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Abstract 

Intergenerational sustainability requires people of the present generation to make sacrifices 

today to benefit others of future generations (e.g. mitigating climate change, reducing public 

debt). Individuals vary greatly in their intergenerational sustainability, and the cognitive and 

neural sources of these interindividual differences are not yet well understood. We here 

combined neuroscientific and behavioral methods by assessing interindividual differences in 

cortical thickness and by using a common-pool resource paradigm with intergenerational 

contingencies. This enabled us to look for objective, stable, and trait-like neural markers of 

interindividual differences in consequential intergenerational behavior. We found that 

individuals behaving sustainably (vs. unsustainably) were marked by greater cortical 

thickness of the dorsomedial and dorsolateral prefrontal cortex. Given that these brain areas 

are involved in perspective-taking and self-control and supported by mediation analyses, we 

speculate that greater cortical thickness of these brain areas better enable individuals to take 

the perspective of future generations and to resist temptations to maximize personal benefits 

that incur costs for future generations. By meeting recent calls for the contribution of 

neuroscience to sustainability research, it is our hope that the present study advances the 

transdisciplinary understanding of interindividual differences in intergenerational 

sustainability. 

 Keywords: brain anatomy, intergenerational sustainability, dorsomedial prefrontal 

cortex, dorsolateral prefrontal cortex, perspective-taking, self-control  

                  



            3 

Highlights 

• In an intergenerational sustainability dilemma with real consequences, successive 

groups (generations) extract resources from a common pool. 

• If the present generation exceeds a certain extraction threshold, this reduces the 

payoff of the next generation. 

• Individual neuroanatomical fingerprints relate to interindividual differences in 

intergenerational sustainability. 

• Sustainable individuals are characterized by greater cortical thickness of the 

dorsomedial and dorsolateral prefrontal cortex than unsustainable individuals. 

• The impact of the structural findings on intergenerational sustainability is mediated by 

perspective-taking and self-control processes.  
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1. Introduction 

Intergenerational sustainability lies at the heart of societies’ and humankind’s greatest 

challenges like public debt, social insurance systems, and global climate change (United 

Nations, 2021). Even though most people are aware of and concerned about the challenges of 

social and ecological intergenerational sustainability (European Commission, 2021a; Frank et 

al., 2020; IPSOS, 2021), individuals vary greatly in taking sustainable actions like supporting 

policies to raise taxes and the retirement age or engaging in pro-environmental behavior 

(European Commission, 2021b; Gallup, 2021; Jaime-Castillo, 2013). However, the sources of 

interindividual differences in intergenerational sustainable behavior remain far from being 

understood. 

Behaving in a socially or ecologically sustainable way beyond one’s own generation 

poses unique and challenging dilemmas for humans (e.g. Hauser et al., 2014; Jacquet et al., 

2013; Wade-Benzoni, 2008). Such intergenerational sustainability dilemmas arise in 

situations in which the interests of present decision-makers conflict with the interests of 

future others because people of the present generation must decide whether to sacrifice (vs. 

maximize) their own benefits to provide (vs. reduce or destroy) benefits for other people of 

future generations (Shahen et al., 2021). Crucially, present generations unidirectionally affect 

the outcomes for future generations. Therefore, present generations do not benefit (or suffer) 

from the long-term consequences of their own behaviors, which distinctively differentiates 

intergenerational sustainability dilemmas from single-generation social dilemmas. The 

challenging nature of intergenerational sustainability dilemmas may be traced back to two 

types of psychological distance and the preferential biases arising from them. First, the social 

distance between the present generation and future generations speaks to people’s preference 

for greater benefits for themselves or socially close others compared to socially distant others 

(Jones & Rachlin, 2006), which relates to intergroup bias in single-generation dilemmas 

(Hewstone et al., 2002). Second, the temporal distance between present behavior and future 

consequences resonates with people’s preference for smaller benefits now over larger 

benefits later, which relates to temporal discounting in single-generation intertemporal choice 

dilemmas (e.g. Frederick et al., 2002). However, due to the simultaneous and unique 

interaction of both dimensions of psychological distance (social and temporal) and their 

corresponding preferential biases, intergenerational sustainability dilemmas are distinctively 

more complex than single-generation intergroup situations or intertemporal choice decisions 

(Wade-Benzoni & Tost, 2009). For instance, while in single-generation intertemporal choice 

it is the decision-makers themselves who profit from being patient, in intergenerational 
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sustainability dilemmas it is others of future generations who profit from sustainable 

decisions. Therefore, the search for sources of interindividual differences in intergenerational 

sustainable behavior might be informed by, but cannot be reduced to, research investigating 

interindividual differences in single-generation dilemmas. 

Previous research rarely paid specific attention to interindividual differences in social 

or ecological intergenerational sustainability. More attention has been devoted to 

investigating interindividual differences in pro-environmental behavior in single-generation 

contexts. This research mostly focused on values, norms, beliefs, and attitudes (Li et al., 

2019; Steg & Vlek, 2009) or on personality traits like the Big Five or the HEXACO (Brick & 

Lewis, 2016; Kvasova, 2015; Lee et al., 2015; Markowitz et al., 2012). For instance, pro-

environmental behavior is positively correlated with biospheric and altruistic values but 

negatively with hedonic and egoistic values (e.g. Bouman et al., 2021; Steg et al., 2014; 

Tolppanen & Kang, 2021), and the personality trait of openness to experience positively 

relates to pro-environmental actions (e.g. Brick & Lewis, 2016; Klein et al., 2019; Markowitz 

et al., 2012). However, research on the green gap consistently shows that values and attitudes 

are often only weakly associated with actual green behavior (ElHaffar et al., 2020), and 

predictions of pro-environmental behaviors based on personality traits reveal heterogenous 

effects that are small or moderate in size (Soutter et al., 2020). 

In the present study, we combined neuroscientific and behavioral economic methods 

to assess trait-like interindividual differences in intergenerational sustainability. We applied a 

neural trait approach, which leverages research showing that interindividual differences in 

brain structural properties like cortical thickness or resting-state activation can provide 

objective trait-like markers (for reviews see Nash et al., 2015; Wyss & Knoch, 2022). Such 

neural traits are relatively stable over time in healthy adults (Cannon et al., 2012; Gregory et 

al., 2020), are individually specific (Näpflin et al., 2007; Valizadeh et al., 2018), and can 

explain interindividual differences in behaviors by allowing for inferences about the 

processes underlying behavioral heterogeneity (Baumgartner et al., 2013, 2021; Gianotti et 

al., 2019; Morishima et al., 2012; Yamagishi et al., 2016). Crucially, neural traits are 

objective brain-based measures that, unlike self-reports, cannot be adulterated by response 

biases or demand characteristics. Moreover, we measured intergenerational sustainable 

behavior by using a behavioral paradigm that modeled critical contingencies characterizing 

intergenerational dilemmas and elicited consequential behavior in a well-controlled setting. 

