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Pediatric Cardiac Critical Care (PCCC) is a challenging discipline where

decisions require a high degree of preparation and clinical expertise. In the

modern era, outcomes of neonates and children with congenital heart defects

have dramatically improved, largely by transformative technologies and an

expanding collection of pharmacotherapies. Exponential advances in science

and technology are occurring at a breathtaking rate, and applying these

advances to the PCCC patient is essential to further advancing the science

and practice of the field. In this article, we identified and elaborate on seven

key elements within the PCCC that will pave the way for the future.
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Introduction

In 1671, Neils Stenson described the cardiac pathology of a stillborn fetus with

multiple congenital anomalies including the cardiac lesion, which is now recognized as

tetralogy of Fallot (1). The first palliative intervention for these patients was pioneered

by Hellen Taussig and Alfred Blalock, in November 1944, with the assistance of Vivian

Thomas, when the left subclavian artery was anastomosed to the pulmonary artery, with

what now known as the Blalock-Thomas-Taussig shunt, in a severely cyanosed child with

tetralogy of Fallot (2). A decade later, Sir Walter Lillehei performed the first complete

repair for patients with tetralogy of Fallot using human cross-circulation technique (3).
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During these procedures, children were hand-ventilated and

endotracheal tubes were removed on the table at the end of

the procedure (4). Following extubation, postoperative care

proceeded in the hospital ward, where children were placed

in a closed oxygen tent. No invasive monitoring or arterial

blood gases were undertaken, and all medications such as

morphine and penicillin, were administered by intramuscular

injections (4).

The field of pediatric cardiac critical care (PCCC) has

developed rapidly in the last 30 years. In the modern era,

the partnership between congenital cardiac surgery and PCCC

has resulted in dramatically improved outcomes, driven largely

by transformative technologies and an expanding collection of

novel pharmacotherapies. The exponential advances in science

and technology are occurring at a breathtaking rate; applying

these advances to the PCCCpatient will be essential to advancing

the science and practice of the field. In this article, we identified

and elaborate on seven key elements within the PCCC that will

pave the way to the coming decades (Figure 1).

Future perspectives of pediatric
cardiac critical care

Education and training

In response to PCCC growing complexity, more hospitals

are using dedicated pediatric cardiac units with highly trained

multidisciplinary and inter-professional teams to oversee the

management of children with heart disease (5, 6). This care

model requires specialized training to provide high-quality care,

keep up with evolving technologies, and to performwith optimal

teamwork and communication in a complex environment (6–8).

In the circles of medical education, we recognize the

need for standardized instruction and assessment so that

learners are achieving and maintaining skills, knowledge and

attitudes to ensure our highest standards of care. Competency-

based medical education (CBME) has become the primary

strategy in the United States (US) and other countries to

provide a standardized education and assessment of trainees

with the use of milestones and entrustable professional

activities (EPAs) (9). Milestones, developed and implemented

by the Accreditation Council for Graduate Medical Education

(ACGME; organization that defines standards for US residency

and fellowship programs), is a competency-based assessment

tool used to help standardize the trainee experience (10).

Milestones of trainees are assessed bi-annually in the domains of

medical knowledge, patient care, professionalism, and system-

based practice (11). EPAs are defined as measurable activities

delineated by each discipline to observe that a trainee can

perform a given task independently (12). Learners can then

be assessed for each task, and with the provision of effective

feedback, the learner builds graduated responsibility and

competency in specific educational domains (9, 12).

Learning objectives offer further specificity, and these

are noted for PCCC in the physician curriculum published

by the Pediatric Cardiac Intensive Care Society (PCICS),

as well as a recent publication by Tabbutt et al. (13, 14).

Standardization and structured educational opportunities for

nurses and advanced practice providers are also expanding;

PCICS also recently published an advanced practice provider

and a nursing curriculum to further the effort to standardize

knowledge and skills for those disciplines (15–17).

Simulation-based training is a frequently used educational

modality for trainees and staff in all levels and in different

disciplines (18). There is growing evidence that simulation-

based education strategies, including mastery learning

curriculum can improve patient care practices as well as

improved outcomes (19–21). Using principles of adult

learning theory with methodology in simulation, the Simzones

framework, was developed as a graduated learning system to

develop simulation-based activities for adult learners, although

the integration of mutli-modal simulation technologies has not

been well explored (22–25). In the US, simulation curricula

have been developed for first year pediatric critical care fellows

and cardiology fellows respectively (26–28). PCCC simulation

has focused on building understanding of physiology as well

as multidisciplinary teamwork and systems of care through

bootcamps and other simulation sessions (23). Multi-center

creation of simulation scenarios may further help standardize

learner training from different disciplines and institutions

(13, 14).

Virtual reality (VR) has increasingly been utilized as an

adjunctive educational tool in medical education training,

particularly in non-technical skill building including

communication and team building situations (29). VR-

based training may provide improved accessibility by using

a computer or virtual platform, allowing trainees to learn

asynchronously and independently (30, 31). The use of VR

simulations for junctional ectopic tachycardia and low cardiac

output syndrome have been used for physician trainees, noting

that participants had positive feedback using this interface

(32). The Stanford Virtual Heart project has been developed as

another resource for learners to interact with various congenital

heart malformations, focus on their spatial relationships with

other heart structures (31). Further research is needed to

describe the effectiveness of learning with this new technology,

including in PCCC (32).

