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Abstract
Some machine learning models, in particular deep neural networks (DNNs), are not 
very well understood; nevertheless, they are frequently used in science. Does this 
lack of understanding pose a problem for using DNNs to understand empirical phe-
nomena? Emily Sullivan has recently argued that understanding with DNNs is not 
limited by our lack of understanding of DNNs themselves. In the present paper, we 
will argue, contra Sullivan, that our current lack of understanding of DNNs does 
limit our ability to understand with DNNs. Sullivan’s claim hinges on which notion 
of understanding is at play. If we employ a weak notion of understanding, then her 
claim is tenable, but rather weak. If, however, we employ a strong notion of under-
standing, particularly explanatory understanding, then her claim is not tenable.

1  Introduction

The increasing use of machine learning, in particular of deep neural networks 
(DNNs), is often met with suspicion. One concern is that deep learning algorithms 
are not well understood. For instance, we do currently not have an explanation of the 
empirical fact that many DNNs are predictively successful in application.1 Our lack 
of understanding DNNs is particularly relevant when they are used in science. One 
of the main tasks of science is to help us understand the world. But how can science 
do so if its own methods are not well understood?

In a recent paper, Emily Sullivan (2022) has taken a novel and surprising per-
spective on this question. She argues that if we use DNNs to understand phenom-
ena in the world, and if we fail to understand these phenomena, this is not due our 
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deficient understanding of DNNs. Rather, what limits our understanding of the phe-
nomena is the low degree to which we can link the DNNs to the phenomena that are 
investigated.2

In this paper, we will argue against Sullivan’s claim and for the common view 
that our current lack of understanding of DNNs does indeed constrain our under-
standing of phenomena investigated with DNNs. Our arguments are based on recent 
results from computer science. In particular, we argue that the predictive success of 
DNNs is a brute, contingent fact, and not something we understand theoretically. 
This, in turn, threatens our understanding of phenomena when we apply DNNs in 
science.

In Sect. 2, we briefly reconstruct Sullivan’s arguments. In Sect. 3, we argue that 
DNNs do not implement a simple, known function, as maintained by Sullivan. In 
Sect. 4, we cast doubt on the idea that so-called saliency maps contribute much to 
a general understanding of DNNs. In Sect. 5, we argue that Sullivan’s main claim 
critically hinges on which notion of understanding is at play. If we employ a weak 
notion of understanding, e.g. meaning some degree of objectual understanding, then 
her claim is tenable, but rather weak. If, however, we employ a stronger notion of 
understanding, in particular explanatory understanding, then her claim is not ten-
able. We conclude in Sect. 6.

2 � Sullivan’s Arguments Reconstructed

2.1 � Sullivan’s Theses

Sullivan distinguishes between two different kinds of understanding. First, there is 
the understanding of a machine learning (ML) algorithm or model.3 Second, there 
is the understanding of phenomena with an ML model, or using an ML model as 
a vehicle of understanding, as one may put it. Sullivan is interested in the relation 
between these two kinds of understanding: How does a lack of understanding of an 
ML model affect our ability to understand phenomena with that model?

When we try to understand phenomena using ML models, we may fail. Sullivan 
identifies two possible reasons for such a failure. The first possible reason is “link 
uncertainty”, i.e., we lack evidence (and thus knowledge) about how a model and its 
output are linked to the phenomena under consideration. The second possible reason 
is that we lack understanding of how the model itself works. Sullivan claims that 
while the first possible reason is in fact an issue, the second is not. Thus, Sullivan 
argues for the following two theses: 

3  Sullivan mostly focuses on a simple variety of DNNs: fully connected feedforward neural networks in 
a supervised learning setting. We will also restrict attention to this kind of ML model.

2  Zerilli et al. (2019) are also critical of the demand for transparent algorithms; however, their focus is 
not on the scientific use of ML, but rather on decision making of ML models more broadly.
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	(1.)	 Negative Thesis: If we want to understand phenomena using ML models, it is 
not necessary to understand how ML models work better than we currently do.

	(2.)	 Positive Thesis: If we want to understand phenomena using ML models, the 
models must be suitably linked to the phenomena in question.4

The meaning of both theses depends on the notions of understanding presupposed 
by Sullivan, although she does not endorse a particular notion of understanding: 
“My arguments do not so much trade on any positive notion of what understanding 
and explanation is” (p. 111). But she assumes a close connection between under-
standing and explanation: “[i]n a slogan: explaining why helps us to understand 
why” (p. 110). We thus take it that her main interest is in explanatory understand-
ing, also called understanding-why (see e.g. Baumberger et al., 2017 for this notion). 
Below we will spell out in more detail what “understanding” means for Sullivan and 
how this affects the meaning and the plausibility of the Negative Thesis.

A challenge to any precise formulation of both theses is the fact that understand-
ing comes in degrees. Criticism of the Negative Thesis easily becomes trivial if this 
thesis is understood as denying that understanding an ML model is necessary for 
maximal understanding with the model. In what follows, we do not assume that the 
Negative Thesis is about maximal understanding.5

In Sullivan’s argument for the Positive Thesis, she compares three examples of 
understanding with ML models, pointing out that the degree to which the models 
provide understanding differs in accordance with their differences in link uncer-
tainty. We will not discuss this argument in detail, because the Positive Thesis is not 
the target of our criticism. Note, however, that even if the three case studies support 
the Positive Thesis, they do not thereby support the Negative Thesis, because even 
if link uncertainty is relevant for understanding phenomena using DNNs, this does 
not show that understanding DNNs is irrelevant for understanding phenomena using 
DNNs.