Thus, in line with recent calls for combining behavioral paradigms with neuroscientific 

methods for intergenerational sustainability research (Aoki et al., 2020; Eyring et al., 2021; 
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Sawe, 2019; Sawe & Chawla, 2021), we investigated whether interindividual differences in 

cortical thickness were associated with behavioral differences in a costly played 

intergenerational sustainability dilemma game. 

To assess intergenerational sustainability, we focused directly on the social 

consequences for future generations and built on a game established by Hauser et al. (2014). 

In this intergenerational sustainability dilemma game, four study participants partaking on the 

same day formed the present generation, whereas four other participants partaking one week 

later formed the future generation. Participants of the present generation neither knew each 

other nor the participants of future generations. Over several independent rounds, each 

participant could extract points from a common pool shared with the other participants of the 

present generation. Importantly, if the present generation’s collective extraction exceeded a 

certain threshold, the payoff of every participant of the next generation was reduced 

considerably. By using this game, we could model the characteristic features and 

contingencies of intergenerational sustainable behavior: Participants had to cooperate with 

anonymous others of the present generation by incurring real costs to benefit other unknown 

participants of future generations rather than themselves. Additionally, participants of future 

generations would experience the consequences of participants’ behavior with temporal delay 

and could not reciprocate (or retaliate). 

Because of the lack of studies investigating neuroanatomical sources of 

interindividual differences in intergenerational sustainable behavior, it is difficult to propose 

hypotheses regarding brain structures that explain these interindividual differences. 

Nevertheless, previous research on single-generation social dilemmas, intergroup situations, 

and intertemporal choice allowed for tentative hypotheses, even though intergenerational 

sustainable behavior cannot be reduced to these phenomena. 

First, taking the perspective of future others may be a pivotal mechanism by which 

individuals can overcome the social distance from future generations and can cooperate to 

benefit future generations. In fact, research has shown that taking the perspective of others 

can reduce intergroup bias (Todd & Galinsky, 2014), is associated with cooperation in social 

dilemmas (Ramsøy et al., 2015; Rumble et al., 2009), and can promote sustainable behavior 

in intergenerational sustainability dilemmas in general (Langenbach et al., 2022; Shahen et 

al., 2021; Wade-Benzoni, 2008), and in pro-environmental behavior in particular (e.g. 

Pfattheicher et al., 2016; for review see Heinz & Koessler, 2021). On the neural level, 

perspective-taking is known to be supported by the dorsomedial prefrontal cortex (DMPFC) 

and the temporoparietal junction (TPJ) (Adolphs, 2003; Frith & Frith, 2006, 2021; Healey & 

                  



            7 

Grossman, 2018; van Overwalle, 2009). Moreover, interindividual differences in the 

morphology and interconnectivity of these brain regions were found to explain differences in 

the capacity to overcome social distance in single-generation intergroup situations 

(Baumgartner et al., 2013, 2015). We therefore hypothesized that participants who can be 

categorized behaviorally as intergenerational sustainable (vs. unsustainable) would be more 

inclined to take the perspective of future others and would be marked by greater cortical 

thickness of the DMPFC and/or TPJ. 

Second, engaging in self-control may be an additional mechanism by which 

individuals can overcome the social and temporal distance from future generations. Self-

control enables an individual to advance one goal over a second goal when the two are 

perceived to be in conflict (Inzlicht et al., 2021). The two conflicting goals may be 

maximizing benefits of oneself or close others vs. maximizing collective benefits irrespective 

of the social distance to beneficiaries or receiving a smaller-sooner vs. a larger-later reward 

(temporal discounting). In both cases, these conflicts manifest in temptations, which require 

self-control capacity to resist (Hofmann et al., 2009, 2012; Hofmann & van Dillen, 2012; 

Kotabe & Hofmann, 2015). Ample neuroscientific evidence suggests that the capacity to 

engage in self-control critically depends on the structure and function of the lateral prefrontal 

cortex (PFC) for social (for reviews see Nash et al., 2015; Wyss & Knoch, 2022) and 

temporal decision-making (Figner et al., 2010; Frost & McNaughton, 2017; Peters & Büchel, 

2011). Moreover, studies applying a neural trait approach found that interindividual 

differences in baseline activity of the lateral PFC explained differences in daily pro-

environmental behavior (Baumgartner et al., 2019) and temporal discounting (Gianotti et al., 

2012) in single-generation contexts. Thus, we hypothesized that intergenerationally 

sustainable (vs. unsustainable) participants would be better able to engage in self-control and 

would be marked by greater cortical thickness of the lateral PFC.  
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2. Method 

2.1 Participants 

We acquired behavioral and brain data of 77 students from the University of Bern. Of 

these, 14 had to be excluded due to artifacts in the anatomical brain data or because they 

failed comprehension check (see game-specific questions). Therefore, we finally analyzed a 

sample of 63 participants (33 female, 30 male, mean age ± SD = 21.79 ± 2.82). All 

participants were right-handed, reported no history of neurological or cardiovascular disease 

or psychological disorders, and gave written informed consent before participation. The study 

was conducted according to the principles expressed in the Declaration of Helsinki and was 

approved by the ethics committee of the canton of Bern (no. 2020-00302). 

2.2 Procedure 

The present study is part of a larger project, in which participants’ behavioral as well 

as structural and functional brain data was acquired. In the present study, we were interested 

in the sources of individual differences in intergenerational sustainable behavior. Thus, we 

applied a neural trait approach by focussing on the analysis of task-independent brain 

structure. Note that the functional brain data will be reported in a separate article 

investigating the mental processes during intergenerational sustainable decision-making. 

After first reading the instructions for the intergenerational sustainability game outside of the 

scanner, participants completed the game inside the scanner. Directly after the game, 

participants answered game-specific questions probing engagement in perspective-taking and 

self-control during the game and the comprehension check. After that, participants underwent 

structural magnetic resonance imaging. At the end of the session, participants received a 

fixed show-up fee of 40 CHF. Two weeks after the session, participants received a link to an 

online questionnaire (see trait questionnaire) and received their additional payment, which 

depended on their own and others’ behavior (see intergenerational sustainability dilemma 

game). 

2.3 Intergenerational sustainability dilemma game 

We aimed for assessing intergenerational sustainable behavior irrespective of the 

context of pro-environmental behavior. To this end, we focused directly on social 

consequences on future generations and designed a game inspired by the seminal study of 

Hauser et al. (2014) (see Figure 1). To model the succession of different generations 

separated by a temporal delay, four participants who completed their session on the same day 

formed the present generation, while four other participants who would partake about 7 days 

later constituted the next generation. Participants were informed about this real 
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implementation of a sequence of temporally separated generations and the real monetary 

consequences for both the present and next generation in detail during the instructions. 