Three-dimensional (3-D) printing models are another

educational modality for multidisciplinary learners’ use (33–

35). Hussein et al. developed a 3-D printed heart model for

surgical trainee practice for the arterial switch operation and

demonstrated an improvement of time and trainee technical

performance when using 3-D printed model before using a

hands-on training congenital heart surgery tool (36). 3-D
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FIGURE 1

Seven Pediatric Cardiac Critical Care key elements that will pave the way to the coming decades.

printing requires special software and technology and is

currently only available at specific institutions. Further research

is needed to demonstrate improved educational effects and

subsequent performance on patient outcomes.

Patient monitoring

Daily work in the PCCC unit involves multitasking, often

with disparate teams and unpredictable high-risk events. These

factors combine to produce an environment in which health

providers must rely on knowledge and protocols/warning

systems to guide the prioritization and performance of tasks

(37). Due to the significant presence of and reliance on

technology in such modern healthcare environments, the

interaction between healthcare providers and these technologies

may have a profound impact on the quality of care (37). In order

to improve outcomes, significant effort has been dedicated to

designing tools to help ICU providers manage the increasing

influx of data, and facilitate the early identification of patient

deterioration and risks.

Development of such algorithms has continued, and they

now cover multiple data streams and are designed as risk

assessment tools. An example of newer generation algorithms

is the Rothman Index (RI), developed for adults, which is an

illness-severity index embedded within the electronic medical

record. Twenty-six variables are continuously tracked, and data

is fed into a proprietary algorithm; the calculated score is

designed to reflect patient illness severity (37).

Another pediatric prediction tool assesses imbalances

between oxygen delivery and oxygen consumption, associated

with organ dysfunction along with morbidity and mortality. The

Inadequate Oxygen Delivery (IDO2) Index (Etiometry, Boston

MA) synthesizes patient physiologic and laboratory measures to

continuously predict the risk of having a mixed venous oxygen

saturation < 40%, wherein an elevated IDO2 value indicates

elevated risk in children following CPB surgery (38). This web-

based tool captures and displays integrated data exported from

continuous bedside physiologic data.

Lin et al. investigated the usability of data integration

and visualization of T3 in the light of human factors and

discovered several limitations to the easy implementation of

the software (39). The observations from usability testing warn

that without consistent exposure and integration into clinical

practice, data interpretation aids may be ignored, and, thus,

excluded from critical decision-making where they would be

most useful. Furthermore, a study comparing low cardiac output

score and IDO2 for predicting adverse events in 72 h following

congenital heart surgery showed that using the IDO2 values

had no association with occurrences of adverse events (40).

A group from Boston Children’s found that IDO2 monitoring

could identify critically ill children with sepsis at highest risk

of adverse events or undesirable outcomes (41), and Dewan

et al validated the IDO2 index (IDO2) to predict in-hospital
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cardiac arrest in a general pediatric ICU (42). Additional specific

congenital heart disease machine-learning (ML) approaches to

identify risk factors for complications in the early postoperative

phase (43), long-term complications (44), prediction of brain

injuries in ECMO patients (45) are published as well. These

ML algorithms were used to predict clinical deterioration, to

classify surgical risk, or to classify the heart disease using patient

characteristics. Early prediction of critical events in infants using

a naïve Bayesian model was introduced by Ruiz et al. Thirty-

four routinely collected data points, such as heart rate, CO2, and

lactate, were integrated into the algorithm. The model was able

to predict events up to 1 h prior to their occurrence with high

sensitivity and specificity (46). Single ventricle lesions remain

high risk for adverse events. A novel ECG algorithm utilizing

ST segment instability for detection of cardiopulmonary arrest

in single ventricle physiology was described by Vu et al (47).

Results of recent studies on AI algorithms in patients

with CHD are encouraging. Nevertheless, patient monitoring

algorithms remain in an early phase, and ongoing development

is likely in the following realms: (I) scope of input (II). algorithm

parameters, (III) human-machine interfaces, and (IV) training

(how to use such indicators as decision support tools) (48).

While perhaps promising, the costs of implementation are very

high and the prospect of being universally available is not likely

in the near future. These applications should only supplement

standard monitoring but not substitute for current standards of

ICU monitoring.

Genomic medicine

Personalized medicine refers to combining patient-specific

genetic and genomic properties with traditional clinical factors

to guide medical management. The use of the patient-specific

data facilitates personalized management, tailored to address

individual risk factors, severity of illness and assess response to

treatment (49).

PCCC medicine will likely benefit significantly from

increased integration and application of genomic medicine.

The widely used molecular studies diagnose only about 20%

of suspected genetic diseases, and in the Congenital Heart

Disease Genetic Network Study designed by the Pediatric

Cardiac Genomics Consortium, only 11% of cases had a genetic

diagnosis (50). Technologies such as rapid whole genome

sequencing (rWGS) of patients admitted in the PCCC units

increase the rate of diagnosis and may reduce the cost of

care (51). Genomics research also focuses on understanding

and treating acquired diseases such as distinguishing viral

and bacterial infections in cases of fever (52–54) and may

support the decision to perform a semi-elective procedure

in a febrile child. Additionally, genomics may also assist in

assessing the severity of disease and likelihood of morbidity and

mortality in various pathologies, particularly in patients with

multiple genetic anomalies and comorbidities. For instance, fatal

acute myocarditis has been previously shown to correlate with

putatively damaging variants in genes related to cardiomyocyte

structure and function (55).