2.2 � DNNs are Implementation Black Boxes

If there are parts of a model that we do not know and therefore do not understand, 
then, according to Sullivan, this part of the model is black-boxed. Prima facie, mod-
els that are partially or entirely black-boxed seem problematic when we want to use 
them as vehicles of understanding. But Sullivan argues that so-called implementa-
tion black boxes need not stand in the way of understanding phenomena using a 
model. An implementation black box occurs when we do not know how a part of a 
model is implemented.

4  See, e.g., Sullivan (2022, p. 110) : “[I]t is the level of ‘link uncertainty’ present – that is, the extent to 
which the model fails to be empirically supported and adequately linked to the target phenomena – that 
prohibits understanding”.
5  Some of Sullivan’s formulations suggest a stronger thesis, according to which understanding ML mod-
els is not at all necessary for understanding with ML models, for example: “model simplicity and trans-
parency are not needed for understanding phenomena” (Sullivan, 2022, p. 110). Our argument against 
Sullivan’s claim in the weaker sense suggests that it is wrong in its stronger reading too.
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In one hypothetical example, Sullivan assumes that a climate model (or the related 
simulation algorithm) needs to compute factorials, i.e., the function f ∶ ℕ → ℕ , 
f (n) = n! . Factorials can be implemented in several, computationally different ways. 
However, she argues, we do not need to understand the implementation of the fac-
torial function used in the climate model in order to understand the target system 
using the model; it is sufficient to know that the factorial was implemented correctly. 
In this case, the implementation black box is harmless.

What about higher-level black boxes? Sullivan argues that, under certain condi-
tions, higher-level aspects of models are harmless implementation black boxes as 
well. As long as we know which abstract function is computed by a model, this does 
not impede our understanding of the target system, even if the entire model is black-
boxed. Sullivan proposes that this also applies to other cases, arguing that a simula-
tion of Schelling’s famous model of segregation is a harmless kind of implementa-
tion black box, and that the same argument may also apply to DNNs.

At this point, the key issue is the strength of the analogy between DNNs and fac-
torials. We will argue in Sect. 3 below that this analogy is weak.

2.3 � Understanding DNNs Beyond Implementation

Sullivan argues that implementation black boxes may be harmless; at the same time, 
she seems to grant that there are aspects of DNNs that we do not understand, and 
that this lack of understanding may be different in kind from implementation black 
boxes. For example, we may not know the parameter values of a trained DNN before 
we actually train it, and we may not know how to interpret the resulting parameter 
values.

Why does our lack of knowledge not cause problems when we use DNNs as vehi-
cles? Sullivan argues that the aspects of DNNs we do not understand do not matter 
for our use of DNNs as vehicles, because our knowledge is nevertheless sufficient. 
She writes:

[...] the modeller relies on a wealth of knowledge and research about what 
methods to follow to build a generalizable model for the task at hand. [... the 
modelling process] is not back-boxed [sic!]  at the highest level, such that it 
would prevent understanding of the phenomenon the resulting model aims to 
capture. (p. 122)

Sullivan’s justification of this claim is that we have two kinds of knowledge that 
provide sufficient understanding of high-level properties of DNNs. First, we have “a 
general idea of how the finalized model works in virtue of having knowledge about 
how the model was trained and validated” (p. 122). Presumably, this knowledge is 
related to statistical results about the generalization properties of ML models; see 
Sullivan’s footnotes 9 and 10. We will discuss what is currently known about gener-
alization properties in Sect. 5.2.

Second, we have what Sullivan calls “indirect means”, of which saliency maps, 
used in image classification, are one example. Given a trained classifier and an input 
image to be classified, a saliency map highlights which pixels of the input image are 
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relevant for its classification by the model. Saliency maps can be used as a diagnos-
tic tool, for example to detect whether a model places undue weight on a part of the 
image that should be irrelevant. How much understanding do saliency maps pro-
vide? Sullivan writes that while saliency maps are approximative and do not reveal 
every kind of dependency, “different types of saliency testing are enough to satisfy 
our need to know the high level details of how the model works to open the door 
to understanding the phenomenon the model bears on.” (p. 122) We will critically 
assess the ability of saliency maps to provide understanding in Sect. 4.

2.4 � Understanding with DNNs

In order to make the point that we can indeed understand with DNNs as vehicles, 
Sullivan discusses several cases where we are able to gain scientific insights despite 
the fact that we do not understand certain aspects of DNNs. But such insights are 
only relevant to the Negative Thesis if they constitute understanding phenomena 
using DNNs. We thus need to discuss whether this condition is met. Here we iden-
tify three epistemic achievements that are stressed by Sullivan and might constitute 
understanding phenomena using DNNs.