In each of 16 independent trials, participants could extract between 0 and 20 points (in 

increments of 2 points) from a pool shared with the other three participants of the present 

generation. Each point was worth 1 CHF. Extraction of points took place under two 

conditions, which were equally distributed over the 16 trials in a pseudo-randomized order. In 

eight trials, participants of the present generation were informed that if they collectively 

extracted more than 40 points, every participant’s payoff of the present generation was 

reduced by 80% for that trial. In the other eight trials, participants were informed that if the 

present generation’s collective extraction exceeded 40 points, the payoff of every participant 

of the next generation would be reduced by 80% in that trial, while the payoffs of the 

participants of the present generation were not affected. Hence, trials differed in whether the 

present or the next generation’s payoff was affected if the present generation exceed the 

threshold of 40 points. Accordingly, we will name the experimentally manipulated factor 

Affected Generation (Gen) and refer to its two conditions as 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 for trials affecting the 

present generation and as 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 for trials affecting the next generation. 

In each trial, participants were informed about the current condition via a decision 

screen. In the top half of the screen, they saw which generation (present vs. next) would be 

affected by their decision, and they were reminded of the collective extraction threshold of 40 

points and on the payoff reduction consequences if the threshold was exceeded. In the bottom 

half of the screen, participants saw the question “How many points would you like to 

extract?” and a visual scale with the numbers from 0 to 20 in increments of 2. They could 

input their decision by using two navigation buttons and one confirmation button. 

After all participants of the present generation had completed their sessions, two trials 

were selected randomly to be paid out (taking into account potential payoff reductions). 

Participants were then given feedback on their generation’s collective behavior and its 

consequences for the present and next generation and received their payment. 

2.4 Categorization of behavioral types 

We categorized participants as sustainable or unsustainable according to their 

behavior in the intergenerational sustainability dilemma game. We named this between-

subject factor Behavioral Type and refer to its two levels using 𝑇𝑦𝑝𝑒𝑠𝑢𝑠 for sustainable and 

𝑇𝑦𝑝𝑒𝑢𝑛𝑠𝑢𝑠 for unsustainable participants. We categorized participants as sustainable if their 

median extraction in trials affecting the next generation was lower than or equal to 10 points. 
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Otherwise, we categorized participants as unsustainable. Please note that this procedure is not 

the same as a median split but a categorization based on an a priori defined threshold set to a 

participant’s individual median extraction of 10 points in trials affecting the next generation. 

We chose a median extraction of 10 points as critical threshold for categorization due to the 

following reasons. In every trial affecting the next generation, each of the four participants of 

the present generation could extract up to 10 points without risking to collectively extract 

more than 40 points, which would reduce the payoff of the next generation. Therefore, 10 

points represent a reasonable sustainability threshold. Moreover, we calculated median 

instead of mean behavior over trials because the mean is overly sensitive to small behavioral 

heterogeneity between trials. For instance, if participants extracted 10 points in seven trials 

but 12 points in one trial, they would be categorized as unsustainable according to mean 

behavior (mean extraction of 10.25 points), even though this behavior would more reasonably 

be categorized as sustainable, which is the case if one aggregates trials by median behavior 

(median extraction of 10 points). 

2.5 Game-specific questions 

After game completion, we asked participants to indicate their agreement to specific 

statements on a scale from 1 (“do not agree at all”) to 11 (“completely agree”). In a first 

block, participants indicated their agreement to the statements that (1) putting themselves in 

the shoes of members of the next generation and (2) putting themselves in the shoes of 

members of the present generation influenced their decision in trials affecting the next 

generation’s payoff. Additionally, participants indicated their agreement to the statement that 

(1) they were tempted to extract more than 10 points and that (2) they tried to resist this 

temptation in 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 trials. These two statements were designed to reflect that behavior 

resulting from (failed) self-control processes involves (1) a desire conflicting with a higher-

order goal (a temptation) and (2) a (lack of) effort to control this desire (effort to resist the 

temptation) (Hofmann et al., 2009, 2012; Hofmann & van Dillen, 2012; Kotabe & Hofmann, 

2015). In a second block, participants answered the same statements as in the first block but 

now concerning trials affecting the present generation. However, they were not asked to 

indicate the extent to which they took the perspective of members of the next generation 

because this statement was not sensible in 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 trials. 

We calculated participants’ differential engagement in perspective-taking in 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 

trials by subtracting perspective-taking with members of the next generation (Target of 

Perspective-Taking: 𝑇𝑃𝑛𝑒𝑥𝑡) from perspective-taking with members of the present generation 
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(𝑇𝑃𝑝𝑟𝑒𝑠). To quantify participants’ differential engagement in self-control, we calculated two 

difference scores. We (1) subtracted participants’ temptation in 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 from 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 trials 

(𝛥𝑡𝑒𝑚𝑝𝑡𝑎𝑡𝑖𝑜𝑛) and we (2) subtracted participants’ effort to resist the temptation in 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 

from 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 trials (𝛥𝑟𝑒𝑠𝑖𝑠𝑡𝑡𝑒𝑚𝑝𝑡𝑎𝑡𝑖𝑜𝑛). In statistical analyses (see mediation results, 

Supplementary Analysis S1, and Supplementary Figure S1B), we focused on 

𝛥𝑟𝑒𝑠𝑖𝑠𝑡𝑡𝑒𝑚𝑝𝑡𝑎𝑡𝑖𝑜𝑛 while entering 𝛥𝑡𝑒𝑚𝑝𝑡𝑎𝑡𝑖𝑜𝑛 as a covariate. Because we statistically 

adjusted for 𝛥𝑡𝑒𝑚𝑝𝑡𝑎𝑡𝑖𝑜𝑛, we considered effects regarding 𝛥𝑟𝑒𝑠𝑖𝑠𝑡𝑡𝑒𝑚𝑝𝑡𝑎𝑡𝑖𝑜𝑛 as 

representing effects concerning differential engagement in self-control (Hofmann et al., 2009, 

2012; Hofmann & van Dillen, 2012; Kotabe & Hofmann, 2015). 

As a comprehension check, participants had to indicate the average amount of points 

each member of the present generation could extract without reducing the payoff of the next 

generation. Hence, this question allowed us to ensure that participants did not accidentally 

behave unsustainably while believing they were behaving sustainably (or vice versa). 

2.6 Trait questionnaire (Schwartz Value Scale) 

We asked participants to fill out the Schwartz Value Scale (Steg et al., 2014) online 

after the experimental session. Participants rated how important 16 values were for them as 

leading principles in life (1: “not at all important”, 6: “very important”). The SVS is divided 

into four subscales, which assess altruistic, egoistic, hedonic, and biospheric values. These 

values have been argued to play crucial roles in pro-environmental (Steg et al., 2014) and 

intergenerational behavior (Wade-Benzoni & Tost, 2009). Therefore, we checked whether 

brain anatomy was associated with intergenerational sustainability independently of the SVS 

(for details, see Supplementary Analysis S2 and Supplementary Table S1). 

