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Using domain knowledge for robust and
generalizable deep learning-based CT-free
PET attenuation and scatter correction

Rui Guo1,2,8, Song Xue 3,8, Jiaxi Hu 3, Hasan Sari 3,4, Clemens Mingels 3,
Konstantinos Zeimpekis 3, George Prenosil3, Yue Wang1,2, Yu Zhang1,2,
Marco Viscione3, Raphael Sznitman5,6, Axel Rominger 3, Biao Li 1,2 &
Kuangyu Shi 3,6,7

Despite the potential of deep learning (DL)-basedmethods in substituting CT-
based PET attenuation and scatter correction for CT-free PET imaging, a cri-
tical bottleneck is their limited capability in handling large heterogeneity of
tracers and scanners of PET imaging. This study employs a simple way to
integrate domain knowledge in DL for CT-free PET imaging. In contrast to
conventional direct DL methods, we simplify the complex problem by a
domain decomposition so that the learning of anatomy-dependent attenua-
tion correction can be achieved robustly in a low-frequency domain while the
original anatomy-independent high-frequency texture can be preserved dur-
ing the processing. Even with the training from one tracer on one scanner, the
effectiveness and robustness of our proposed approach are confirmed in tests
of various external imaging tracers on different scanners. The robust, gen-
eralizable, and transparent DL development may enhance the potential of
clinical translation.

Ionizing radiation burden is amajor concern in the practice of positron
emission tomography/computed tomography (PET/CT) imaging,
which hampers its application in many situations1,2. Although the cur-
rent practice of PET/CT imaging according to the guidelines3,4 routi-
nely uses low-dose CT, a considerable contribution originates from
low-dose CT (6.4mSv5,6), which is typically used for the correction of
attenuation (AC) and anatomical localization in PET imaging. And the
burden from CT becomes more evident with the advent of the long
axial field of view (LAFOV) total-body PET scanners, which enable
unprecedented levels of image quality and quantification accuracy
with reduced radiopharmaceutical dose7. Although ultra-low dose
attenuation correction CT (2.1mSv, without anatomical localization)5

imaging significantly reduces the radiation exposure, eliminating AC
CT, i.e., CT-free PET imaging, is beneficial in a number of situations
such as pediatric examinations1, multiple PET/CT examinations8–10,
pharmaceutical tests11,12, and so on, where additional radiation burden
due to redundant anatomic imaging could be concerned.

Therefore, numerous research efforts have been devoted to
developing methods for CT-free PET correction. Magnetic resonance
(MR)-based approaches yielded satisfactory results in brain PET13.
Alternatively, attenuationmaps (μ-maps) can also be derived using the
maximum likelihood estimation of activity and attenuation (MLAA)
algorithm. MLAA can be further improved with the use of the addi-
tional time of flight (TOF)14,15. Due to the insufficient timing resolution
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of current clinical PET systems, the MLAA suffers from the crosstalk
between the activity and attenuation distribution and high noise16.
Recent MLAA methods alleviate the low-frequency crosstalk
problem17, but may over-smooth or over-estimate in the bone
structure18,19. TOF-MLAA-based approaches using an external source
like rod20 or lutetiumoxyorthosilicate background transmission16,21 are
under development to overcome the limitations.

Inspired by the rapid expansion of deep learning (DL)-based
methods in various medical image analysis applications22, many DL-
based approaches for the CT-free PET imaging have been proposed,
especially utilizing DL techniques15,23,24. One proposed approachwas to
generate μ-maps or pseudo-CT from non-corrected PET images25,
another kind is to directly generate corrected PET images from non-
corrected ones26. However, a critical bottleneckof theseDLmethods is
the limited capability in the application of heterogeneous domains of
PET imaging. The spatial resolution and sensitivity vary between dif-
ferent scanners. More importantly, emerging tracers are evolving with
different biodistributions. The rapid development in PET imaging
makes it impossible to enumerate the heterogeneous application
domain in the training data, which hampers the robustness and
trustworthiness of DL-based AC methods.

To overcome the limitations of conventional DL-based techni-
ques, we propose to employ a simple way to integrate domain
knowledge in deep learning for CT-free PET imaging. We decomposed
the complex end-to-end generation into two components, anatomy-
independent textures (relating to tracers and diseases) and anatomy-
dependent correction. Compared to direct approaches, estimation of
only low-frequency anatomy-dependent correction using a 3D deep
neural network can be more efficient and robust.

Results
Test on external scanners
The proposedDL algorithmwas developed based on 470 subjects who
underwent 18F-fluorodeoxyglucose (18F-FDG) PET and scanned with
Biograph Vision 450 (Vision 450, Siemens Healthineers) in Shanghai
(SH). We tested the trained DL model with four test datasets to eval-
uate the robustness, which include 51 subjects from Vision 450,
98 subjects from UI uMI 780 (uMI 780, United Imaging), 104 subjects
from GE Discovery MI (DMI, General Electric Healthcare) collected at
SH, as well as 62 subjects from Biograph Vision 600 (Vision 600, Sie-
mens Healthineers) collected at Bern. Detailed patient demographics
are given in Table 1.