First, Sullivan emphasizes the predictive accuracy of DNNs. One of her case 
studies is the so-called deep patient model, which can be used for disease prediction 
and other purposes. Sullivan notes that the classification by the DNNs agrees with 
the available evidence to a high degree, and writes: “Simply having a highly predic-
tive model, and knowing the high-level emerging properties of the model, uncovers 
that it is possible to use a machine learning representation for disease prediction” (p. 
123). Thus, predictive accuracy might be one of the epistemic achievements leading 
to understanding.6

Second, DNNs may provide how-possibly explanations, that is, they may specify 
possible causes of diseases. Sullivan writes that a how-possibly explanation “sim-
ply highlights a possibility concerning the causes or dependencies of some phenom-
enon; it falls short of explaining how the target phenomena actually is caused or the 
actual dependences concerning the phenomenon” (p. 123).7

Third, DNNs may point researchers in the right direction for further investiga-
tions – they may play a heuristic role. Even if DNNs do not provide how-actually 
explanations themselves, they may contribute to finding how-actually explanations.8 
This role of DNNs is emphasized in the following quote, in which Sullivan discusses 
a model for melanoma prediction:

6  The discussion of understanding with climate models in Jebeile et  al. (2021) suggests “empirical 
accuracy”, which corresponds to predictive accuracy, as one evaluative criterion for understanding with 
DNNs.
7  The question of whether how-possibly explanations provide understanding has been discussed in the 
literature, see, e.g., Rice (2016), Verreault-Julien (2019).
8  The exploratory role of ML models, in combination with xAI techniques such as visualizations, is 
highlighted in Zednik (2021).
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The model can help physicians gain understanding about why certain medical 
interventions are relevant, and using the model can help explain medical inter-
ventions to patients. Moreover, the model can discover new visual patterns that 
are highly correlated with health or disease. This can further understanding, 
especially once these newly discovered patterns undergo further investigation. 
(p. 126)

We will discuss to what extent these three features do in fact contribute to under-
standing in Sect. 5.1 below.

3 � Objection 1: DNNs are not Implementation Black Boxes

We now turn to our criticism of Sullivan’s argument. We start with her point that 
DNNs are harmless implementation black boxes, in analogy to different implemen-
tations of the factorial function, which do not appear to stand in the way of under-
standing a target system. Here we argue that DNNs are not analogous to factorials.

To see why, let us consider how DNNs work. One of the benchmark problems 
of supervised learning is the classification of handwritten digits based on the 
MNIST dataset.9 The task is as follows: Given a 28× 28 greyscale image of a hand-
written digit, find the correct classification of the image. A classifier is a function 
f ∶ X → Y  , f (x) = ŷ , where X encodes the data to be classified, Y encodes the set of 
classes, and ŷ is f’s prediction. Here, we simplify MNIST and take X to be the set of 
all 28× 28 black-and-white pictures, i.e., each pixel can only be either black or white. 
Y is the set Y = {0, 1, ..., 9} . A classifier is correct if the classifier’s output ŷ agrees 
with our intuitive judgment (or expert judgment) y about which digit is depicted in 
x, i.e., whether y = ŷ.10 A good classifier is a classifier that is correct in a large pro-
portion of instances.

DNNs are very good at solving this type of classification problem. We initial-
ize a DNN, with prediction function f̂  , with random weights; at this point it would 
not be a good classifier. Now we train f̂  . The first part of the dataset consists of 
60,000 images of handwritten digits, xi , together with labels yi , indicating which 
digit is depicted. Abstractly, the training set is X = {(xi, yi), i = 0...60�000} . Training 
f̂  on X means that f̂  adjusts weights according to stochastic gradient descent. After 
training, we can test how well f̂  classifies on a test set X� = {(x�

i
, y�

i
), i = 0...10�000} , 

which is also part of the MNIST dataset. Importantly, the examples in the test set are 
not in the training set. When we say that a DNN is good at solving the MNIST prob-
lem, we mean that f̂  is good at classifying the pictures in the test set.11 This is what 
computer scientists mean when they say that DNNs generalize well on MNIST. Of 
course, DNNs also generalize well on problems that are much bigger and complex 
than MNIST.

10  For the sake of the argument, we assume that we (or the experts) agree about y.
11  For some DNNs, the classification is correct in over 99% of the data in X′ ; see Nielsen (2015).

9  The following discussion of MNIST is based on Nielsen (2015); a more thorough account of super-
vised learning can be found there or in Hastie et al. (2009) and in Goodfellow et al. (2016).
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Let us now return to Sullivan’s point that if we know the function computed by 
a model, for example the factorial, then we do not need to know how the model 
implements the computation, as long as the implementation is correct. The preced-
ing account of how DNNs solve MNIST indicates that DNNs do not implement a 
known function in the same way in which a certain algorithm or a subroutine in a 
computer program implements the factorial. In more detail, there are two candidate 
functions that could be said to be implemented by the DNN, viz. f and f̂  . Consider 
first f, i.e., the “true” classifier, the function that classifies all images correctly. How-
ever, it is just not the case that we know f in the same way we know the factorial 
function. In the case of the factorial, we have a simple, short description of how to 
obtain the output for every possible input.12 In the case of the “true” classifier f, we 
have an explicit representation of only a very small portion of f, viz., for the training 
and test sets. Of course, we could expand the training and test sets, but doing this 
until we know f essentially amounts to going through all possible 28× 28 black-and-
white images and determining which digit, if any, is depicted, which is practically 
impossible. There are 228×28 possible black-and-white images of this size; in deci-
mals, this is about 10236.13