2.7 Acquisition of anatomical brain data 

Anatomical brain data was acquired on a Siemens MAGNETOM Prisma 3.0 Tesla 

whole-body scanner using a 64-channel head coil. T1-weighted 3D-modified driven 

equilibrium Fourier transformation (MDEFT) images were acquired from each subject (176 

slices, field of view: 256 × 256 × 176, slice thickness: 1 mm, no gap, repetition time: 7.93 

ms, echo time: 2.49 ms, flip angle: 16°). 

2.8 Preprocessing of anatomical brain data 

We used the computational anatomy toolbox (CAT12, version r1742, 

http://www.neuro.uni-jena.de/cat/, Dahnke et al., 2013) implemented in the statistical 

parametric mapping software (SPM 12, version v7771, 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) for preprocessing, which consisted of the 
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following steps: We (1) classified brain tissue into grey matter (GM), white matter (WM), 

and cerebrospinal fluid (CSF) by using an adaptive maximum a posterior technique, which 

does not necessitate a priori information on tissue probabilites, and by applying a partial 

volume segmentation approach, which estimates a simplified mixed model of a maximum of 

two tissue types (Tohka et al., 2004). Based on this tissue segmentation, we (2) estimated for 

each GM voxel its distance from the WM/GM boundary. This resulted in a WM distance map 

whose values at the outer GM/CSF boundary represent the GM thickness. Then, we (3) 

projected these distances’ local maxima to other GM voxels by using a neighbor relationship 

described by the WM distance. By using this projection-based method, cortical thickness is 

corrected for partial volume effects, sulcal blurring, and sulcal asymmetries. Next, we (4) 

corrected topological defects like handles or holes by using spherical harmonics (Yotter, 

Dahnke, et al., 2011). We (5) created a spherical map of the cortical surface by using an 

algorithm that reduces area distortion (Yotter, Thompson, et al., 2011). This spherical 

mapping allows for reparameterizing the surface mesh into a common coordinate system for 

inter-subject analysis. Finally, we (6) applied spherical registration to MNI standard space by 

using the volume-based diffeomorphic DARTEL algorithm (Ashburner, 2007), which was 

adapted to work with spherical maps. To prepare the surface data for statistical analysis, we 

used the defaults suggested by CAT12 for cortical thickness analyses: We resampled the 

surface data by using the supplied 32k surface mesh, which has an average vertex spacing of 

about 2 mm, and smoothed the data with a full width at half maximum smoothing kernel of 

12 mm. 

2.9 Statistical analyses of anatomical brain data 

We conducted two-sample t-tests on the smoothed cortical thickness measures in 

CAT12. We additionally included sex and age as covariates of no interest in the design 

matrix because these variables have been found to affect cortical thickness (e.g. Gennatas et 

al., 2017). We looked for cortical thickness differences between behavioral types across the 

whole brain as well as across a priori defined regions of interest involved in perspective-

taking (DMPFC and TPJ) and self-control (lateral PFC). For this purpose, we created a mask 

consisting of the DMPFC, bilateral TPJ and bilateral lateral PFC. For the DMPFC and TPJ, 

we used a meta-analysis on social cognition (van Overwalle, 2009) to define peaks in the left 

TPJ (x = ‑49, y = ‑58, z = 22), the right TPJ (x = 53, y = ‑54, z = 22), and the DMPFC (x = ‑3, 

y = 48, z = 30), which consisted of the average coordinates of areas that had consistently been 

found activated in perspective-taking tasks (including goal, intention, and trait inferences as 

well as morality judgments). Then, we created 20 mm spheres centred on these coordinates 
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by using the WFU Pickatlas toolbox in SPM 12 (Maldjian et al., 2003). Finally, we mapped 

these volumes to the 32k surface mesh as implemented in the surface tools in CAT12. For the 

lateral PFC, we used the Desikan-Killiany surface atlas as provided in CAT12 (Desikan et al., 

2006), of which we combined the bilateral rostral and caudal parcellations of the middle 

frontal gyrus and pars orbitalis and triangularis of the inferior frontal gyrus. 

We considered findings significant if they survived family-wise error (FWE) 

correction on peak- or cluster-level at p < 0.05 across the whole brain (whole brain FWE 

corrected) or across the small surface mask defined above (small surface FWE corrected). We 

used a cluster-defining threshold of 𝑡(59) = 3.23 (corresponding to 𝑝𝑢𝑛𝑐𝑜𝑟. < 0.001). For 

significant findings, we extracted cortical thickness values of the corresponding cluster, 

which we subsequently adjusted for the covariates of no interest by regressing out sex and 

age. We used these values for further plotting of the discovered anatomical differences as 

well as for mediation and logistic regression analyses by using the statistical software R 

version 4.1.3 (R Core Team, 2021). To report effect sizes of cortical thickness differences 

between sustainable and unsustainable participants, we calculated Cohen’s 𝑑, with 𝑑 > 0.2 

representing a small, 𝑑 > 0.5 a medium, and 𝑑 > 0.8 a large effect size (Cohen, 1988). 

Additionally, we calculated 𝜂2 as an effect size measure indexing the percentage of variance 

in cortical thickness that can be explained by participants’ Behavioral Type (𝑇𝑦𝑝𝑒𝑢𝑛𝑠𝑢𝑠 

vs. 𝑇𝑦𝑝𝑒𝑠𝑢𝑠). We considered 𝜂𝑝
2 > 0.01 as representing a small, 𝜂𝑝

2 > 0.06 a medium, and 𝜂𝑝
2 

> 0.14 a large effect (Cohen, 1988). 

2.10 Statistical analyses of behavioral and psychometric data 

We conducted two-way mixed between-within-subjects analyses of variance 

(ANOVAs) in R by using the package afex (version 1.0-1, Singmann et al., 2021). We used 

Behavioral Type (𝑇𝑦𝑝𝑒𝑢𝑛𝑠𝑢𝑠 vs. 𝑇𝑦𝑝𝑒𝑠𝑢𝑠) as between-subject factor and Affected Generation 

(𝐺𝑒𝑛𝑝𝑟𝑒𝑠 vs. 𝐺𝑒𝑛𝑛𝑒𝑥𝑡) as within-subject factor. We used R’s stats package’s function t.test() 

for two-sample t-tests for comparisons of levels of between-subjects factors and paired t-tests 

for comparisons of levels of within-subjects factors. We conducted linear regression and 

binary logistic regression analyses by using R’s stats package’s functions lm() and glm(), and 

we calculated Pearson correlation coefficients by using the package correlation (version 

0.8.0, Makowski et al., 2020). 