Figure 1a–c provides quantitative accuracy of the DL attenuation
scatter corrected PET (DL ASC-PET) images to the original CT-based
attenuation scatter corrected PET (CT ASC-PET) images on all four
scanners. Our proposed domain knowledge integrated
Decomposition-based DLwas compared to twoother direct 2D and 3D
DL methods designed in a traditional end-to-end generation
manner27,28, which generate ASC-PET directly from non-attenuation
and non-scatter corrected images (NASC-PET) with either 2D or 3D
network. As shown in Fig. 1a–c, all three DL methods were capable of
some degree of attenuation and scattering correction for different
scanners, but Decomposition-basedDL significantly outperformed the
other two on all scanners (p <0.025). Specifically, in terms of nor-
malized root mean squared error (NRMSE), Decomposition-based DL
improved 47.5% over Direct 2D and 49.1% over Direct 3DonVision 450,
and 60.0% over Direct 2D and 58.4% over Direct 3D on Vision 600,
while on both scanners maintained a similar level of error (p =0.88).
When applied to DMI and uMI 780, Decomposition-based DL still
outscored the other two by more than 20%. Results of peak signal-to-
noise ratio (PSNR) and structural similarity indexmeasurement (SSIM)
of 18F-FDG imaging on the four different scanners showed the same
tendency as the NRMSE results. Furthermore, we measured clinical
imaging parameters such as SUVmean, SUVmax, total lesionmetabolism,
as well as the most relevant radiomics features within the sphereTa
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volume of interest (VOI) of different organs (liver, kidney, and
heart)29–35. Figure 2a–d shows the mean absolute percentage error
(MAPE) of each feature on all scanners, calculated in reference to the
CT ASC-PET, which demonstrates that Decomposition-based DL out-
performed the other two on all scanners regarding local metrics as
well. Activity distribution in the organs of interest confirmed the
advantage of Decomposition-based DL, shown in Supplemen-
tary Fig. 2.

In addition to the quantitative evaluation, as shown in Fig. 3, we
showed a head-to-head comparison of a representative imaging
example of NASC-PET, DLASC-PET of all three methods, and CT ASC-
PET, as well as joint histogram analysis depicting the correlation
between activity concentration of DL ASC-PET and NASC-PET versus
referenceCTASC-PET in Fig. 4. TheDecomposition-basedDLprovided
image quality comparable with CT ASC-PET and preserved more
detailed information and less noise was observed compared to Direct
2D and 3D. The joint histogram analysis of an exemplary subject
(Fig. 4a) exhibited voxel-wise similarity between reference CTASC-PET
and Decomposition-based DL ASC-PET with slopes of 0.94, 0.97, 1.05,
and 0.94 for Vision 450, Vision 600, uMI 780 and DMI respectively.
Voxel-wise absolute percentage error map of an exemplary subject
depicting the difference between DL ASC-PET and reference CT ASC-
PET are shown in Supplementary Fig. 3.

Test on external tracers
The DL algorithm we developed, which is based on 470 subjects with
18F-FDG PET, was further applied to four external test datasets to
evaluate the robustness on the cross-tracer settings, which included
7 subjects with 68Ga-fibroblast-activation protein inhibitors (68Ga-FAPI)
and 17 subjects with 68Ga-DOTA-Tyr-octreotate (68Ga-DOTA-TATE)
from Vision 450, as well as 8 subjects with 68Ga-DOTA-Tyr(3)-octreo-
tide (68Ga-DOTA-TOC) and 12 subjects with 18F-prostate-specific
membrane antigen (18F-PSMA) from Vision 600.

Figure 1d–f provides quantitative accuracy of the DL ASC-PET to
the CT ASC-PET on four tracers. All three DL methods were capable of
some degree of attenuation and scattering correction for different
tracers, but Decomposition-based DL significantly outperformed the

other two on 68Ga-FAPI and 18F-PSMA (p < 0.025). Specifically, in terms
of normalized root mean squared error (NRMSE), Decomposition-
based DL improved 49.0% over Direct 2D and 47.1% over Direct 3D on
68Ga-FAPI, and 32.3% over Direct 2D and 35.3% over Direct 3D on 18F-
PSMA, while the advantage on 68Ga-DOTA-TATE and 68Ga-DOTA-TOC
was less evident. Results of PSNR and SSIM showed the same tendency
as the NRMSE results. Figure 2e–h shows the MAPE of each feature on
all tracers, calculated in reference to the CT ASC-PET, which demon-
strates that Decomposition-based DL outperformed the other two on
all tracers regarding local metrics.

As shown in Fig. 3, the head-to-head comparison of a repre-
sentative imaging example showed that the Decomposition-based DL
provided image quality comparable with CT ASC-PET, preservedmore
detailed information and less noise was observed compared to Direct
2D and 3D. The joint histogram analysis of an exemplary subject
(Fig. 4b) exhibited voxel-wise similarity between referenceCTASC-PET
and Decomposition-based DL ASC-PET with slopes of 1.1, 1.0, 0.97, and
0.9 for 68Ga-FAPI, 68Ga-DOTA-TATE, 68Ga-DOTA-TOC and 18F-PSMA
respectively. Voxel-wise absolute percentage error map of an exemp-
lary subject depicting the difference between DL ASC-PET and refer-
ence CT ASC-PET are shown in Supplementary Fig. 3.