Consider now f̂  . First of all, it is not clear whether, strictly speaking, the DNN 
can be considered to be an implementation of f̂  because f̂  is the function that maps 
inputs to outputs in the same way as the DNN. It is the input-output profile of the 
DNN, i.e., a property of it, and not implemented by it. Second, even if we granted 
that f̂  were implemented by a DNN, f̂  is not known in the way in which the factorial 
is known because f̂  is extremely complex. Researchers sometimes cannot anticipate 
how f̂  changes if the input is slightly modified. All typical users know is that f̂  
approximates the true classifier f, but since f is not known, this does not help either. 
Using the terminology recently proposed in Creel (2020), DNNs lack “functional 
transparency”, i.e., we do not know which algorithm is instantiated by a particular 
DNN.

As indicated above, Sullivan uses a second example, Schelling’s checkerboard 
model of segregation, as an analogy to DNNs. Her main points about Schelling’s 
models are as follows: First, for some time, it was unclear whether the model pro-
vides a how-actually explanation of racial segregation, because there was a lot of 
link uncertainty. Second, the implementation of the model was irrelevant for the 
question as to what extent the model can help us to understand racial segregation. 
Per analogiam, these two points are supposed to carry over to DNNs.

We agree with the first point about link uncertainty regarding both Schelling’s 
model and DNNs, but this point is only relevant to the Positive Thesis, which is 
not our focus. However, we think that the Schelling model and DNNs are relevantly 

12  See Wilkenfeld (2019) for an articulation of the idea that having a short, compressed representation of 
an object, and being able to use this representation, is key to understanding.
13  Here we gloss over the fact that the set of pictures of a handwritten digit S is a subset of all black-
and-white pictures of this format, P; the subset S is many orders of magnitude smaller than P. However, 
even if S is tiny in comparison to P, it is still much too big to classify its elements by hand. Additionally, 
it is probably very hard to obtain or describe S. We also gloss over the fact that the DNN does not really 
implement f, because the DNN does not fully reproduce f, but merely approximates f.
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disanalogous when it comes to understanding the model itself, which is relevant for 
the Negative Thesis. It is true that the implementation of the Schelling model does 
not matter much. However, the Schelling model is different from DNNs in having 
fixed dynamics, i.e., fixed, predetermined rules of transition, which are chosen by 
the modelers. The situation is very different with DNNs, where the dynamics are 
learned during the training process and not known by the modelers. Even worse, 
the modeling assumptions implicit in a DNN are not easily stated or summarized 
because they are too complicated and involve too many parameters. The assump-
tions underlying the Schelling model, by contrast, are much simpler. They are in fact 
a straightforward operationalization of a simple and intuitive story: People tend to 
move elsewhere when their ethnic group is clearly in the minority (see Hartmann, 
1999 for models and stories). As a consequence, scientists can to some extent reason 
about the behavior of the model. This point does not hold true with regard to DNNs, 
which largely remain black boxes.

This does not mean that researchers do not have any idea how DNNs function. 
For instance, Buckner (2018, 2019) has suggested that we can explain the classifica-
tions of some DNNs with so-called “transformational abstraction”. While this may 
provide a kind of story about how DNNs function, the details of the model are too 
complicated and do not allow humans to reason with it. And the details indeed mat-
ter. If the functions used in a DNN’s computation are not implemented in an efficient 
manner, then computations will take longer, which limits our ability to use DNNs in 
application. The same goes for which exact activation functions we use, which exact 
optimization procedure, and so on. These are important issues to consider, but they 
are problems that we have on top of the fundamental difficulty that we know little 
about what function is computed by an DNN.

4 � Objection 2: No (Global) Understanding of DNNs from Saliency 
Maps

After the argument about implementation black boxes, Sullivan seems to grant that 
we may not fully understand DNNs. However, she argues, we have some insight into 
their working, and this is sufficient for understanding with DNNs. In particular, she 
singles out saliency maps as a method which helps us by “determining the suitabil-
ity of the model” (p. 122), that is, by establishing that the model itself works prop-
erly. We will now argue that saliency maps do not establish this, for two reasons.

The first reason is that methods such as saliency maps provide very limited insight 
into the general working of a model. They are geared toward understanding the clas-
sification of particular instances by a model, not toward understanding more global 
properties of the model, which would require that these methods tell us about how 
a model behaves for many inputs. In computer science parlance, they provide local 
explanations.14 Recall that a saliency map can be interpreted as a heat map, which 
highlights regions of an image that are relevant to the classification of the image. 

14  See Lipton (2018), Doshi-Velez and Kortz (2017), Ribeiro et al. (2016).
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Mathematically, a saliency map is the gradient of the model’s output (prediction) 
with respect to one input, that is, a map that measures how much the output would 
change if the components of an input image changed. This means that saliency maps 
only give us local and linear information. They tell us how a linear approximation of 
f̂  behaves in a small neighborhood of the instance, and may differ significantly even 
for inputs that appear to be very similar.