2.11 Mediation analyses 

We conducted mediation analyses by using the PROCESS R code (version 4.0.1), 

which is available online (http://www.processmacro.org/download.html) and documented in 
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Hayes (2018). PROCESS is a tool that models ordinary least squares and logistic regression 

path analyses and allows for estimating direct and indirect effects in mediation analyses. We 

reasoned that participants’ cortical thickness as neural trait would affect perspective-taking 

and self-control processes, which in turn would impact whether participants would behave 

intergenerationally sustainably or not. We therefore investigated whether an independent 

variable X (participants’ extracted and adjusted cortical thickness values of significant brain 

clusters) affected the binary dependent variable Y (whether participants were behaviorally 

categorized as sustainable or unsustainable) through a mediating variable M (participants’ 

differential engagement in perspective-taking and self-control). To test whether the mediated, 

indirect effect through M was statistically significant, we used 5’000 bootstrap samples to 

generate 95% bootstrap confidence intervals (95%-𝐶𝐼𝑏𝑜𝑜𝑡) for the indirect effect (with the 

value zero not contained in the interval indicating a significant indirect effect). 

 

3. Results 

3.1 Behavioral Results 

We categorized participants as unsustainable if their median extraction in trials 

affecting the next generation exceeded 10 points and as sustainable otherwise (see methods 

for details). We found 30 sustainable and 33 unsustainable participants. There were no 

differences between these behavioral types regarding trait altruistic, egoistic, hedonic, and 

biospheric values or the distribution of sex (see Supplementary Table S2). To describe the 

extraction behavior of these types, we conducted an ANOVA on the median of extracted 

points with the between-subject factor Behavioral Type (unsustainable vs. sustainable, 

abbreviated with 𝑇𝑦𝑝𝑒𝑢𝑛𝑠𝑢𝑠 vs. 𝑇𝑦𝑝𝑒𝑠𝑢𝑠) and within-subject factor Affected Generation 

(trials affecting the present generation vs. trials affecting the next generation, abbreviated 

with 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 vs. 𝐺𝑒𝑛𝑛𝑒𝑥𝑡) (Figure 2). Sustainable and unsustainable participants differed in 

their extraction behavior depending on which generation was affected by their decisions 

(ANOVA interaction effect: 𝐹(1,61) = 98.78, 𝑝 < 0.001, 𝜂𝑝
2 = 0.618). By necessity of the 

chosen categorization, in 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 trials, sustainable participants extracted less points than 

unsustainable participants (𝜇’s represent cell means: 𝜇𝑈𝑛𝑠𝑢𝑠 = 16.30, 𝜇𝑆𝑢𝑠 = 9.10, 𝑡(61) = 

‑9.94, 𝑝 < 0.001, 𝑑 = ‑2.51). However, and not necessarily implied by the categorization, the 

two types did not differ in extracted points in 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 trials (𝜇𝑈𝑛𝑠𝑢𝑠 = 9.09, 𝜇𝑆𝑢𝑠 = 8.93, 

𝑡(61) = ‑0.36, 𝑝 = 0.721, 𝑑 = ‑0.09). 

3.2 Cortical thickness differences between the two types 
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Compared to unsustainable participants, sustainable participants were marked by 

greater cortical thickness (at 𝑝 < 0.05, small surface FWE corrected) in two brain areas, 

including the left DMPFC (x = -8, y = 43, z = 20, peak 𝑡-value: 4.26, cluster extent: 26 

vertices, peak-level corrected, Figure 3A) and the left DLPFC (x = -45, y = 15, z = 40, peak 

𝑡-value: 3.91, cluster extent: 59 vertices, cluster-level corrected, Figure 4A). Effect sizes 

suggested that cortical thickness differences between sustainable and unsustainable 

participants were large according to Cohen’s 𝑑 (DMPFC: 𝑑 = 1.011, 𝜂2 = 0.208; DLPFC: 𝑑 = 

0.963, 𝜂2 = 0.193), and that 20.8% of variance in cortical thickness of the DMPFC and 19.3% 

of variance in cortical thickness of the DLPFC were explained by whether a participant was 

sustainable or unsustainable. Please note that the effect of Behavioral Type (sustainable > 

unsustainable) on cortical thickness was independent of participant’s sex (no Behavioral 

Type × sex interaction, see Supplementary Table S3 and S4). 

Results hold when including the SVS subscales (altruistic, egoistic, hedonic, and 

biospheric values) as covariates (see hierarchical binary logistic regression analyses in 

Supplementary Analysis S2 and Supplementary Table S1). Moreover, brain structural 

differences had unique explanatory power to discriminate between sustainable and 

unsustainable participants over and above the SVS subscales: While the SVS subscales alone 

were insignificant predictors of Behavioral Type (𝛽s of all subscales 𝑝 ≥ 0.113) and only 

achieved a rather weak discriminative ability (𝑅𝑇𝑗𝑢𝑟
2  = 0.060), adding cortical thickness of 

DMPFC and DLPFC increased the discriminative ability by a factor of 4.84 (𝑅𝑇𝑗𝑢𝑟
2  = 0.288, 

comparison of models: 𝛥𝜒2(2) = 16.95, 𝑝 < 0.001). 

Whole brain corrected analyses revealed no additional brain regions in which 

sustainable participants showed greater cortical thickness than unsustainable participants (at 

FWE corrected 𝑝 < 0.05). In the inverse contrast (unsustainable participants > sustainable 

participants), no findings emerged (at 𝑝 < 0.05, whole brain or small surface FWE corrected). 

3.3 Mediators between brain structure and sustainability 

As stated in our hypotheses, we expected that interindividual differences in 

intergenerational sustainability would be associated with corresponding differences in how 

individuals engage in perspective-taking and self-control. In our brain anatomical analyses, 

we found that cortical thickness of two key areas known to be involved in perspective-taking 

(DMPFC, Frith & Frith, 2006, 2021; Healey & Grossman, 2018; van Overwalle, 2009, 2011) 

and self-control (DLPFC, Frost & McNaughton, 2017; Peters & Büchel, 2011; Wyss & 

Knoch, 2022) explained interindividual differences in intergenerational sustainable behavior. 

                  



            16 

We conducted mediation analyses to test whether cortical thickness of these brain areas 

indeed affected intergenerational sustainability by influencing how participants differentially 

engaged in these two socio-cognitive processes (Figure 3B and 4B). 