Discussion
The advances in PET imaging technology have enabled unprecedented
levels of image quality, even with reduced radiopharmaceutical
dose36.While the injected PET radiation dose can be reduced7,37, the CT
radiation dose accounts for an increasing proportion of the total PET/
CT dose. However, accurate AC and SC are essential for image quality
and precise PET quantification38, clinically established CT-based
approaches inevitably introduce ionizing radiation to patients39. This
in turn renders a CT-less approach particularly attractive. In certain
clinical and research scenarios, it is conceivable that PET examinations
can be performedwithout the necessity of additional CT imaging, e.g.,
multiple PET tracers examinations8–10, pediatric patients with pre-
viously acquired anatomic images1, and pharmaceutical
developments11,12,40. In these cases, radiation exposure could be
reduced by omitting CT scans. For example, ionizing radiation

Test on external scanners 
Normalized Root Mean Squared Error Peak Signal-to-Noise Ratio Structural Similarity Indexa. b. c.

Test on external tracers 
d. e. f.Normalized Root Mean Squared Error Peak Signal-to-Noise Ratio Structural Similarity Index

68Ga-FAPI 68Ga-DOTA-TATE 68Ga-DOTA-TOC 18F-PSMA
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Fig. 1 | Quantitative accuracy evaluated with global physical metrics on
external scanners and external tracers.Quantitative accuracy of the DL ASC-PET
images generated with our proposed method, to the CT ASC-PET on the cross-
scanner (a–c) and cross-tracer (d–f) settings, evaluatedwith global physicalmetrics
including normalized root mean squared error (NRMSE), peak signal-to-noise ratio

(PSNR) and structural similarity index measurement (SSIM). Data are presented as
mean values +/− SD. Sample size: a–c: Siemens Vision 450 (n = 51), Siemens Vision
600 (n = 62), UI uMI 780 (n = 98), GE Discovery MI (n = 104); d–f: 68Ga-FAPI (n = 7),
68Ga-DOTA-TATE (n = 17), 68Ga-DOTA-TOC (n = 8), 18F-PSMA (n = 12).
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exposure associatedwithmultiple CT scans is of concern in pediatrics,
where risk-benefit analysis doesn’t favor CT scans and they have a
considerable lifetime risk to develop secondary cancers41. Drug
development is another example, PET potentially provides quantita-
tive information about pharmacokinetics and pharmacodynamics as
well as evidence if a drug is relevant within a disease population which
is key to the proposed mode of action of a drug11. In the cases such as
the development of 89Zr-labelled antibodies PET imaging, a series of
PET/CT scans are usually performed within 2 weeks after the
injection42. Repeated AC CT scans could be critical concerns in such
kinds of investigations40,43.

In contrast to anatomical imaging, PET imaging exhibits a large
heterogeneity in its application domain. The development of instru-
mentation continues to improve the physical characteristics such as
spatial resolution, sensitivity, and anatomical coverage which can
enhance the texture details in the images44, and the robustness of DL-
based AC methods may be affected by changes in these physical
characteristics. Furthermore, emerging tracers are introduced in PET
imaging frequently44 and are being evaluated in clinical trials. Different
tracers exhibit different pharmacokinetics leading to a variety of bio-
distributions. A proper DL-based AC method should be applicable for
this large variety of scanners and tracers. The test results of the pro-
posed method demonstrated that the Decomposition-based DL
method is generally applicable for external scanners and tracers, which
have not been touched during the training. The robust application in

different scanners and tracers illustrates the potential of clinical
adoption of the proposedmethod. The credibility in the application of
clinically established tracers can be improved with texture preserva-
tion. The extensibility of new tracers meets the demand for reduced
radiation burden in the clinical tests of tracer developments.

With the increasing awareness of potential pitfalls of DL, repro-
ducibility, and generalizability to previously unseen scenarios play a
critical role in the credibility of any DL methodology, which mandates
the robust and generalizable DL development45. Incorporating domain
knowledge into the design of DL techniques is an alternative strategy
to traditional techniques, studies have already achieved great success
in disease diagnosis, lesion and abnormality detection, and
segmentation46,47. The visualization of the data and statistical analysis
demonstrates how our domain knowledge integrated DL method
overcomes awell-known issue of conventional DL techniques.Without
well-designed regularization andpenalty system, thepredictions could
overfit the training data andmay not be consistent with the governing
physical laws.

Quantitative accuracy drop in PET describes the loss of detected
photon pairs due to photon scattering and photoelectric absorption
induced by the presence of dense material along lines of response
(LOR), and thewrong LOR assigned following path change of scattered
photons within the acceptance energy window requires to scatter
correction. Themain challenge of attenuation correction lies in finding
reliable attenuation-correction factors (ACF) compensating for this
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Fig. 2 | Quantitative accuracy evaluatedwith localmetrics onexternal scanners
and external tracers. Quantitative accuracy of the DL ASC-PET images generated
with our proposed method, to the CT ASC-PET on the cross-scanner (a–d) and
cross-tracer (e–h) setting, evaluated with clinical imaging parameters such as
SUVmean, SUVmax, total lesion glycolysis (TLG), as well as the most relevant radio-
mics features. Data are summarized by a box and whisker plot (the central line in

the box plot indicates the median of the data, while the edges of the box indicate
the 25th and 75th percentiles; extending from the box arewhiskers, the topwhisker
expands to the maxima and the bottom whisker to the minima). Sample size: a–d:
Siemens Vision 450 (n = 51), Siemens Vision 600 (n = 62), UI uMI 780 (n = 98), GE
DiscoveryMI (n = 104); e–h: 68Ga-FAPI (n = 7), 68Ga-DOTA-TATE (n = 17), 68Ga-DOTA-
TOC (n = 8), 18F-PSMA (n = 12).
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Fig. 4 | Joint histogram analysis of exemplary test results. Joint histogram analysis of an exemplary subject depicting the correlation between activity concentration of
DL ASC-PET and NASC-PET versus reference CT ASC-PET for different scanners (a) and tracers (b).

