Species‐specific plant‐mediated effects between herbivores converge at high damage intensity

Wan, Jinlong; Yi, Jiahui; Tao, Zhibin; Ren, Zhikun; Otieno, Evans O.; Tian, Baoliang; Ding, Jianqing; Siemann, Evan; Erb, Matthias; Huang, Wei (2022). Species‐specific plant‐mediated effects between herbivores converge at high damage intensity. Ecology, 103(5), e3647. Ecological Society of America 10.1002/ecy.3647

[img]
Preview
Text
2022_Ecology_e3647.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (716kB) | Preview

Plants are often exposed to multiple herbivores and densities of these attackers (or corresponding damage intensities) often fluctuate greatly in the field. Plant-mediated interactions vary among herbivore species and with changing feeding intensity, but little is known about how herbivore identity and density interact to determine plant responses and herbivore fitness. Here, we investigated this question using Triadica sebifera (tallow) and two common and abundant specialist insect herbivores, Bikasha collaris (flea beetle) and Heterapoderopsis bicallosicollis (weevil). By manipulating densities of leaf-feeding adults of these two herbivore species, we tested how variations in the intensity of leaf damage caused by flea beetle or weevil adults affected the performance of root-feeding flea beetle larvae and evaluated the potential of induced tallow root traits to predict flea beetle larval performance. We found that weevil adults consistently decreased the survival of flea beetle larvae with increasing leaf damage intensities. In contrast, conspecific flea beetle adults increased their larval survival at low damage then decreased larval survival at high damage, resulting in a unimodal pattern. Chemical analyses showed that increasing leaf damage from weevil adults linearly decreased root carbohydrates and increased root tannin, whereas flea beetle adults had opposite effects as weevil adults at low damage and similar effects as them at high damage. Furthermore, across all feeding treatments, flea beetle larval survival correlated positively with concentrations of carbohydrates and negatively with concentration of tannin, suggesting that root primary and secondary metabolism might underlie the observed effects on flea beetle larvae. Our study demonstrates that herbivore identity and density interact to determine systemic plant responses and plant-mediated effects on herbivores. In particular, effects are species-specific at low densities, but converge at high densities. These findings emphasize the importance of considering herbivore identity and density simultaneously when investigating factors driving plant-mediated interactions between herbivores, which advances our understanding of the structure and composition of herbivore communities and terrestrial food webs.

Item Type:

Journal Article (Original Article)

Division/Institute:

08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS) > Biotic Interactions
08 Faculty of Science > Department of Biology > Institute of Plant Sciences (IPS)

UniBE Contributor:

Erb, Matthias

Subjects:

500 Science > 580 Plants (Botany)

ISSN:

0012-9658

Publisher:

Ecological Society of America

Language:

English

Submitter:

Peter Alfred von Ballmoos-Haas

Date Deposited:

11 Oct 2022 08:31

Last Modified:

05 Dec 2022 16:26

Publisher DOI:

10.1002/ecy.3647

PubMed ID:

35072958

BORIS DOI:

10.48350/173635

URI:

https://boris.unibe.ch/id/eprint/173635

Actions (login required)

Edit item Edit item
Provide Feedback