Participants indicated to what extent taking the perspective of others of the next 

(Target of Perspective-Taking: 𝑇𝑃𝑛𝑒𝑥𝑡) and of the present (𝑇𝑃𝑝𝑟𝑒𝑠) generation affected their 

decisions in trials affecting the next generation, and we calculated participants’ differential 

engagement in perspective-taking in 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 trials (𝑇𝑃𝑛𝑒𝑥𝑡 - 𝑇𝑃𝑝𝑟𝑒𝑠). Hence, higher positive 

values indicated that participants more strongly engaged in taking the perspective of others of 

the next generation, whereas lower negative values indicated that participants more strongly 

engaged in taking the perspective of others of the present generation, and values around zero 

represented that participants engaged in taking the perspective of others of both generations 

in a balanced way. In trials affecting the next generation , sustainable participants equally 

engaged in perspective-taking with members of the next and present generation, with a slight 

preference for taking the perspective of members of the next generation (𝜇𝑛𝑒𝑥𝑡 = 8.37, 𝜇𝑝𝑟𝑒𝑠 

= 6.40, 𝛥𝜇𝑛𝑒𝑥𝑡–𝑝𝑟𝑒𝑠 = 1.97, 𝑡(29) = 2.60, 𝑝 < 0.05, 𝑑 = 0.47). In contrast, unsustainable 

participants strongly took the perspective of members of the present generation, but much 

less of members of the next generation (𝜇𝑛𝑒𝑥𝑡 = 4.82, 𝜇𝑝𝑟𝑒𝑠 = 8.42, 𝛥𝜇𝑛𝑒𝑥𝑡–𝑝𝑟𝑒𝑠 = ‑3.61, 𝑡(32) 

= ‑5.52, 𝑝 < 0.001, 𝑑 = ‑0.96) (for detailed analysis, see Supplementary Analysis S1 and 

Supplementary Figure S1A). We tested whether this differential engagement in perspective-

taking mediated the effect of cortical thickness of the DMPFC on participants’ sustainability. 

Higher cortical thickness of the DMPFC predicted more balanced or next generation oriented 

perspective-taking (unstandardized linear regression coefficient: 𝑎 = 10.61, 𝑆𝐸 = 3.51, 𝑝 < 

0.01), which in turn increased the odds of being of the sustainable behavioral type 

(unstandardized binary logistic regression coefficient: 𝑏 = 0.35, 𝑆𝐸 = 0.10, 𝑝 < 0.001). 

Crucially, the indirect effect of cortical thickness on Behavioral Type was significant 

(product of regression coefficients: 𝑎𝑏 = 3.68, 95%-𝐶𝐼𝑏𝑜𝑜𝑡 = [1.229; 10.273]). Therefore, the 

effect of cortical thickness of the DMPFC on participants’ sustainability was mediated by 

differential engagement in taking the perspective of others of the next or present generation. 

Participants additionally indicated to what extent they were tempted to extract more 

than 10 points and to what extent they tried to resist this temptation in 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 and 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 

trials, and we calculated participants’ differential temptation and differential effort to resist 

this temptation (𝐺𝑒𝑛𝑛𝑒𝑥𝑡 - 𝐺𝑒𝑛𝑝𝑟𝑒𝑠). Higher positive values in differential effort to resist 

temptation indicated that participants more strongly tried to resist the temptation in 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 
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trials, whereas lower negative values indicated that participants more strongly tried to resist 

the temptation in 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 trials, and values near zero represented equal efforts to resist 

temptations irrespective of which generation was affected. Sustainable participants tried to 

resist temptation to an equal extent in 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 and 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 trials (𝜇𝑛𝑒𝑥𝑡 = 7.04, 𝜇𝑝𝑟𝑒𝑠 = 6.69, 

𝛥𝜇𝑛𝑒𝑥𝑡–𝑝𝑟𝑒𝑠 = 0.35, 𝑡(29) = 0.67, 𝑝 = 0.509, 𝑑 = 0.12), whereas unsustainable participants put 

less effort into resisting temptations in 𝐺𝑒𝑛𝑛𝑒𝑥𝑡 than 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 trials (𝜇𝑛𝑒𝑥𝑡 = 3.70, 𝜇𝑝𝑟𝑒𝑠 = 

8.16, 𝛥𝜇𝑛𝑒𝑥𝑡–𝑝𝑟𝑒𝑠 = ‑4.47, 𝑡(32) = ‑6.87, 𝑝 < 0.001, 𝑑 = ‑1.20) (for detailed analysis, see 

Supplementary Analysis S1 and Supplementary Figure S1B). We then used differential effort 

to resist temptation as a mediator of the effect of cortical thickness of the DLPFC on 

Behavioral Type while also including differential temptation as a covariate (these two 

variables were not correlated: 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑟 = 0.02, 𝑡(61) = 0.12, 𝑝 = 0.902). We included 

differential temptation as a covariate of no interest to take into account that behavior resulting 

from (failed) self-control processes depends on the experience of temptation in the first place, 

which is why researchers should control for the degree to which participants are actually 

tempted by certain stimuli (Hofmann et al., 2009; Hofmann & van Dillen, 2012). Higher 

cortical thickness of the DLPFC predicted more equal or greater (𝑎𝐺𝑒𝑛𝑛𝑒𝑥𝑡 > 𝑎𝐺𝑒𝑛𝑝𝑟𝑒𝑠) 

efforts to resist temptation (𝑎 = 7.34, 𝑆𝐸 = 2.39, 𝑝 < 0.01), which in turn increased the odds 

of being of the sustainable behavioral type (𝑏 = 0.45, 𝑆𝐸 = 0.15, 𝑝 < 0.01). Importantly, the 

indirect effect of cortical thickness on Behavioral Type was significant (𝑎𝑏 = 3.32, 95%-

𝐶𝐼𝑏𝑜𝑜𝑡 = [1.131; 9.697]). Thus, the effect of cortical thickness of the DLPFC on participants’ 

sustainability was mediated by differential efforts to resist temptations (independent of 

potential differences in differential temptation). Please note that mediation results hold if 

effort to resist temptation only in trials affecting the next generation is used as mediator and if 

mediations are run without differential temptation as covariate (see Supplementary Table S5).  
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4. Discussion 

What are the sources of interindividual differences in intergenerational sustainable 

behavior? Previous research mostly focused on ecological aspects of sustainability in single-

generation contexts and relied on self-reports. In the present study, we assessed consequential 

behavior and used objective measures of brain anatomical interindividual differences by 

combining a behavioral paradigm with a neural trait approach. Based on extraction behavior 

in a common-pool resource paradigm with intergenerational contingencies (intergenerational 

sustainability dilemma game), we categorized participants as sustainable (n = 30) or 

unsustainable (n = 33) and tested whether these two types were characterized by brain 

anatomical differences in cortical thickness. Sustainable (vs. unsustainable) participants were 

marked by greater cortical thickness of the DMPFC and DLPFC. 