Fig. 3 | Exemplary test results of external scanners and external tracers.
Exemplary test results of 18F-FDG imaging from Siemens Vision 450, Siemens Vision
600, UI uMI 780, and GE DiscoveryMI and imaging from 68Ga-FAPI (Vision 450-SH),

68Ga-DOTA-TATE (Vision 450-SH), 68Ga-DOTA-TOC (Vision 600-Bern) and 18F-PSMA
(Vision 600-Bern). Note that the color bars used for non-corrected PET are in the
range of 15% of the presented color bars.
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loss, which is often calculated from a μ-map. The μ-map may also be
used to compute an estimate of the scatter contribution within the
unscattered PET emission data. Related studies reported DL-based
approaches have been proposed for PET correction, such as the con-
version of MR images to a pseudo-CT or μ-map48–50, derivation of μ-
map fromNASC-PET25. These approaches still suffer fromerrors due to
spatial mismatch between the emission and attenuation map data or
require additional information or extra reconstruction procedures.
Several emission-based approaches proposed the direct conversion of
non-attenuation corrected PET images to the attenuation corrected
images using convolutional encoder-decoder neural networks23,24. The
applications of the emission-based approach are not limited to PET/
CT, but also include PET/MR as well as stand-alone PET systems (e.g.,
brain-dedicated PET). However, the direct approaches either suffer
from the loss of spatial information (2D slice-based27,28), 3D patch-
based51,52, or the lack of voxel-wise detailed information (3D volume-
based), which was verified in tests of the valid dataset (Vision 450-
FDG). Figure 3 illustrated that the conventional 2D method (2D slice-
based) while preserving good detailed texture information, tended to
underestimate the activities in organs and overestimate the neck and
leg parts, due to the lack of spatial information during training. The
conventional 3D method (3D volume-based) did better in recovering
the activity in organs but rendered blurry and over-smoothed images.

We hypothesized that although NASC-PET images do not contain
explicit information about photon attenuation and scattering, trained
deep neural networks could predict low-frequency anatomy-depen-
dent information which can be applied for correction. Our approach
explores a simpleway to incorporate domain knowledge, which can be
intuitively understood as a domain (spatial) transformation. With such
domain transformation, attenuation correction can be learned in a
machine-independent low-frequency domain, while the original tex-
ture can be preserved in the processing. This can improve the
robustness and effectiveness of learning to a large extent. Also, deep

learning is more transparently interpretable in the domain-
transformed space. As shown in Fig. 5, motivated by the physical
principle of ACF and scatter contribution53, our proposed
Decomposition-based DL modified one step of the conventional 3D
method, i.e., we regularized the network to estimate low-spatial fre-
quency anatomy-dependent information derived from NASC-PET,
which is a voxel-wise ratio map. Detailed implementation would be
described in the Method section. The comparison between
Decomposition-based DL and conventional 3D DL can be viewed as an
ablation study that demonstrated not only the advantages of our
modification, but also the possibility of incorporating domain knowl-
edge into the design of artificial intelligence in a simple way. Mean-
while, since we decomposed the complex end-to-end generation from
NASC-PET to ASC-PET into two components, anatomy-independent
textures (relating to tracers and diseases) and anatomy-dependent
correction, as a result, we posed an easier learning task for the model
so that we could increase both the efficiency and robustness. The
robustness of our Decomposition-based DL was verified in tests of
previously unseen imaging tracers and from different scanners. In
addition, our design allows NASC-PET input at low resolution
(6.6 × 6.6 × 8mm/voxel), small matrix size (112 × 112 × 112), which are
lower than almost all current scanners. Therefore, our method is
insensitive to differences of matrix sizes or resolution and can be
applied to different scanners. In the cross-scanner scenario, although
we attempted to calibrate data from different centers and vendors
based on phantoms, varieties still exist due to scanner properties
(Supplementary Table S1) or normalization methods, among others.
Consequently, the prediction accuracy of DMI and uMI 780 was not
optimal compared to Vision 450 or Vision 600. Moreover, we also
observed lower uptake at the upper edge of the liver in Vision 450 and
uMI 780 imaging of CT ASC-PET (Fig. 3), possibly due to the local
mismatch between NASC-PET and CT images caused by respiratory
motion effects, while the results of all three DL-based approaches
showed no such artifacts. On the cross-tracer setting, among all test
groups except the native 18F-FDG, 68Ga-FAPI showed the best results,
while 18F-PSMA, 68Ga-DOTA-TATE, and 68Ga-DOTA-TOC were slightly
inferior, whichmay be related to the different distribution of receptor-
specific tracers in the body compared to 18F-FDG. In particular, 68Ga-
DOTA-TATE and 68Ga-DOTA-TOC have higher uptake in the liver and
spleen, and 18F-PSMA has higher uptake in the glands, while 68Ga-FAPI
has a similar level of uptake in normal organs. Furthermore, the large
variability imposed in cross-tracer, cross-scanner, and cross-center
(68Ga-DOTA-TOC and 18F-PSMA on Vision 600) can place too much
burden on the DLmodel trainedwith limited complexity. Additionally,
as shown in Supplementary Fig. 6 and Supplementary Table S2, the
performance of our model was not affected by the weight distribution
of the subjects, as bodymass index (BMI) was generally not associated
with NRMSE.