The potential of multi-omics technologies to elucidate the

complex interactions between genes, proteins, and biochemical

reactions can hopefully fill gaps in our current PCCC knowledge.

It can also provide accurate and rapid data to direct management

considering the advances in technology and statistical processing

power achieved during the last decade.

To date, genomic research provides a better understanding

of why some patients develop critical care syndromes such

as acute respiratory distress syndrome (ARDS), acute kidney

injury (AKI), or severe sepsis, whereas others do not (56,

57). These findings can be applied to the PCCC practices in

several aspects. AKI is a common complication of post CPB

patients and prediction models of high-risk patients using

genomics will potentially modulate their postoperative course.

Studies using genome-wide RNA transcriptome analyses of

blood enable us to identify groups of children at high risk of

mortality and differentiate those likely to benefit from early

corticosteroid treatment (58–61). Weathington et al. focused on

cell gene expression in severe asthma, revealing mechanisms of

severe disease as well as the influences of medications and the

identification of severity-related genes which may provide new

diagnostic and therapeutic targets (62). Werner et al. reported a

detectable signal in gene expression profiles for early detection

of ventilator-associated pneumonia in ventilated children (63),

a method that may influence the duration of mechanical

ventilation in the post cardiac surgery pediatric patient.

Pharmacogenomic research investigates the patient’s genetic

information that influences their response to therapeutic drugs.

One example is the use of pharmacogenomics to adjust sedation

and analgesia in pediatric ARDS. Zuppa et al. revealed several

factors affecting the pharmacokinetics of midazolam in children,

using the Illumina HumanOmniExpress genome-wide single

nucleotide polymorphism chip. These findings provide the

basis for future implementation of a personalized approach to

sedation (64, 65).

Cardiac critical care in general and specifically in the

pediatric population provides broad operational leeway for

genomics, where a genetic basis was found for an increasing

number of congenital defects and pathologies once considered

idiopathic (e.g., pulmonary arterial hypertension, Hypoplastic

Left Heart Syndrome, and dilated cardiomyopathy) (66–70).

Multigene next-generation sequencing panels that focus on

cardiomyopathy- or arrhythmia-disease genes are available, and

Ritter et al. reported that the results influenced the medical

decision-making in 53% of all cases and up to 80% of cases with

a positive result, especially when testing was expedited (71).

Most patients in PCCC units are admitted after

cardiothoracic surgeries for congenital and acquired heart

defects. Reed et al. reported a proteomic analysis of infants

who underwent open heart surgery. Some patients experience

a systemic response to CPB with significant derangements
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in hemostasis and systemic inflammation that cause excess

morbidity and mortality. This multifactorial response involves

acute phase response, coagulation, and cell signaling pathways

that are not fully understood yet. Reed et al. identified several

biomarkers that improve our understanding of the phenomenon

(72). Future implications include early identification and

treatment of susceptible infants, likely leading to improved

outcomes. However, more research is needed to enable these

findings to become feasible tools for intensivists.

Despite the advances made in the field of orthotopic heart

transplantation (OHT), there are still gaps in the understanding

of the alloimmune response, the role of immunomodulation,

development of tolerance, and xenotransplantation. Ongoing

research is focused on improving outcomes post OHT using

immunomodulation for children with pre-formed anti-HLA

antibodies (PRA). Previous studies reported these children to

have increased risk for rejection, coronary artery vasculopathy

and mortality (73–75). Nowadays, with the increased incidence

of Ventricular Assist Device (VAD) therapy which is associated

with the development of PRA, improving immunomodulation

is crucial as immunomodulation therapies showed better

outcomes for PRA-positive children after OHT (76). Genomic

research achieved advances in understanding the role of

regulatory T cells, costimulatory signals and exosomes, all of

which have clinical implications and may be leading targets to

promote cardiac allograft tolerance and enable cardiac xenograft

survival (77).

While genomic research is surging, ethical and translation

challenges arise as well. There is a need to create a suitable model

for incorporating genomic data in critical care management.

Challenges include knowledge gaps among intensivists on how

to interpret genetic results, concerns regarding the potential

effect of genetic information on child-parent bonding, and

the implications of such information on medical and family

decisions (78, 79). Dimmock et al. reported that clinicians

perceived rapid genomic sequencing (RGS) to be helpful in 77%

of cases and that RGS changed clinical management in 28%

cases. Clinicians also reported a low likelihood of harm of RGS

of infants in ICUs with diseases of unknown etiology (80). This

perception is supported by parents’ responses in a study by

Cakici et al., describing that most parents reported they had

been adequately informed to consent, understood the genetic

results, and denied having regrets or experiencing harm from

the sequencing (81).

Regeneration, nanotechnology and
tissue engineering

Regeneration of cardiomyocytes

Myocardial damage has been traditionally managed with

medication or assist devices, depending on the etiology, extent

and presentation of the dysfunction.With an estimated turnover

rate of <1% per year, with most renewal events reported to

occur in the first decade of life, revealing the heart’s capacity

for regeneration, and how to regulate it, are fundamentals to

cardiovascular research (82).