It might be thought that researchers can use a sample of local explanations 
obtained using saliency maps to inductively infer how DNNs work more generally. 
However, to reliably infer explanations for a larger part of the input space, a huge 
number of saliency maps may be needed, depending on the nature and non-linearity 
of the predictor, which makes this approach unfeasible. Furthermore, this inductive 
approach would only work under the assumption that saliency maps for particular 
instances are reliable. This brings us to our second point.

The second reason for being cautious about the use of saliency maps is that it has 
been contested whether they can provide much insight into the classification even 
of particular instances. For example, Adebayo et al. (2018) critically examine sali-
ency methods (which encompass saliency maps). They find that there is a lack of 
standards for assessing saliency methods, i.e., it is not clear under what criteria we 
should consider such methods to be reliable. Then the authors propose two criteria, 
randomization tests, one for the model and one for the data. The idea is that a sali-
ency method should depend both on the model’s learned parameter values and on 
the training data; if the result of a method is independent of model and data, e.g., if 
the saliency method works similarly on a scrambled and an unscrambled version of 
a model, then the method should be discarded. Finally, the authors apply these tests 
to a number of saliency methods and find that some widely used saliency methods 
fail the two tests. In the conclusion, the authors write: “Our results show that visual 
inspection of explanations alone can favor methods that may provide compelling 
pictures, but lack sensitivity to the model and the data generating process” (p. 9).

To be fair, Sullivan grants that saliency maps do not provide a full understanding 
of a model. However, it is important to realize just how little saliency maps tell us 
about f̂  . This is compatible with Sullivan’s point that, in some cases, saliency maps 
and similar methods can pick up unintended features of a model, e.g., that the model 
relies on proxies for classification instead of the intended features (Sullivan 2022, p. 
122). Saliency maps can indeed be useful. However, there is no guarantee that if a 
saliency maps looks fine, the model is fine. Saliency maps are heuristic tools; they 
do not provide general understanding of a model.15

15  Zednik (2021) proposes the use of heat maps to answer questions about why an ML model does what 
it does, which yields understanding with the model. However, as he acknowledges, sometimes, “the util-
ity of input heatmapping is likely to be limited” (ibid., p. 277) and “there is also considerable room for 
improvement” (ibid., p. 286). The adequacy of so-called xAI techniques, which encompass saliency 
maps, has been repeatedly questioned in the computer science literature; see, e.g., Rudin (2019).
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5 � Objection 3: Understanding DNNs Matters

5.1 � Criteria for Understanding with DNNs

Our main argument against the Negative Thesis is that, on plausible readings of the 
notion of understanding with DNNs, the Negative Thesis comes out wrong.

Our argument is premised on the assumption, defended above, that Sullivan is 
interested in explanatory understanding using ML models. Several views of explana-
tory understanding are available. According to de Regt (2017, p. 92) we have explan-
atory understanding of a system if we can explain it using a theory that is intelligible 
to us and if the explanation is consistent and empirically adequate. Some authors do 
not require full knowledge of an explanation for some degree of understanding-why. 
Khalifa (2017, p. 14) proposes that the degree to which a person understands why p 
depends on how close her grasp of the explanatory nexus comes to knowledge of an 
explanation. Still, to understand why p is the case, people have to get close to a (cor-
rect) explanation.

In what follows, we will not work with any specific view of explanatory under-
standing though. Rather, we will go through the three epistemic achievements we 
have extracted from Sullivan’s paper in Sect.  2.4. For each achievement, we will 
discuss how close it comes to explanatory understanding with DNNs, to what 
extent DNNs realize this achievement, and what this means for the Negative The-
sis. We will obtain three readings of the Negative Thesis that differ considerably in 
strength.16

First, Sullivan emphasizes the predictive accuracy of DNNs. The predictive accu-
racy of some DNNs is beyond dispute. Furthermore, it is very plausible that pre-
dictive accuracy is a necessary condition for understanding. If we want to provide 
explanations on the basis of DNNs, then the predictions need to be (approximately) 
correct. Most importantly, the DNN has to reproduce the explanandum phenome-
non. Despite this, predictive success is not sufficient for explanatory understanding 
unless a predictively accurate tool provides at least some explanatory information.

The second achievement that Sullivan discusses regarding understanding with 
DNNs is how-possibly explanation. It is reasonable to require how-possibly expla-
nations as a necessary condition for understanding. Still, this does not underwrite 
Sullivan’s claim that DNNs provide us with understanding about the target system, 
because it is dubious whether how-possibly explanations suffice for a significant 
degree of explanatory understanding. A how-possibly explanation provides a pos-
sible mechanism that reproduces the explanandum phenomenon; it does not need to 

16  Note that our three readings of the Negative Thesis arise because we take the notion of understanding 
with ML models to be unclear. It may also be asked what exactly understanding of ML models means. 
For our discussion this does not matter much, because whatever understanding of ML models is, the 
degree of this understanding is fairly low. We take it that Sullivan’s main point is to argue that despite 
this comparably poor understanding of DNNs, they can help us to understand real-world phenomena.
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provide the real mechanism that produced the phenomenon. A how-possibly expla-
nation need not be an explanation.17

It is, admittedly, debatable whether explanatory understanding requires how-
actually rather than how-possibly explanations. For Khalifa (2017), explanatory 
understanding has to get close to a correct explanation; de Regt (2017) allows that 
how-possibly explanations contribute to understanding, but only because they make 
the theory that is used more intelligible. All we need at this point, however, is the 
assumption that how-possible explanations provide a weaker form of understanding 
than how-actually explanations.