Our study trained a model on a homogeneous dataset with only
one scanner and one tracer, which is not optimal for the DL develop-
ment. Meanwhile, the performance of our model is subject to NASC-
PET, which implies that it will not perform well when dealing with
extreme cases, such as patients with upside-down images, con-
taminated patients, patients with implants, or abnormally high activity
in certain regions. Supplementary Fig. 5 showed two extreme cases
where our model overestimated the activity in the neck region, prob-
ably due to the abnormally high activity of NASC-PET images. Data
crafting54 or unsupervised domain adaptation55 may help with perfor-
mance degradation on unseen images. Nevertheless, our preliminary
results confirmed thepotential of our initial hypothesis, albeit in sucha
challenging cross-scanner and cross-tracer setup. This proof-of-
concept can therefore support the design of more realistic studies in
the future, by including a larger and heterogeneous dataset that is not
limited by the center, scanner, tracer, disease, or body region. Addi-
tionally, the proposed method needs further clinical validation in
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Fig. 5 | General protocol of our proposed domain knowledge integrated deep
learningmethod.We decomposed the complex end-to-end generation from non-
attenuation and non-scatter corrected images (NASC-PET) to corrected images
(ASC-PET) into two components, anatomy-independent textures (relating to tra-
cers and diseases) and anatomy-dependent correction, and regularized a 3D deep
neural network to estimate this low-frequency anatomy-dependent correction
information only.
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clinical applications, especially clinical quantitative scores (refer to
quantitative clinical scores such as the PERCIST56 or the Deauville-
Score57, and so on).

Methods
Data preparation
This retrospective study complies with all relevant ethical regulations
of the respective local ethics committees in Switzerland (Waiver from
Cantonal Ethics Committee of Bern, Switzerland) and China (Approval
from Ruijin Hospital Ethics Committee Shanghai Jiao Tong University
School of Medicine). All patients included gave written informed
general consent for retrospective analysis of their data. This is a ret-
rospective study, eight cohorts with 829 subjects were included
(Table 1). The proposed DL algorithm was developed based on
470 subjects data and the evaluation was performed using the unseen
external datasets of different tracers and scanners.

A CT scan was performed prior to PET data acquisition for
attenuation correction. Scatter correction was performed only on PET-
CTAC images using a single-scatter simulation (SSS) algorithm58 with
two iterations. All data were reconstructed using Ordered Subsets-
Expectation Maximization. More detailed information concerning
scanner properties and reconstruction parameters can be found in
Supplementary Table S1.

Decomposition-based DL
We decomposed the complex end-to-end generation from NASC-PET
to ASC-PET into two components, anatomy-independent textures
(relating to tracers and diseases) and anatomy-dependent correction,
and regularized a 3D deep neural network to estimate this low-
frequency anatomy-dependent correction information only.

As shown in Fig. 5, we first calculated the anatomy-dependent
correctionmap (ADCM)basedonNASC-PETandASC-PETaccording to
the following equations:

If INASC�PET x, y, z½ �> ε then

IADCM x, y, z½ �= IASC�PET x, y, z½ �
INASC�PET x, y, z½ �

else IADCM x, y, z½ �= IASC�PET x, y, z½ �

ð1Þ

where we set ε to be 1. To preserve more spatial information, which is
most essential for the task of attenuation and scatter correction, we
downsampled the NASC-PET and ADCM to a size of 112 × 112 × 112. A
semi-supervised 3D conditional generative adversarial network (c-
GAN)59 was employed, which consists of a generator network (G) to
synthesize the ADCM from NASC-PET, and a discriminator (D) to
distinguish between the synthesized ADCM and the real inputs, the
objective function is defined as:

min
G

max
D

V D,Gð Þ+ λV Gð Þ

=
Xn

i = 1

log DθD
INASC�PET, IADCM

� �� �

+ log 1� DθD
INASC�PET, GθG

INASC�PET
� �� �� �

+ λ GθG
INASC�PET

� �
� IADCM

���
���
2

ð2Þ

where λ is a weighting of loss, which was set to 1e+4 based on
experiments. Themodel was trained on 470 3D images of size 112 ×112
×112 and validated on 51 reserved subjects (Table 1).