Cardiomyocyte (CM) necrosis, as seen after myocardial

infarction (MI) triggers a marked inflammatory response

orchestrated mainly by cardiac fibroblasts, and the idea

of converting a portion of these cells in situ to contractile

cells is a transformative concept. Combinations of specific

epigenetic modulators or pharmacological inhibition of

signaling pathways can improve the conversion of fibroblasts to

induced cardiomyocyte-like cells (iCMs). In the initial studies,

using viral vectors loaded with cardiogenic transcription factors

injected directly into the necrotic area, a modest proportion

of CMs in the necrosis border zone was traced as progeny of

infected fibroblasts, concomitant with reduced scar area and

improved myocardial function (83). Although the robustness of

the in vivo reprogramming process and the use of viral vectors

are under debate, this technique provides a novel, cell-free

platform for cardiac repair.

Another important element in the regeneration of CMs

is the extracellular matrix (ECM). Extracellular biomechanical

properties, such as matrix rigidity, that affect cytoskeletal

integrity and sarcomere organization in CMs might act within

signaling pathways to influence proliferation (e.g., the Hippo

signaling cascade with its transcriptional coactivators YAP and

TAZ) (84, 85). The link between Hippo signaling and the

sarcomere was further elucidated by Bassat et al. (86) and

Morikawa et al. (87) reporting that the dystrophin glycoprotein

complex (DGC) inhibits YAP nuclear localization by sensing

mechanical and biochemical inputs from the ECM. Agrin, a

matrix glycoprotein, promotes CMs cell division in vitro via

the DGC-YAP axis and is required for an effective regenerative

response in the myocardium of neonatal mice. Administration

of agrin facilitates cardiac regeneration in adult mice after MI.

CMs division might also be modulated by emergence at birth

from somewhat hypoxic environment in utero to atmospheric

oxygen. Recent studies have reported proliferative effects of

experimental hypoxia on CMs in vivo, making regulated hypoxia

worthy of further exploration in the context of the regenerative

response (88). The potential benefits of regeneration of damaged

cardiac tissue after the direct effect of open heart surgery and the

indirect effect of CPB, although still premature and futuristic,

are promising and may alter the post-operative course in the

PCCC unit.

Nanotechnology

Nanomedicine is the application of nanotechnology

to medicine for diagnosis and therapy (89). Introducing

nanoparticles (NPs) directing modulators of developmental

pathways in CMs significantly advanced the concept of cell-level

in-vivo cardiotherapy. Currently, nanoparticles properties
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can be tuned and designed for different medical applications,

thereby offering the possibility for loading and delivering

a multitude of therapies. Special attention is being paid to

NP-based system for cardiotherapy and their therapeutic cargos

such as microRNAs, cardioprotective drugs or growth factors.

The Hippo pathway is a promising target for nanoparticle based

therapies (90), as it has emerged as a possible switch in CMs

proliferation (91), being tightly connected to the onset and

progression of cardiomyopathies (92).

In this context, Nguyen et al. (93) used matrix

metalloproteinase (MMP)-responsive hydrogels with the

ability to be retained at the necrotic area thus being potentially

suitable for the sustained delivery of therapeutic molecules.

Another recently reported strategy called THEREPI relies

on the use of a biocompatible patch, which is placed on the

epicardium at the border zone of the necrotic myocardial tissue

to achieve the sustained delivery of drugs, macromolecules and

possibly cells for cardiac therapy (94). Ideally, THEREPI can

be efficiently used for the in situ administration of therapeutic

nanoparticles, thereby increasing their retention at the diseased

site and improving cargo delivery.

The potential of gene editing in the restoration of

contractility along with the discovery that the clustered regularly

interspaced short palindromic repeats (CRISPR)/CRISPR-

associated (Cas) system could be used to introduce sequence-

specific DNA cleavage in human cells has revolutionized

research (95). Nanomedicine-related sciences and different

systems have been engineered for carrying the CRISPR/Cas9

apparatus and guide the genetic reprogramming inside the

cells, based on lipid and inorganic nanoparticles (96, 97).

While the exploitation of this technique in nanomedicine

in the context of myocardial regeneration can be attractive

in the case of genetically-determined cardiac pathologies,

technical challenges connected to its specificity are still under

investigation (98). A promising strategy to overcome these

challenges involves utilizing organ-on-a-chip technologies,

capitalizing on microfluidic advances which are combined with

complex three-dimensional (3D) cell biology that provides

organ-like physiology and pathophysiological cellular and tissue

level responses (99, 100).

Tissue engineering

Current surgical procedures used in CHD are limited by

the use of prosthetic materials used to replace heart valves,

vascular grafts, and synthetic patches. Use of these materials

is susceptible to complications such as infection, host immune

response, and thrombotic complications. The lack of growth

and remodeling potential is also a prominent limitation in

children. The field of tissue engineering holds promise for

surgical solutions for these patients (101). Tissue engineering,

first described as a field by Langer and Vacanti in 1993,

promotes using the body’s natural growth and regeneration

processes to repair and replace damaged and nonfunctioning

organs with healthy, native tissue (102). Many approaches exist

within tissue engineering, including the use of biodegradable

polymeric scaffolds, decellularized extracellular matrix, stem

cells, and harvested patient cells (103). The field of congenital

cardiovascular tissue engineering that has advanced furthest

to date is the tissue engineered vascular grafts such as cavo-

pulmonary conduits during the final stage of the Fontan

procedure, which express healing, remodeling and growth

characteristics of native tissue (101).

