged homemore often when compared to patients without

missing data.

To increase the generalizability of the presented decision

tree, a next step would be to test its external validity in other

countries with a shorter length of hospital stay and a different

organization of health care. Furthermore, the decision tree’s

impact on clinical decision making, patient’s outcome, length of

hospital stay, and costs should be investigated (28). Although a

cluster randomized trial is considered to be the best study design

for testing a prediction model’s impact, such a design is time-

consuming and expensive (28). As an alternative, a pre-post

design could be used (28, 32). In the first observational period,

the model is not presented to clinicians and data on outcomes

are collected. In the next step, the model is introduced and the

outcomes within this second stage are compared with those of

the first stage.

Conclusion

To summarize, in stroke patients who have mild limitations

in ADL performance <48 h after stroke onset, the decision

tree developed in the present study is good in predicting early

and safe discharge home. In patients with moderate to severe

limitations in the ADLs, the prediction concerning not being

discharged home is fair. Importantly, patients discharged home

did not need readmission to the hospital or to a rehabilitation

center due to an improper decision on discharge destination. As

this tree was externally validated in stroke patients regardless

of their pre-stroke disability and comorbidity, as well as the

number of strokes, it has the potential to find broad application

in settings in which the length of hospital stay after an acute

stroke is short (<1 week).
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