In the testing stage, given a NASC-PET, the trained generator
networkGwasused to predict theDL-generatedADCM (IDL�ADCM), and
applied to NASC-PET to obtain DL ASC-PET according to the following

equations:

If INASC�PET x, y, z½ �> ε then
IDL ASC�PET x, y, z½ �= INASC�PET x, y, z½ � � IDL�ADCM x, y, z½ �

else IDL ASC�PET x, y, z½ �= INASC�PET x, y, z½ �
ð3Þ

To evaluate the quality of the DL ASC-PET images, we calculated
the global physical metrics, to the CT ASC-PET, including voxel-wise
NRMSE, PSNR, and SSIM. Furthermore, on six randomly selected
subjects in each dataset, two certified nuclear medicine physicians
(R.G. and C.M.) used ITK-SNAP to manually delineate three spherical
VOIs within each target organ (liver, kidney, and heart). This was fol-
lowed by SUV measurements as well as statistical analysis of clinical
imaging parameters including SUVmean, SUVmax, total lesion metabo-
lism (TLM), as well as the most relevant radiomics features. The per-
formance of our proposed Decomposition-based DL method was
further investigated through comparison with traditional direct DL
approaches, differences between eachgroup forNRMSEwere assessed
for statistical significance using the paired two-tailed t-test, with a
statistically significant difference defined as p <0.05 with Bonferroni
correction for minimizing type I error. More information on the data
preprocessing, network design, training procedure, and physical
metrics is attached in the corresponding part of the Supplementary
material.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the
corresponding author (BL) with the completion of data transfer
agreement (DTA), and the request will be answered within thirty (30)
days of receiving of the DTA.

Code availability
Code for the Decomposition-based DL architecture is available at
https://github.com/LeoXue09/CT-free-PET.

References
1. Fahey, F. H., Treves, S. T. & Adelstein, S. J. Minimizing and com-

municating radiation risk in pediatric nuclear medicine. J. Nucl.
Med. 52, 1240–1251 (2011).

2. Karakatsanis, N. A., Fokou, E. & Tsoumpas, C. Dosage optimization
in positron emission tomography: state-of-the-art methods and
future prospects. Am. J. Nucl. Med. Mol. Imaging 5, 527–547
(2015).

3. Zagar, I. Diagnostic CT in the oncological PET applications and
protocols. in Advances in PET-CT Imaging, A Technologists’ Guide.
Ch. 3. https://www.eanm.org/content-eanm/uploads/2021/09/
EANM21_TechGuide.pdf (European Association of Nuclear Medi-
cine, 2021).

4. Boellaard, R. et al. FDG PET/CT: EANM procedure guidelines for
tumour imaging: version 2.0. Eur. J. Nucl. Med. Mol. Imaging 42,
328–354 (2015).

5. Prieto, E. et al. Ultra-low dose whole-body CT for attenuation cor-
rection in a dual tracer PET/CTprotocol formultiplemyeloma. Phys.
Med. 84, 1–9 (2021).

6. Quinn, B., Dauer, Z., Pandit-Taskar, N., Schoder, H. & Dauer, L. T.
Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-
specific parameters in dose estimates. BMC Med. Imaging 16,
41 (2016).

7. Alberts, I. et al. Clinical performance of long axial field of view PET/
CT: a head-to-head intra-individual comparison of the Biograph

Article https://doi.org/10.1038/s41467-022-33562-9

Nature Communications |         (2022) 13:5882 7

https://github.com/LeoXue09/CT-free-PET
https://www.eanm.org/content-eanm/uploads/2021/09/EANM21_TechGuide.pdf
https://www.eanm.org/content-eanm/uploads/2021/09/EANM21_TechGuide.pdf


Vision Quadra with the Biograph Vision PET/CT. Eur. J. Nucl. Med.
Mol. Imaging 48, 2395–2404 (2021).

8. Panagiotidis, E. et al. Comparison of the impact of 68Ga-DOTATATE
and 18F-FDG PET/CT on clinical management in patients with neu-
roendocrine tumors. J Nucl Med 58, 91–96 (2017).

9. Pouliot, F. et al. The Triple-Tracer strategy against Metastatic
PrOstate cancer (3TMPO) study protocol. BJU Int. 130,
314–322 (2021).

10. Surasi, D. S. S., Lin, L., Ravizzini, G. & Wong, F. Supraclavicular and
axillary Lymphadenopathy induced by COVID-19 vaccination on
18F-Fluorthanatrace, 68Ga-DOTATATE, and 18F-Fluciclovine PET/
CT. Clin. Nucl. Med. 47, 195–196 (2022).

11. van der Veldt, A. A. et al. Toward prediction of efficacy of che-
motherapy: a proof of concept study in lung cancer patients using
[(1)(1)C]docetaxel and positron emission tomography. Clin. Cancer
Res. 19, 4163–4173 (2013).

12. Zhou, Y., Baidoo, K. E. & Brechbiel, M. W. Mapping biological
behaviors by application of longer-lived positron-emitting radio-
nuclides. Adv. Drug Deliv. Rev. 65, 1098–1111 (2013).

13. Ladefoged, C. N. et al. Amulti-centre evaluation of eleven clinically
feasible brain PET/MRI attenuation correction techniques using a
large cohort of patients. Neuroimage 147, 346–359 (2017).

14. Rezaei, A. et al. Simultaneous reconstruction of activity and
attenuation in time-of-flight PET. IEEE Trans. Med. Imaging 31,
2224–2233 (2012).

15. Salomon, A., Goedicke, A., Schweizer, B., Aach, T. & Schulz, V.
Simultaneous reconstruction of activity and attenuation for PET/
MR. IEEE Trans. Med. Imaging 30, 804–813 (2011).

16. Chun S. Y. KK, Lee JS and Fessier JA. Joint estimation of activity
distribution and attenuation map for TOF-PET using alternating
direction method of multiplier. IEEE 13th International Symposium
on Biomedical Imaging (ISBI). Prague, Czech Republic: IEEE; 2016.