Tissue engineered heart valves (TEHVs) remain another

challenging field. In vivo and preclinical studies have been

promising, but clinical translation requires improved

performance of current prosthetic options (104). TEHVs

have had a difficult history in the clinic, being used in patients

after only limited animal models, and being limited by several

complications in early studies. These difficulties led to a return

to laboratory research to improve the designs, and mechanistic

studies of tissue formation in TEHVs are required for further

advancement (105).

Many congenital cardiac anomalies can be discovered and

diagnosed in utero during routine physician appointments (106).

If dysfunctional valve associated CHDs could be repaired in

utero (e.g., balloon valvuloplasty in the fetus to open stenotic

valves) there is the potential to provide curative treatment for

CHD before birth, preventing the need for any surgeries (107).

Combination of this idea of fetal intervention, tissue engineering

and scar-free wound healing properties, holds potential to

develop novel curative procedures for CHDs (108).

Finally, a group from Tel Aviv University reported on

the development and application of advanced 3D printing

techniques using the personalized hydrogel as a bioink.

Combined with the patient own cells, the hydrogel may be

used to print thick, vascularized, and perfusable cardiac patches

that fully match the immunological, biochemical and anatomical

properties of the patient. The personalized hydrogel was used

to print volumetric, freestanding, cellular structures, including

whole hearts with their major blood vessels (109).

As we look toward the horizon, novel technologies

developed through nano-medicine and tissue engineering, can

be expected to change the patient care in the PCCC. It will be

important for pediatric cardiologists, cardiac intensivists and

cardiac surgeons to accelerate this research and ensure that

the new technologies are applied toward the treatment of the

critically ill pediatric cardiac patient.

Alternatives to the traditional cardiac
surgery

Minimally invasive cardiac surgery

During the last decades there has been tremendous

advancement in minimally invasive techniques for most of the

surgical fields, including congenital heart defects (CHD). While
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only extracardiac defects, such as PDA, were correctable during

the first years of minimally invasive approach, advancements in

the field now allow some complex intracardiac defects to also be

repaired or palliated with a minimally invasive approach (110).

The use of these techniques significantly impacts the

postoperative course and the outcomes of patients with CHD.

First, it allows earlier mobility and resumption of physical

activity secondary to reduced pain and respiratory dysfunction

and thereby shortens the length of hospital stay. Furthermore,

it reduces the long-term morbidity related to sternotomy, such

as chest wall asymmetry, rib fusion, scoliosis, shoulder girdle

abnormalities, chronic pain syndrome and more. Lastly, it is

associated with a number of cosmetics benefits (110, 111).

Complete care of children with CHD does not concise of merely

repairing or palliating their heart defect, but rather ensuring

their psychosocial future wellbeing. A better cosmetic result has

been associated with an improved self-body image and quality of

psychosocial wellbeing.

Various approaches exist for minimally invasive pediatric

cardiac surgery. The choice depends on the anomaly type

and surgical preferences. Extracardiac malformations such

as PDA, vascular ring, aortic coarctation, collateral vascular

system closure and ligation and more, can be performed via left

lateral thoracotomy, but also using video-assisted thoracoscopic

(VATS) procedure (112). In recent years, more complex

intracardiac malformations have also been addressed by

minimally invasive approaches. Septal defects, atrioventricular

canal defect, valvular lesions (such as mitral cleft), anomalous

pulmonic venous drainage, and even tetralogy of Fallot can

be performed by limited right anterior thoracotomy, or

lower partial sternotomy (110). These procedures, however,

require modification of the cardiopulmonary bypass (CPB)

management, including cannulation strategy and myocardial

protection. Cannulation can be achieved peripherally via

femoral and jugular cannulation, however, peripheral

cannulation can be complicated and not feasible for children

under 8 kg. The procedures can be performed either on a

fibrillating heart or by cardioplegia infusion, depending on the

type of the defect and the repair (113).

Future perspectives of minimally invasive techniques

rely on endoscopic tools and robotic surgery. Nonetheless,

contemporary existing instruments in the field are yet too big for

neonatal thorax. The application of novel technology in the field

will undoubtfully have a significant impact on the management

of patient with congenital anomalies, and will affect the early and

long term outcome of the repair (114).

Hybrid procedures in pediatric cardiac surgery

Tight collaboration between cardiac surgeons,

interventional cardiologists and pediatric cardiac intensivists,

has always been the hallmark of a well-functioning congenital

cardiac center. Historically, however, this collaboration in

the management of CHD has occurred in sequence. Hybrid

approach for some of the congenital malformations consists of

a combined interdisciplinary intervention in a single procedure

(115). The goal of a hybrid procedure is to reduce the number

of interventions and/or their invasiveness, decreasing by that

the magnitude of cardiac interventions. Hybrid procedures are

usually performed on a beating heart off CPB, which allows

a real-time intraoperative feedback of a given procedure by

angiography or by transesophageal echocardiogram (TEE).

Hybrid procedures are utilized under various circumstances.

The classical indication for hybrid approach is for high

risk, or low weight neonates with HLHS. Recent studies

have demonstrated that these patients may benefit from a

shorter and less invasive procedure, which consists of bilateral

pulmonary artery banding and PDA stenting (116). The primary

advantage of such procedures is in delaying major surgery

with CPB in small neonates while improving hemodynamics to

optimize growth and development despite possible risks of stent

migration and the need for pulmonary artery reconstruction.