The DMPFC, as a central node of the mentalizing system, is a key brain area involved 

in perspective-taking (Arioli et al., 2021; Fehlbaum et al., 2021; Frith & Frith, 2006, 2021; 

Healey & Grossman, 2018; Jamali et al., 2021; van Overwalle, 2009, 2011). More 

specifically, the DMPFC seems especially involved in taking the perspective of socially 

distant, dissimilar others (Denny et al., 2012; Frith & Frith, 2021; van Overwalle, 2009). For 

instance, cortical thickness and grey matter volume in the DMPFC was found to predict more 

equal (less biased) engagement in taking the perspective of socially distant outgroup and 

socially close ingroup members, which in turn was associated with less biased (i.e. less 

outgroup disadvantaging) behavior affecting these targets of mentalizing (Baumgartner et al., 

2013). The present study transfers and extends these findings regarding single-generation 

intergroup situations to intergenerational sustainable behavior, which resonates with accounts 

comparing future generations to outgroups relative to the present generation as ingroup 

(Meleady & Crisp, 2017; Pearson & Schuldt, 2018). Our mediation analysis corroborated that 

greater cortical thickness of the DMPFC predicted less biased (i.e. less next generation 

disadvantaging) engagement in perspective-taking, which in turn increased the probability of 

being of the intergenerational sustainable type. We therefore speculate that greater cortical 

thickness of the DMPFC reflects a greater capacity to take the perspective of others, even if 

they are socially and temporally distant from the self. This enables perspective-taking with 

future others, which in turn motivates individuals to not only care about their own and the 

present generations’ outcomes but also about future other generations’ outcomes and to 

behave intergenerationally sustainably. 

This reasoning is in line with a recent study arguing that insufficient intergenerational 

mentalizing might be the source of unsustainable behavior (Langenbach et al., 2022). The 
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authors showed that enhancing cortical excitability of the TPJ by applying high-definition 

transcranial direct current stimulation (HD-tDCS) increased sustainable behavior. While we 

did not find cortical thickness differences between sustainable and unsustainable participants 

in the TPJ, one might speculate that in Langenbach et al. (2022), stimulation of the TPJ in 

part affected behavior by indirectly stimulating the DMPFC. The TPJ and DMPFC are highly 

interconnected as shown by structural and functional connectivity analyses (Fehlbaum et al., 

2021; Wang et al., 2021), and studies using transcranial magnetic stimulation (TMS) and 

tDCS have recognized and capitalized on the fact that these brain stimulation techniques not 

only cause local but also distributed network effects (Bergmannet al., 2021; Chang et al., 

2021; Ghobadi-Azbari et al., 2021; Ruff et al., 2009). For instance, inhibiting the right TPJ by 

continuous theta-burst TMS was not only found to reduce the TPJ’s activity, but also its 

functional connectivity with the medial PFC during a behavioral task relying on mentalizing 

processes (Hill et al., 2017). Interestingly, the effects of stimulation on behavior were not due 

to changes in the TPJ’s activity but could be attributed to changes in its functional 

connectivity with the medial PFC. Thus, future research applying brain stimulation directly to 

the DMPFC in combination with simultaneous functional brain imaging might provide causal 

evidence and further insights regarding this brain area’s role for intergenerational sustainable 

behavior. 

Sustainable (vs. unsustainable) participants were not only marked by greater cortical 

thickness of the DMPFC but also of the DLPFC. The DLPFC is a central brain region 

involved in self-control, which is needed for the advancement of a higher-order goal over a 

current desire with which it is perceived to be in conflict, as is typically the case in social and 

intertemporal decision-making (Baumgartner et al., 2011; Fehr & Krajbich, 2014; Figner et 

al., 2010; Frost & McNaughton, 2017; Hare et al., 2009; Peters & Büchel, 2011; Wyss & 

Knoch, 2022). Brain anatomical studies repeatedly showed that greater cortical thickness or 

grey matter volume of the DLPFC is associated with less impulsive, more strategic and goal-

directed behavior, which might be interpreted as reflecting a greater capacity for self-control 

(Baumgartner et al., 2021; Bjork et al., 2009; Pan et al., 2021; Schilling et al., 2012; Schmidt 

et al., 2018; Steinbeis et al., 2012; Yamagishi et al., 2016). Although in a single-generation 

context only, a recent study applying a neural trait approach provided evidence for the 

involvement of the lateral PFC in a form of ecological sustainable behavior (Baumgartner et 

al., 2019). In this resting-state EEG study, greater task-independent cortical baseline activity 

in the lateral PFC predicted more frequent everyday pro-environmental behavior, which was 

interpreted as a neural marker for self-control capacities. Importantly, in the present study we 
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found that the effect of greater cortical thickness of the DLPFC on increased probability of 

intergenerational sustainable behavior was mediated by greater efforts to resist temptations to 

benefit the present generation at the cost of future generations. Thus, we conjecture that 

sustainable (vs. unsustainable) participants’ greater cortical thickness of the DLPFC is 

indicative of a greater capacity for self-control benefitting future others. 

Taken together, the present study demonstrates that brain structural differences in 

DMPFC and DLPFC can explain interindividual differences in intergenerational sustainable 

behavior. We interpret these findings as providing evidence for the involvement of 

perspective-taking and self-control processes as sources of behavioral heterogeneity in 

sustainability. Regarding the interplay of these two socio-cognitive processes, we speculate 

that taking the perspective of future others might deliver the initial motivation to behave 

intergenerationally sustainably. Once activated, the goal to maximize delayed collective 

outcomes benefitting others in the future conflicts with the desire to maximize immediate 

personal benefit. It then requires self-control to resist this egoistic and immediate temptation 

resulting from the social distance between benefactors and beneficiaries and the temporal 

distance between immediate and future benefits, which interactively characterize the unique 

and challenging nature of intergenerational sustainability dilemmas. Hence, we conjecture 

that perspective-taking and self-control help reduce the discounting of the future of others 

that hinders intergenerational sustainability. This reasoning resonates with theoretical 

considerations and empirical findings attributing a role to perspective-taking (e.g. Pahl & 

Bauer, 2013; Pfattheicher et al., 2016; Uhl-Haedicke et al., 2019) and cognitive- or self-

control (Bamberg, 2013; Langenbach et al., 2020; Nielsen, 2017; Redondo & Puelles, 2017; 

Weber, 2017; Wyss et al., 2022) for pro-environmental behavior in the realm of ecological 

sustainability. With the present study, we complement and extend previous research by 

showing that structural differences in brain areas involved in these socio-cognitive processes 

explain interindividual differences in intergenerational sustainable behavior irrespective of 

the context of pro-environmental behavior. 

Like in any experimental design, one needs to consider whether our behavioral game 

adequately represented the complexity of real intergenerational sustainable behavior. It is 

challenging (if not practically impossible) to measure intergenerational behavior between real 

generations separated by several decades in a well-controlled setting. However, 

intergenerational behavior can be modeled by approximating its characteristic features and 

contingencies. This approach was pioneered in a seminal study by Hauser et al. (2014) and 

has successfully been implemented by numerous studies since then (e.g. Kamijo et al., 2016; 
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Shahen et al., 2021; Shahrier et al., 2017; Timilsina et al., 2022). Like these studies, we used 

a behavioral economic game modelling key features of intergenerational sustainability 

dilemmas (social and temporal distance between benefactors and beneficiaries, temporal 

delay between actions and consequences, unidirectionality, and non-reciprocity). We 

therefore believe that our game reasonably mimics intergenerational contingencies within the 

possibilities of a well-controlled laboratory setting. 