17. Wang, G. & Qi, J. PET image reconstruction using kernel method.
IEEE Trans. Med. Imaging 34, 61–71 (2015).

18. Hwang D., Kang S. K., Kim K. Y., Choi H., Lee J. S. Comparison of
deep learning-basedemission-only attenuationcorrectionmethods
for positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging
49, 1833–1842 (2021).

19. Li, S. & Wang, G. Modified kernel MLAA using autoencoder for PET-
enabled dual-energy CT. Philos. Trans. A Math. Phys. Eng. Sci. 379,
20200204 (2021).

20. Panin, V. Y., Aykac, M. & Casey, M. E. Simultaneous reconstruction
of emission activity and attenuation coefficient distribution from
TOF data, acquired with external transmission source. Phys. Med.
Biol. 58, 3649–3669 (2013).

21. Teimoorisichani M. S. H., Panin V., Bharkhada D., Rominger A. and
Conti M. Using LSO background radiation for CT-less attenuation
correction of PET data in long axial FOV PET scanners. J. Nucl. Med.
62 (Suppl. 1), 1530 (2021).

22. Topol, E. J. High-performancemedicine: the convergenceof human
and artificial intelligence. Nat. Med. 25, 44–56 (2019).

23. Wang, T. et al. Machine learning in quantitative PET: A review of
attenuation correction and low-count image reconstruction meth-
ods. Phys. Med. 76, 294–306 (2020).

24. Lee, J. S. A review of deep-learning-based approaches for
attenuation correction in Positron Emission Tomography. IEEE
Trans. Radiat. Plasma Med. Sci. 5, 160–184 (2020).

25. Dong, X. et al. Synthetic CT generation from non-attenuation cor-
rected PET images forwhole-body PET imaging. Phys.Med. Biol.64,
215016 (2019).

26. Arabi, H., Bortolin, K., Ginovart, N., Garibotto, V. & Zaidi, H. Deep
learning-guided joint attenuation and scatter correction in multi-
tracer neuroimaging studies. Hum. Brain Mapp. 41,
3667–3679 (2020).

27. Hu, Z. et al. Obtaining PET/CT images from non-attenuation
corrected PET images in a single PET system using Wasserstein
generative adversarial networks. Phys. Med. Biol. 65, 215010
(2020).

28. Shiri, I. et al. Direct attenuation correction of brain PET images using
only emission data via a deep convolutional encoder-decoder
(Deep-DAC). Eur. Radiol. 29, 6867–6879 (2019).

29. Presotto, L. et al. PET textural features stability and pattern dis-
crimination power for radiomics analysis: An “ad-hoc” phantoms
study. Phys. Med. 50, 66–74 (2018).

30. Kim, B. H. et al. High metabolic tumor volume and total lesion
glycolysis are associated with lateral lymph node metastasis in
patients with incidentally detected thyroid carcinoma. Ann. Nucl.
Med. 29, 721–729 (2015).

31. Kong, Z. et al. F-FDG-PET-based Radiomics signature predicts
MGMT promoter methylation status in primary diffuse glioma.
Cancer Imaging 19, 58 (2019).

32. Li, L. et al. A non-invasive radiomic method using (18)F-FDG PET
predicts Isocitrate dehydrogenase genotype and prognosis in
patients with glioma. Front. Oncol. 9, 1183 (2019).

33. Wu, Y. et al. Use of radiomic features and support vectormachine to
distinguish Parkinson’s disease cases from normal controls. Ann.
Transl. Med. 7, 773 (2019).

34. Lohmann, P. et al. Combined FET PET/MRI radiomics differentiates
radiation injury from recurrent brain metastasis. Neuroimage Clin.
20, 537–542 (2018).

35. Lohmann, P. et al. Radiation injury vs. recurrent brain metastasis:
combining textural feature radiomics analysis and standard para-
meters may increase (18)F-FET PET accuracy without dynamic
scans. Eur. Radiol. 27, 2916–2927 (2017).

36. Karp, J. S., Surti, S., Daube-Witherspoon, M. E. & Muehllehner, G.
Benefit of time-of-flight in PET: experimental and clinical results. J.
Nucl. Med. 49, 462–470 (2008).

37. Liu, G. et al. Ultra-low-activity total-body dynamic PET imaging
allows equal performance to full-activity PET imaging for investi-
gating kinetic metrics of (18)F-FDG in healthy volunteers. Eur. J.
Nucl. Med. Mol. Imaging 48, 2373–2383 (2021).

38. Burger, C. et al. PET attenuation coefficients from CT images:
experimental evaluation of the transformation of CT into PET 511-
keV attenuation coefficients. Eur. J. Nucl. Med. Mol. Imaging 29,
922–927 (2002).

39. Martí-Climent, J. M. et al. Effective dose estimation for oncological
and neurological PET/CT procedures. EJNMMI Res. 7, 37
(2017).

40. Chomet, M. et al. Head-to-head comparison of DFO* and
DFO chelators: selection of the best candidate for clinical (89)Zr-
immuno-PET. Eur. J. Nucl. Med. Mol. Imaging 48, 694–707 (2021).