Nonetheless, in spite of improvement in Norwood outcomes in

the recent years, the hybrid approach is most commonly the

procedure of choice in high risk or low birth weight neonates

(<2 kg).

Muscular VSD is another indication for a hybrid approach.

When surgery alone or catheter-based alone are unable to reach

satisfactory results of a given defect, a hybrid approach may

provide the solution. Muscular VSDs that are unreachable by

surgery may be closed by a proper device on a non-heparinized

heart via direct ventricular puncture using TEE guidance (117).

In summary, hybrid approach may be an excellent choice in

selected patients. Advancements in this field are still required

to provide better technical tool in order to reach improved

outcomes, which will surely impact the complex management

of these small patients.

Mechanical circulatory support

Extracorporeal Life Support (ECLS) or Extracorporeal

Membrane Oxygenation (ECMO) is a high-risk lifesaving

advanced life support modality used in carefully selected

patients with cardiorespiratory failure refractory to conventional

therapeutic interventions. Despite ongoing evolution during

the past 40 years, patient selection, minimizing ECMO/ECLS

duration and complications, circuit pharmacology, and optimal

anticoagulation remain some of the important challenges that

ECMO/ECLS clinicians are aiming to overcome.

For cardiogenic shock, veno-arterial (V-A) ECMO can

be utilized. Support is aimed at providing adequate systemic

oxygen delivery, offloading the heart, and identifying/treating

the underlying reason for cardiogenic shock as soon as possible.

Future research should focus on optimizing patient selection
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and timing, single-ventricle support, outcome predictors, and

the identification and treatment of residual lesions (118).

Extracorporeal cardiopulmonary resuscitation (ECPR) is the

rapid deployment of V-A ECMO to provide cardiovascular

support and gas exchange in the context of cardiopulmonary

arrest, and can be considered for children with heart disease

who experience a witnessed in-hospital cardiac arrest (119,

120). There is insufficient data to recommend ECPR for

out-of-hospital cardiopulmonary arrest events in children.

To further improve outcomes in ECPR, patient selection,

team organization, high-quality CPR, measure and benchmark

patient and process metrics, and simulation for individuals and

team practice are key elements (119).

Utilization of ECMO for pediatric septic shock has not

become a mainstay of sepsis protocols in most centers, but the

surviving sepsis campaign guidelines do recommend to consider

V-A ECMO as a rescue therapy in children with septic shock

only if refractory to all other treatments (121), but there is still

the need for more consistency in the indication criteria (122).

As the duration of ECMO/ECLS support and the occurrence

of complications are important negative determinants of

outcome, current and future endeavors at minimizing these

factors are paramount. Systemic anticoagulation can be

notoriously difficult, especially in infants, and the most

common complications in all types of ECMO/ECLS support

remain bleeding and/or thrombosis-related (123). In an attempt

to minimize these often devastating complications, new ways of

anticoagulating the circuit without anticoagulating the patient

are being developed (124, 125). Surface modifications, aimed

at overcoming the blood-biomaterial surface interactions,

are currently being developed that mimic endothelium and

anti-thrombotic agents (126). Three major groups of surface

modifications are already in use or on the horizon. First,

biomimetic surfaces such as heparin coating already exist,

but do not obviate the need for systemic anticoagulation.

Nitric-oxide donors from within the ECMO tubing, targeting

platelet and fibrin adhesion as well as having antibacterial

properties seem hopeful but are not yet commercially available.

Secondly, biopassive surfaces such as phosphoryl or poly-

2-methoxyethylacrylate coating have been shown to have a

favorable effect on platelets by mimicking a biomembrane

due to hydrophilic properties (127). The third surface

modification aims to mimic endothelial function or to induce

endothelialization of the actual surface itself. In the future a

combination of biomimetic and bio-passive properties with

a living cellular interface will likely become available (126).

Until then, the most common systemic anticoagulant, heparin,

remains the mainstay; however, the use of bivalirudin, a direct

thrombin inhibitor, is becoming more prevalent (125, 128).

Pediatric ECMO/ECLS would benefit from smaller, safer,

and smarter equipment, which would ideally act on feedback

directly from patient parameters (e.g., temperature, blood

pressure waveforms, continuous blood gas monitoring, etc.) to

avoid hyperoxia, sudden drops in pCO2 and provide the ideal

amount of flow. As far as we aware these interactive biofeedback

ECMO systems are not under development (yet), but could

surely play a role in the future. Other exciting innovations on

the, more near, horizon are the use of pumpless ECMO and

the development of an implantable artificial pediatric lung as a

bridge to transplantation or lung remodeling for children with

end-stage lung failure with promising results in animal models

(129–131). Furthermore, development of an artificial placenta

for premature infants also seems promising, but is not within

the scope of this review (132). ECMO/ECLS is highly technical,

requires expertise from many different specialties, and deserves

rigorous initial and ongoing training (including simulation).

The ECMOed taskforce from the Extracorporeal Life Support

Organization (ELSO) has outlined an educational agenda with

recommendations promoting an international collaborative

approach toward standardization of ECMO education. High-

quality research will be necessary to support educational

practices (133).