The present study explicitly investigated the interaction of social and temporal aspects 

in intergenerational sustainability. Considered individually, these aspects also apply to single-

generation social dilemmas and intertemporal choice tasks. It is a different and open question 

whether and to what extent behavior in these classic single-generation paradigms also relates 

to intergenerational sustainability. We would encourage future studies to investigate these 

potential relationships by using different designs optimized for these questions. Further, as is 

the case for many brain studies, our sample consisted of students. It would be interesting to 

investigate a more diverse population. 

In conclusion, the present study identified cortical thickness of the DMPFC and 

DLPFC as neural traits capable of explaining interindividual differences in intergenerational 

sustainable behavior. These neural traits might complement more commonly used self-report 

trait questionnaires by providing a unique and incremental ability to explain differences in 

intergenerational sustainability while simultaneously hinting at the involvement of specific 

socio-cognitive processes (perspective-taking and self-control) as potential drivers of 

individual heterogeneity. Thus, the present study lends further support to the neural trait 

approach (Nash et al., 2015) and to recent calls for the contribution of neuroscience to 

sustainability research (Aoki et al., 2020; Eyring et al., 2021; Sawe, 2019; Sawe & Chawla, 

2021). Importantly, we are not claiming that our results have policy relevance. In our view, 

these results provide first evidence in basic research. Of course, neuroscience alone cannot 

solve the challenge of overcoming intergenerational dilemmas. However, a neuroscientific 

approach can provide an additional method of analysis and therefore play a unique role in 

advancing transdisciplinary research and the understanding of intergenerational 

sustainability. 
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Figure 1. Schematic display of the intergenerational sustainability dilemma game. Over 16 trials, the 

four participants forming the present generation could each extract between 0 and 20 points of a pool shared 

with the other three participants of the present generation (80 points in the pool in total). At the start of each 

trial, participants were informed under which condition of the factor Affected Generation (Gen) they had to 

make their decision. Panel (A) illustrates the game mechanics for trials affecting the present generation 

(𝐺𝑒𝑛𝑝𝑟𝑒𝑠). If participants of the present generation collectively extracted more than 40 points, their payoff was 

reduced by 80% in that trial. If participants collectively extracted less or equal to 40 points, their payoff was not 

reduced. Panel (B) displays the game mechanics for trials affecting the next generation (𝐺𝑒𝑛𝑛𝑒𝑥𝑡). If participants 
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of the present generation collectively extracted more than 40 points, the payoff of the present generation 

remained unaffected, but the payoff of the other participants of the next generation would be reduced by 80%. If 

participants of the present generation extracted less or equal to 40 points, neither the present nor the next 

generation’s payoff was reduced. After the present generation had completed the game, two trials were selected 

at random to determine payoffs with a conversation rate of 1 point = 1 CHF. 

 

Figure 2. Extraction behavior by Behavioral Type (unsustainable participants in orange and sustainable 

participants in blue, see legend). The bar graph illustrates that sustainable and unsustainable participants showed 

a different median extraction behavior in trials affecting the next generation (𝐺𝑒𝑛𝑛𝑒𝑥𝑡) but not in trials affecting 

the present generation (𝐺𝑒𝑛𝑝𝑟𝑒𝑠). The dotted line represents the 10 points that each participant of the present 

generation could extract on average without reducing payoffs for the present (in 𝐺𝑒𝑛𝑝𝑟𝑒𝑠 trials) or next (in 

𝐺𝑒𝑛𝑛𝑒𝑥𝑡 trials) generation. Error bars represent 95% confidence intervals of cell means. n.s.: 𝑝 > 0.05, ***𝑝 < 

0.001. 
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Figure 3. Interindividual differences in structural brain characteristics of the left DMPFC were 

associated with differences in intergenerational sustainability via differential engagement in perspective-taking. 

Depicted in (A) are the structural differences in the left DMPFC (𝑝 < 0.05, small surface FWE peak-level 

corrected), which were qualified by greater cortical thickness in sustainable compared to unsustainable 

participants. Findings are depicted at 𝑝𝑢𝑛𝑐𝑜𝑟𝑟. < 0.001 using t-maps. Box plots illustrate cortical thickness values 

(adjusted for sex and age) based on the depicted region. In the box plots, the horizontal line represents the 

median and the notch indicates the 95% confidence interval around the median. The white circles on top of the 

box plots represent the group mean, and error bars represent the 95% confidence interval of the mean. Each 

point represents the cortical thickness value of one participant. As displayed in panel (B), greater cortical 

thickness of the left DMPFC predicted more equal or next generation oriented perspective-taking, which in turn 

increased participants’ odds of behaving intergenerationally sustainably. Path coefficient 𝑎 represents an 
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unstandardized linear regression coefficient, whereas coefficients 𝑏, 𝑐, and 𝑐′ represent unstandardized binary 

logistic regression coefficients in log-odds metric (𝑐 = total effect, 𝑐′ = direct effect). The interval accompanying 

the indirect effect 𝑎𝑏 represents a 95% bootstrap confidence interval calculated using 5’000 bootstrap samples. 

*𝑝 < 0.05, **𝑝 < 0.01, ***𝑝 < 0.001. Subplots visualize regression path 𝑎 (scatter plot for linear regression) and 

𝑏 (dot plot for logistic regression) with lines of best fit surrounded by their corresponding 95% confidence 

intervals. 

 

Figure 4. Interindividual differences in structural brain characteristics of the left DLPFC were 

associated with differences in intergenerational sustainability via differential effort to resist temptation. Depicted 

in (A) are the structural differences in the left DLPFC (𝑝 < 0.05, small surface FWE cluster-level corrected), 

which were qualified by greater cortical thickness in sustainable compared to unsustainable participants. 

Findings are depicted at 𝑝𝑢𝑛𝑐𝑜𝑟𝑟. < 0.001 using t-maps. As displayed in panel (B), greater cortical thickness of 
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the left DLPFC predicted more equal or greater (𝐺𝑒𝑛𝑛𝑒𝑥𝑡 > 𝐺𝑒𝑛𝑝𝑟𝑒𝑠) efforts to resist temptation, which in turn 

increased participants’ odds of behaving intergenerationally sustainably. Regression paths and corresponding 

subplots are based on models in which differential temptation (𝐺𝑒𝑛𝑛𝑒𝑥𝑡  – 𝐺𝑒𝑛𝑝𝑟𝑒𝑠) was entered as an additional 

covariate. For further explanations, see Figure 3, which follows the same logic regarding statistical annotations. 
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