41. Robbins, E. Radiation risks from imaging studies in children with
cancer. Pediatr. Blood Cancer 51, 453–457 (2008).

42. Lau, W. L., Liang, C., Liu, H., Singh, K. & Mukherjee, J. Development
of zirconium-89 PET for in vivo imaging of alpha-klotho.Am. J. Nucl.
Med. Mol. Imaging 10, 95–105 (2020).

43. Dehdashti, F. et al. Evaluation of [(89)Zr]trastuzumab-PET/CT in
differentiating HER2-positive from HER2-negative breast cancer.
Breast Cancer Res. Treat. 169, 523–530 (2018).

44. van der Meulen N. P., Strobel K., Lima T. V. M. New radionuclides
and technological advances in SPECT and PET Scanners. Cancers
13, 6183 (2021).

45. Commission E., Directorate-General for Communications Networks
C, Technology. Ethics Guidelines for Trustworthy AI. Publications
Office, 2019.

46. Xie, X. et al. A survey on incorporatingdomain knowledge into deep
learning for medical image analysis. Med. Image Anal. 69,
101985 (2021).

Article https://doi.org/10.1038/s41467-022-33562-9

Nature Communications |         (2022) 13:5882 8



47. Kamnitsas, K. et al. Efficient multi-scale 3D CNN with fully con-
nected CRF for accurate brain lesion segmentation. Med. Image
Anal. 36, 61–78 (2017).

48. Torrado-Carvajal, A. et al. Dixon-VIBE Deep Learning (DIVIDE)
Pseudo-CT synthesis for pelvis PET/MR attenuation correction. J.
Nucl. Med. 60, 429–435 (2019).

49. Leynes, A. P. et al. Zero-Echo-Time and Dixon Deep Pseudo-CT
(ZeDD CT): Direct generation of Pseudo-CT images for pelvic PET/
MRI attenuation correction using deep convolutional neural net-
works with multiparametric MRI. J. Nucl. Med. 59, 852–858 (2018).

50. Sari, H. et al. Evaluation of deep learning-based approaches to
segment bowel air pockets and generate pelvis attenuation maps
fromCAIPIRINHA-accelerated DixonMR images. J. Nucl. Med. 2021.

51. Shiri, I. et al. Deep-JASC: joint attenuation and scatter correction in
whole-body (18)F-FDG PET using a deep residual network. Eur. J.
Nucl. Med. Mol. Imaging 47, 2533–2548 (2020).

52. Dong, X. et al. Deep learning-based attenuation correction in the
absence of structural information forwhole-body positron emission
tomography imaging. Phys. Med. Biol. 65, 055011 (2020).

53. Berker, Y. & Li, Y. Attenuation correction in emission tomography
using the emission data-A review. Med. Phys. 43, 807–832 (2016).

54. Hu, Y. et al. Freehand ultrasound image simulation with spatially-
conditioned generative adversarial networks. Molecular Imaging,
Reconstruction and Analysis of Moving Body Organs, and Stroke
Imaging and Treatment. Springer, 2017, pp 105–115.

55. Kamnitsas, K. et al. Unsupervised domain adaptation in brain lesion
segmentation with adversarial networks. International Conference
on Information Processing in Medical Imaging; 2017: Springer;
2017.597-609.

56. Wahl, R. L., Jacene, H., Kasamon, Y. & Lodge, M. A. From RECIST to
PERCIST: Evolving considerations for PET response criteria in solid
tumors. J. Nucl. Med. 50, 122S–150S (2009).

57. Barrington, S. F. et al. Role of imaging in the staging and response
assessment of lymphoma: consensus of the International Con-
ference on Malignant Lymphomas Imaging Working Group. J. Clin.
Oncol. 32, 3048–3058 (2014).

58. Watson, C. C. New, faster, image-based scatter correction for 3D
PET. IEEE Trans. Nucl. Sci. 47, 1587–1594 (2000).

59. Wang, Y. et al. 3D conditional generative adversarial networks for
high-quality PET image estimation at low dose. Neuroimage 174,
550–562 (2018).

Acknowledgements
This work was supported by the Swiss National Science Foundation
(No. 188350, KS), National Natural Science Foundation of China
(No. 82171975, R.G. and 82171971, B.L.) and Shanghai Municipal Key
Clinical Specialty (No. shslczdzk03403, B.L.).

Author contributions
K.S., B.L. and S.X. conceived and designed the study. R.G., Y.W., and Y.Z.
screened and collected clinical information and imaging data. S.X.
conceived and carried out data analysis. R.G. reviewed all analysis. S.X.,
R.G., and K.S. drafted the manuscript. J.H., H.S., C.M., K.Z., G.P., M.V.,
R.S. and A.R. reviewed and revised the manuscript for important intel-
lectual content.

Competing interests
H.S. is a full-time employee of Siemens Healthineers AG in Switzerland.
K.S. and A.R. have received research grants from Siemens Healthineers
AG and Novartis AG. The remaining authors declare no competing
interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-33562-9.

Correspondence and requests for materials should be addressed to
Biao Li.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permission information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-33562-9

Nature Communications |         (2022) 13:5882 9

https://doi.org/10.1038/s41467-022-33562-9
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Using domain knowledge for robust and generalizable deep learning-based CT-free PET attenuation and scatter correction
	Results
	Test on external scanners
	Test on external tracers

	Discussion
	Methods
	Data preparation
	Decomposition-based DL
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