Children who survive ECMO can suffer from a wide range

of physical and neurodevelopmental disabilities, which they can

even develop long after their stay in PCCC (134). Current data

to support neuromonitoring on ECMO is limited. Therefore,

future studies are needed to be able to develop evidence-

based guidelines for neuromonitoring and neuroprotection for

children supported with ECMO/ECLS (135). Moreover, very

importantly, in the future, all ECMO/ECLS centers should have

a structured long-term follow-up program to identify these

disabilities early as recommended by ELSO (134).

Ventricular assist devices (VADs) are mechanical pumps

that take over the function of the failing ventricle and restore

adequate blood flow. Over the last few decades, significant effort

has been dedicated to developing ventricular assist devices for

smaller children with increasingly complex anatomy.

Short-term VADs are used in the acute treatment of

cardiogenic shock or ventricular dysfunction after cardiac

surgery with the expectation of patient recovery. These devices

are deployed for hours to days as a “bridge to recovery”

or “bridge to decision”. CentriMag (Thoratec Corporation,

USA), and its pediatric version PediMag, are extracorporeal

centrifugal pumps for short-term use as support for LV, RV or

biventricular in children and adults. They have magnetically

suspended rotors to minimize wear and the risk of hemolysis

and thrombosis. Percutaneous devices such as Impella have

been used successfully in bigger pediatric patients (more

than 0.9 m2 of BSA), including patients with single ventricle

physiology (136).

The Berlin Heart EXCOR (Berlin Heart GmbH, Berlin,

Germany) is a pulsatile paracorporeal long-term device that

can support patients in a wide range of sizes, from infants

to teenagers as a bridge to cardiac transplantation in children

with severe left or biventricular dysfunction. Even though not

prospectively studied in children, intracorporeal adult VADs
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as Thoratec Heartmate II e III (Abbott corp, St. Paul, MN,

USA), and Syncardia TAH (SynCardia Systems, Inc., Tucson,

AZ, USA) can be used in older children and teenagers, with

future perspectives for its usage as destination therapy.

VAD support for single ventricle physiology, especially after

stage 1 and 2, is currently a challenge. However, it is possible

to provide long term mechanical circulatory support for the

Fontan population with end-stage heart failure to support

the systemic circulation as a bridge to heart transplant (137).

Moreover, the usage for long-term support for the pulmonary

circulation in patients with univentricular physiology after

Fontan procedure seems promising. Cysyk et al. reported a

sheep study where a miniaturized device was successfully tested

in vivo as a right heart replacement device demonstrating

adequate circulatory support and normal physiologic pulmonary

and venous pressures (138). Additional research is needed to

continue to advance this promising approach.

Safety and quality

PCCC has become incredibly complex due to patient

heterogeneity and advances in medical and surgical strategies

that have enabled treatment options for patients with

increasingly complex conditions. An improved understanding

of patient safety and quality of care and their impact on short

and long-term outcomes is paramount to improve outcomes

and decrease cost from complications (139, 140). As it is a

fast-paced, technical environment with many distractions,

complications and adverse events are frequently observed in the

PCCC unit (141). High-risk procedures are being performed

in complex patients with challenging physiology and anatomy

with diverse teams. This requires high levels of technical

and cognitive performance from staff. Hand offs, medication

dispensing and administration, and diagnostic errors are a

particular source of potential patient harm (142). Reducing risk

of adverse events requires a safety culture which learns from

previous incidents and proactively assesses risk of future events.

Errors, latent threats, culture and learning to
improve safety

Both active errors and latent conditions impact patient safety

in the PCCC unit. Active errors, those with an immediate

detrimental effect, can either happen unconsciously or are

deliberate violations of existing rules. Reducing these types

of errors should be done at system level—analyzing and

improving systems and processes to make it easier to accomplish

high risk tasks in complex systems. For example, rules to

limit distractions for medication preparation and mandatory

double checks will reduce medication error. Latent conditions

are factors that increase the likelihood of adverse incidents.

Latent conditions known to the PCCC unit (143) include

lack of crowd control during emergencies, lack of role clarity

during surgical procedures, different structures to handover

patients, inadequate equipment, shortage of staff, absence of

senior staff, structural staff fatigue due to disproportionate

workload, compassion fatigue and burn-out. Occupational stress

is common in pediatric critical care and burn-out prevalence

has been reported in ranges of 42–77% (144). Interventions to

augment staff resilience such as education in self-care and peer

support are indispensable for improvement of staff wellbeing,

the perception of greater teamwork and ultimately patient safety

and quality of care.

Organizational culture and team dynamics also play a

major role in patient safety. Hierarchy remains a threat to

patient safety (a nurse might find it difficult to address unsafe

behavior of a doctor). Negative behaviors of healthcare staff are

furthermore associated with decreased productivity, employee

satisfaction, engagement and retention, increased absenteeism,

poor teamwork and worse patient outcomes (145). Rude

behavior within neonatal intensive care teams has been shown

to negatively affect the ability of a team to diagnose and treat

critically ill neonates (146).