A different question is the extent to which DNNs do in fact provide how-possibly 
explanations. At least Sullivan’s own examples are not convincing. For instance, she 
writes that the deep patient model can answer the question of “how it is possible to pre-
dict disease development for a range of diseases” (Sullivan, 2022, p. 123). But this is not 
a request for a how-possibly explanation of phenomena in the target system, it is a ques-
tion about the possibility of predictive modeling itself. Therefore, an answer to the ques-
tion does not provide a how-possibly explanation about phenomena in the target system.

The third achievement stressed by Sullivan is that DNNs can produce under-
standing by facilitating further investigations by researchers. We interpret this as the 
claim that DNNs play a heuristic role. We agree that DNNs can do this and that 
this is a necessary condition for understanding. However, playing a heuristic role 
is an even weaker criterion for understanding than the previous two; in particular, 
DNNs can play a heuristic role without being empirically adequate. If the notion of 
understanding using DNNs boils down to playing a heuristic role, then the Negative 
Thesis is weak as well: DNNs merely need to contribute some useful information to 
the process of research, which is certainly the case today.

This is not to downplay the role of heuristics in science. They are a very impor-
tant aspect of science, and do provide a kind of understanding. In fact, we believe 
that the heuristic role of ML in science in general deserves more attention (see Zed-
nik and Boelsen, 2020 for examples). It is just important to be clear about what kind 
of understanding DNNs produce. Sullivan emphasizes the heuristic role of DNNs in 
the discussion of the three case studies, while the discussion of understanding with 
DNNs in the introduction of her paper is not qualified in this manner.

All in all, we have argued that all three achievements of DNNs used by Sullivan 
form necessary conditions for explanatory understanding or that they advance this 
kind of understanding to some measure, but that they do not lead to a high degree 
of explanatory understanding, because they are too far from actual explanations. 
The fact that DNNs attain these achievements to a degree only shows that we obtain 
understanding with DNNs in a weak sense. In this weak sense, the Negative Thesis 
not very interesting; for instance, it is plausible that DNNs can be fruitful heuristics 

17  For instance, there are agent-based computer simulations that reproduce facts about the history of the 
Anasazi community (Grüne-Yanoff, 2009). However, if the assumptions underlying the simulation do 
not capture the interactions among agents that led to the historical development, the simulations do not 
explain the history, which means that the simulation does not much advance our explanatory understand-
ing.
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for finding new candidate explanations. A stronger and more interesting reading of 
the Negative Thesis presumes that understanding of phenomena requires predictive 
accuracy and something close to how-actually explanations. This stronger reading is 
important because explanation is often taken to be among the goals constitutive of 
science (a point made e.g. by Aristotle, in the first book of his Metaphysics).

Our argument in this section is not meant to deny that DNNs can be helpful in pro-
ducing some kind of understanding. In fact, we propose that DNNs can help to produce 
some degree of objectual understanding (see, e.g., Baumberger et al. 2017, Sect. 3 for 
a review). Objectual understanding is the understanding of a domain of things; it is 
often taken to imply some knowledge of this domain and the grasp of connections 
between items in the domain. These connections may be explanatory, but need not be; 
they may be merely logical or probabilistic (Kvanvig, 2003, pp. 191–192). As a con-
sequence, there can be a degree of objectual understanding without an actual explana-
tion. For instance, Gijsbers (2013) argues that a classification (e.g., using biological 
species) can enhance our understanding without explanation. ML models can lead to 
some objectual understanding, e.g. by establishing correlations, or by simply adding to 
knowledge of a domain of things.18 Consequently, Sullivan’s Negative Thesis is much 
more plausible when we take her to be talking about objectual understanding.19

5.2 � Lack of Understanding of DNNs Impedes Understanding With DNNs

We now turn to the crux of our argument against the Negative Thesis. We will show, 
first, that there are high-level properties of DNNs that we do not (currently) under-
stand, and second, that this lack of understanding impedes our ability to understand 
phenomena using DNNs as a vehicle. Specifically, our lack of understanding of 
these properties means that we do not know why some DNNs are predictively suc-
cessful, and that this, in turn, implies that we cannot use these DNN to obtain how-
actually explanations about the target system, which is to say that our understanding 
of the target system with these DNNs is limited. Thus, a strong reading of the Nega-
tive Thesis is wrong.