There have been many reports of improvement of

patient safety after systematic evaluation of safety threats

(147). However, relying solely on incident reporting systems

is insufficient to improve patient safety as a substantial

number of incidents are not reported. Barriers to incident

reporting including fear of retribution, inadequate reporting

systems, lack perceived importance of reporting, lack of

knowledge regarding safety event definitions, and lack of

multidisciplinary collaboration in this process (148). Morbidity

and mortality conferences and discussion of cases with excellent

performance also positively impact outcome (149). The latter

is associated with a more positive effect on healthcare staff

than only learning from mistakes and near-misses and this

may change the perception of reporting systems and increase

overall reporting.

Information technology to enhance patient
safety

There is an increased interest in the use of information

technology and artificial intelligence to improve performance

and overcome human error. Information technology has

the potential to improve communication (i.e., handover

summary), increase medication safety (i.e., notice of important

medication interactions) and increase monitoring safety

(i.e., alerting abnormal vital signs). Artificial intelligence

is capable of analyzing and integrating the large volumes

of continuous physiological data from patients in PCCC

unit, predicting adverse events and ideally provide

decision support as has been outlined in detail in the

monitoring section.
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Quality improvement in the PCCC unit by
standardization of care and quality
improvement programmes

Standardization is a way of dealing with human error

by limiting options in the execution of care. Care can be

standardized using guidelines, bundles, protocols and checklists.

These tools improve adherence to best practice and contribute

to patient outcomes. Bundles, protocols and pathways facilitate

the development of shared expectations and understanding of

standards of care for certain diagnoses and patients locally. The

shared expectations set the framework for multi-disciplinary

care delivery and teamwork. Examples are bundles and

checklists to reduce adverse events during tracheal intubation,

unplanned extubation, central line infections, cardiac arrest

and the use of a handover checklist (150–152). Cognitive aid

bundles for critical events improve adherence to best practice

in simulation trials of these emergencies and their use is

recommended (153).

An important issue for quality improvement in the care of

children with congenital heart disease is the size of the case

load of single centers. Failure to rescue (FTR)—the ability

to prevent mortality following complications—is a potential

challenge associated with a lower case volume and may

represent some of the foundation to support centralization of

care (154). But even single centers with higher case volumes

may struggle to aggregate sufficient outcome data derive

meaningful analyses in the short term (140). International

societies and collaboratives such as the Extracorporeal Life

Support Organization (ELSO), European Association for

Cardio-Thoracic Surgery (EACTS), the Association for

European Pediatric and Congenital Cardiology (AEPC) and

the Cardiac Neurodevelopmental Outcome Collaborative have

therefore developed guidelines to standardize care for children

in the PCCC unit. The recent growth of quality improvement

collaboratives and registries, facilitated by the evolution of

videoconferencing is transforming quality and outcomes.

These registries/collaboratives have been established with a

focus on data sharing, commitment to high quality data and

inclusion of multidisciplinary teams. Collaboratives such as

the Pediatric Acute Care Cardiology Collaborative (PAC-3)

(155), that achieved a reduction in length of postoperative

hospital stay, the Pediatric Cardiac Critical Care Consortium

(PC4), that achieved a 24, 22, and 12% relative reduction

in in-hospital mortality, postoperative mortality and major

complications, respectively (141). The National Pediatric

Cardiology Quality Improvement Collaborative (NPC-QIC)

successfully halved both mortality and growth failure in

children with hypoplastic left heart syndrome between stage

1 and 2 palliation and demonstrate that there is a roadmap

for multi-center collaborative quality improvement that results

in sustained improvement in outcomes (156). Inclusion of

developing countries in international collaboratives have also

been successful (157) and increased international involvement

must be a priority.

Congenital heart surgery outcome metrics have largely been

defined in two domains, short and long-term mortality and

short and long-term morbidity (158). As mortality rates have

decreased over time, there is an increasing recognition of

the importance of long-term neurodevelopmental and quality

of life outcomes. Concurrently, there is growing recognition

that survival in patients with complex, advanced illness may

come at the cost of severe disability, negative quality of life of

both patient and their family and increased healthcare costs

(159). Benchmarking neurodevelopmental (intellectual, motor,

developmental) and social outcomes for patients with CHD

with the general population is an important tool to measure

quality of care (160–162). There is a generally accepted multi-

disciplinary set of long-term PICU outcome measures (163) and

development of a similar set for patients in the PCCC unit

should be considered.

The next steps to reduce mortality and make significant

impact on long-term neurodevelopmental outcomes will require

innovation and a keen focus on quality and safety. Learning from

incidents, near-misses and excellence provides insight in ways

to improve safety and care. Successful PCCC unit management

highly depends on optimal multidisciplinary teamwork.

Negative behaviors and other teamwork undermining factors

should not be tolerated. Modern technology allows evaluation of

practice through data sharing and machine learning algorithms

and data integration remains an important next step in the

advancement of our ability to utilize available data. Finally,

long term outcome analysis should include considerations of

means by which we can improve sustainability and cost of

care delivery.

Discussion

The future of PCCC appears bright with the array of

emerging technologies. Investment in the human capital with

advanced training and education, exploit artificial intelligence

modalities into patient monitoring and early warning systems,

personalized medicine with regenerative goals, improved

surgical capabilities including minimally invasive as well as

hybrid procedures, rescue therapy with cutting-edge mechanical

circulatory support, and above all, the shield dome of patient

safety and improved quality of care interact in harmony with

each other to create the future stage of PCCC. The exponential

convergence of these scientific and technological advances holds

great promise to mitigate the disease burden of children with

congenital heart disease.
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