18  Since there are many questions the answers to which contribute to objectual understanding, the degree 
to which objectual understanding is advanced depends on how important the various questions are. This, 
in turn, depends on the purposes of the agent, so objectual understanding is purpose-dependent. The pur-
pose-dependence of understanding is also stressed by Zednik (2021), who does not, however, discuss 
objectual understanding.
19  There is, maybe, another ambiguity in the discussion: It is not clear what it means to say that a real-
world target phenomenon is understood (qua explanatory or qua objectual understanding) using/with/with 
the help of some tool T. Theories and mathematical models help us to understand a phenomenon because 
they contain the relevant connections. In particular, explanations are basically inferences from theories 
(and perhaps from auxiliary information and modeling assumptions). Other tools act more indirectly to 
enhance our understanding, e.g., because the results obtained using the tools suggest explanatory hypoth-
eses, which can then be examined in detail. It is plausible to say that ML models and DNNs can help 
us to understand phenomena in this more indirect sense. But ML models do not help us to understand 
phenomena in the way theories and some other models do. Regarding theories, this point follows from 
the account of scientific understanding by de Regt (2017). For him, it is a necessary requirement that the 
theory used be intelligible to the researcher, and this is not the case with ML models, at least with many 
DNNs.
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First, we turn to properties of DNNs that we do not understand. In the computer 
science literature, several such properties are discussed—here is a first example. 
We have seen that some DNNs are very successful at solving a variety of problems. 
In particular, some DNNs generalize well. However, the reasons why these DNNs 
generalize well is only insufficiently understood (Zhang et al., 2017; Shwartz-Ziv & 
Tishby, 2017; Alain & Bengio, 2016; Zhang et al., 2021; Berner et al., 2021). Zhang 
et al. (2017) ask how we should characterize the difference between DNNs that gen-
eralize well and DNNs that do not, and they find that we do not have a satisfactory 
answer to this question. To support this claim, they consider several benchmark data 
sets on which DNNs perform well. They shuffle the labels attached to the images in 
the training sets in a random way, and train DNNs on these shuffled data sets. Surpris-
ingly, they find that the DNNs are still able to perform well on the training sets. (They 
do not perform well on test sets, because the random shuffling prevents the models 
to learn anything generalizable from the data.) This means that DNNs just memo-
rized the shuffled data. This is puzzling, because we know that the DNNs did not just 
memorize the original data; otherwise, they would not have been able to perform well 
after training on the original data sets. How is it that DNNs are able to extract a sig-
nal from the original data without overfitting, while also memorizing the randomized 
data, which amounts to overfitting? Zhang et al. (2017) argue that existing notions 
from statistical learning theory, such as VC dimension, Rademacher complexity, and 
uniform stability, which are supposed to capture when a model does neither under-
fit nor overfit the data, are unable to account for this difference. Since Zhang et al. 
(2017) proposed their argument, a lot of research has gone into answering this ques-
tion, and progress has been made. Still, in an updated version of Zhang et al. (2017), 
the authors write: “Despite significant progress on theoretical understanding of deep 
learning in the past few years, a full mathematical characterization of the whole story 
remains challenging” (Zhang et al., 2021, Sect. 6.1.). Berner et al. (2021, p. 22) write 
that generalization is now better understood, but, for the most part, only for simplified 
models, e.g,. in the linear case. There is no clear, agreed-upon answer as of yet, so 
this is a property of DNNs that we do not sufficiently understand.20

Turning to the second part of our argument, this lack of understanding of DNNs 
impedes our ability to understand with DNNs as a vehicle. The problem is that, if 
we do not know why DNNs generalize well, that is, if we do not know the reasons 
for their predictive success, then at least some DNNs are predictively successful for 
the wrong reasons, which is to say that these models do not give us how-actually 
explanations of the phenomena under scrutiny.

To make the point that we need to understand DNNs in order understand with 
DNNs as a vehicle, let us first consider the case of a single DNN. Assume that we 
want to use that DNN to understand a target system, and that we have successfully 
trained the model, such that it generalizes well for a number of test cases. If we do 

20  Proposals to explain the successes of DNNs have been discussed in the recent philosophical litera-
ture; see Buckner (2018, 2019) for an analysis of why so-called convolutional neural networks generalize 
well, and Räz (2022) for a statistical explanation of the successes of DNNs; see also Zhang et al. (2021), 
Berner et al. (2021) and the many citations of Zhang et al. (2017) in the computer science literature.
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not understand what kinds of features the model uses, it is possible that the model 
relies on unstable features, or artifacts in the data, and that the model may therefore 
perform poorly on new, untested data. In other words, it is possible that the predic-
tions are not based upon those kinds of features that explain the predictions or regu-
larities in the target system.

Let us give a concrete example of a DNN that is predictively successful for the 
wrong reasons, in that its success is based on spurious correlations.21 Spurious 
correlations are misleading about the causal relations underlying a prediction. If a 
model is based on spurious correlations, the model’s predictive accuracy may be bad 
for a relevant subset of data, namely the subset where the difference between mere 
correlation and causal relation makes an observable difference. Caruana et al. (2015) 
provide a notorious example of a model for hospital admission triage that is (at least 
to a large extent) predictively successful, but makes wrong and harmful predictions 
for a subset of cases. However, a model that is to a large extent predictively suc-
cessful, but that may still be systematically wrong about a target system given the 
knowledge of the researchers, is not a good tool for yielding understanding about the 
target system.

Turning to the general case, why might a better understanding of generalization 
properties of DNNs help here? One way to understand generalization properties bet-
ter is to prove an upper bound on the so-called generalization error (a measure of 
how well a DNN performs in the worst case), given assumptions about the data dis-
tribution, features of the model and of the learning algorithm. Theorems of this sort 
will allow us to identify DNNs that perform well even in the worst case, as opposed 
to other DNNs about which we do not know how well they perform in the worst 
case, even though they may perform well in empirical tests. This latter category is 
likely to include models that exploit spurious correlations, such as the case of hos-
pital admission triage mentioned above. However, if a DNN provably generalizes 
well even in the worst case, it is likely that this model will not rely on spurious cor-
relations, at least for the most part. So we can be more confident that the model isn’t 
successful for the wrong kinds of reasons.

Note that it may be possible to understand why a specific DNN performs well, 
without a general understanding of the generalization properties of DNNs. However, 
the fact that so many DNNs perform well suggests that there is a general reason or 
explanation for this phenomenon, which is likely to be provided by a general story 
of what kind of features DNNs use to predict successfully. Note also that even if 
we understand why one single DNN performs well, and this improves our ability to 
understand with this DNN as a vehicle, this is sufficient for our argument against the 
Negative Thesis.

At this point, it could be objected that we are running two things together. If a 
DNN picks up on spurious features, this seems like a matter of link uncertainty, 
that is, of how the model and the world are related, and not of our understand-
ing the model itself. We reply: As pointed out above, researchers do not fully 

21  The fact that uncovering correlations is not sufficient to uncover causal structures is well known, see 
Spirtes et al. (2000) and Pearl (2009).
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understand which features the DNN picks up on, nor how these features are com-
bined to produce the final classification. However, understanding how this works 
means understanding how the model as such behaves in general, that is, how fea-
tures are combined for any input, and not how the model relates to a particular 
dataset, and thus to its target. So what is missing here, we suggest, is understand-
ing of the model itself.

There is a more general lesson to be learned at this point. What our discussion 
shows is that link uncertainty and understanding of DNNs cannot be separated in 
a clear-cut manner. They are not independent quantities, as it were; rather, if link 
uncertainty is removed, we will typically understand our model better. Conversely, 
given some background knowledge about the target, a better understanding of the 
DNN can reduce link uncertainty. The idea that understanding of the model and link 
uncertainty are independent is misguided. If this is so, the truth of the Positive The-
sis undermines the truth of the Negative Thesis.

The problem of understanding the generalization properties of DNNs is one 
important open problem, but it is not the only one. Vidal et al. (2017) and Berner 
et al. (2021) note several further open theoretical problems. One important example 
concerns the optimization properties of DNNs: It is not known whether stochastic 
gradient descent (SGD) finds the best approximation f̂  of a function f of interest. 
Vidal et al. (2017) report that there is much empirical and some theoretical evidence 
that local minima are mostly harmless, but the question is not yet settled. Again, our 
lack of understanding of this high-level property of DNNs limits our grasp of the 
predictive accuracy of our use of DNNs.

Our argument might easily be misunderstood as saying the following: the higher 
the accuracy of a DNN, the better our understanding obtained by using the DNN. 
Since we do not know the scope of the predictive accuracy of a DNN, we cannot 
render the DNN more accurate. Thus, our understanding of the phenomena using 
the DNN remains limited. On this reading, the argument seems pointless with regard 
to the Negative Thesis: It makes the rather trivial point that new and more accurate 
models would improve our understanding of the target. The Negative Thesis does 
not deny this. Rather, its point is that in the current situation, our poor current under-
standing of DNNs does not much limit their use in understanding real-world target 
systems.

Properly understood, however, our argument is in fact directed against the Nega-
tive Thesis: If a DNN is to be used to understand a phenomenon, it has at least to 
reproduce the phenomenon to some degree of accuracy. In this sense, a certain level 
of predictive accuracy is necessary for understanding. But merely reproducing the 
phenomenon is not sufficient for explanation. Rather, we need to understand how 
and why the model reproduces the phenomenon. For instance, we need to under-
stand the scope of the predictive success of the model. We currently do not have 
this understanding of DNNs, so our understanding of phenomena using DNNs is 
impaired.

It may be objected that there are always properties of models that we do not under-
stand, but that the impact on understanding with these models is very minor. Relat-
edly, it may be suggested that understanding is context- and audience-dependent, 
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such that certain questions that we cannot answer about target systems using DNNs 
do not matter much, at least for certain stakeholders.22

We reply that, first, there are further, crucial aspects of DNNs that we do not 
understand (see our examples above and Vidal et al., 2017; Fischer, 2020). Second, 
independent of purposes, explanatory understanding (which is the focus of Sul-
livan’s paper) requires answers to explanatory questions (it may be different with 
objectual understanding). We have exhibited an important property of DNNs that 
we do not understand and that impedes explanatory understanding with DNNs. This 
suffices to reject the Negative Thesis. More generally, the problem about under-
standing that we have discussed above should worry those stakeholders who want to 
avoid predictions based on spurious correlations.

6 � Conclusion

Sullivan has argued that our understanding with DNNs is not limited by our under-
standing of the DNNs themselves (we have called this the Negative Thesis), but 
rather by link uncertainty (Positive Thesis). In this paper, we have argued that the 
plausibility of the Negative Thesis crucially depends on the assumed notion of 
understanding. The Negative Thesis comes out wrong if we use a strong reading 
of understanding with DNNs, notably if we focus on explanatory understanding 
and require something close to knowledge of a correct explanation for this variety 
of understanding. The Negative Thesis is more plausible if we focus on a weaker 
notion of understanding, e.g. a sort of objectual understanding. Thus, we have to be 
precise about the notions of understanding of DNNs and understanding with DNNs. 
More philosophical work is needed to spell out both notions and to learn about their 
mutual relationships.
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