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Abstract

Austrian observations of snow depth date back to 1895 and are thus among

the longest available quantitative snow information from hydrometeorological

networks worldwide. It is well known that such long-term observations are

prone to inhomogeneities, which may not only affect climatologies and trends,

but derived products used in research or practice. While the reliability of avail-

able methods for detecting breaks in snow time series has been shown before

and could also be confirmed by our work, we focused on improving the adjust-

ment method. Conventional methods often refer to the median of difference or

quotient series (INTERP), whereas our proposed method also uses a quantile-

wise adjustment (InterpQM), which is useful to minimize a bias on the tails of

the frequency distribution. We demonstrated the success of the new method

by using Swiss parallel snow depth observations. Errors of the analysed indica-

tors could be reduced in 68% of the cases when compared with INTERP. The

results were best for large snow depths, being up to 19% better. Overall, Inter-

pQM was better in 75% of validation cases for the daily large, 72% of all obser-

vations and 56% of mean seasonal snow depth cases. We describe the

performed homogenization procedure in detail, including quality control, gap

filling, homogeneity testing, break detection, calculation of and improvements

to the adjustment method. Our results show that snow depth time series gener-

ally have a lower number of breaks compared with station data of other cli-

mate variables. This underlines their high quality, even if measuring snow

presents challenges. Using Austrian snow depth series as an example, the

effects of the new adjustment method on trends were analysed using the

Mann–Kendall and Sen's Slope. Homogenization may have a significant effect

on derived trends: Two of the six adjusted series were changed from nonsignif-

icant to significant and one vice versa.
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1 | INTRODUCTION

Deposited snow is an important component of the global
climate system. In Northern Hemisphere winters, it can
cover more than 50% of the land surface (Armstrong and
Brun, 2008). For mountain regions, snow on the ground is
an essential and widespread component of the cryosphere
and plays an essential role in feeding glaciers and energy
budget and thus as an insulating and reflective layer of the
Earth's surface (Hock et al., 2019). Deposited snow is
influenced by melting, sublimation/deposition and settling
in addition to precipitation processes and exhibits a rela-
tively high spatial and particularly high temporal autocor-
relation. Presence or absence and the thickness of a snow
cover have a major impact on plant and animal species
(e.g., Lamprecht et al., 2018; Steinbauer et al., 2018;
Johnston et al., 2019) and for the society of Alpine coun-
tries, for example, via its influence on the availability of
water in early spring via snowmelt. It also has a large
socio-economic dimension in regions heavily dependent
on winter tourism (Ballotta et al., 2020). Several studies
have highlighted the changes in snow cover in the Alpine
region due to climate change (e.g., Hock et al., 2019;
Schöner et al., 2019; Matiu et al., 2021). Although there
are indications that, due to the decrease in snow, the sum-
mer season is becoming more attractive in the affected
regions (Statistik Austria 2019), the role of winter tourism
is important for the economy of these regions, especially
since winter tourists usually spend more money and, in
some regions, �80% of the workforce is employed in the
tourism sector (Pröbstl-Haider et al., 2021).

A recent analysis of more than 2000 stations in the
European Alps (Matiu et al., 2021) found that 85% of the
stations showed a negative trend for mean monthly snow
depth for winter (NDJFMAM) in the period 1971–2019.
27% of the negative trends were significant, but none of
the positive trends. Pulliainen et al. (2020) found a signifi-
cant decrease in snow-mass in the Northern Hemisphere,
although there are areas such as Siberia and coastal
regions with an increase in snow-mass in the period
1980–2018.

The two most frequently observed variables, snow
depth (HS, the total height of the snow cover from the
base to the snow surface) and depth of snowfall (HN), are
measured at about 7000 stations worldwide (Armstrong
et al., 2009). In Austria, snow is measured at about 160 sta-
tions by the Zentralanstalt für Meteorologie und

Geodynamik (ZAMG) and at about 690 stations by the
Hydrographischer Dienst (HD). The snow records of
the HD are usually much longer and date back to 1895.
The reason for this difference is, that a large part of the
Austrian observation data collected by ZAMG was des-
troyed during the Second World War. While the density of
the measurement network for weather stations in
inhabited areas is quite good, the station network for snow
measurements is patchy, especially in mountainous
regions (Hock et al., 2019). Although measurement tech-
niques have changed over time and automatic stations
measuring snow depth by ultrasound or laser are becom-
ing more common (Matiu et al., 2021), the method of
snow observation has not changed for most stations in
Austria and is still done manually at 07:00 CET
(Haberkorn et al., 2019). This is a major advantage for the
analysis of long-term snow trends, as changes in the mea-
surement technique of climate variables often introduce
systematic errors.

As Auer et al., 2007 noted, longer climate measure-
ments not only show pure climate variability but also non-
climatic influences. These so-called inhomogeneities cause
a systematic change in the time series and are usually the
result of a relocation, changing observers, changes in the
station's environment or instruments and measurement
procedures. Effects like these must be considered when
analysing time series of the data, although it is difficult to
determine the respective influence of these effects for
snow depth, mainly because of the lack of trustworthy
metadata (Buchmann et al., 2021). It is also well known
that wind-induced errors can greatly affect snow observa-
tions (Sevruk, 1985; Goodison et al., 1998; Lehning
et al., 2008). Due to the many challenges in making accu-
rate and representative snow observations, consistent
long-term records of snow are rare (Vaughan et al., 2013).
Homogenization, now a standard procedure for processing
climate data (Auer et al., 2007), is used to remove these
nonclimatic influences with statistical methods. It consists
of detecting and adjusting shifts, often called breaks, in the
time series by relative homogeneity methods (relative to
neighbouring stations). While this is well researched for
variables such as temperature and precipitation (Venema
et al., 2012), fewer methods have been developed and
tested for homogenizing snow series (Marcolini
et al., 2017, 2019; Schöner et al., 2019). A new study focus-
ing on improvements in break detection is currently in
review (Buchmann et al., 2022, under review). Regarding
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the adjustments, the SNHT (Marcolini et al., 2017, 2019)
and a modified version of INTERP (Vincent et al., 2002;
Schöner et al., 2019), which is implemented in HOMOP
(Nemec et al., 2013), have been applied to daily snow
depth series. INTERP uses a single adjustment (correction)
factor per break. Although this improved the overall data
quality, the method can artificially bias the tails of the fre-
quency distribution of snow depths. Therefore, Marcolini
et al. (2019) recommended to only homogenize monthly
or seasonal snow depth values to obtain robust results.

To overcome these limitations and make the homoge-
nization of daily values possible, we extended INTERP
with quantile matching. For testing and evaluating the
improved method, different inhomogeneity scenarios
were created using selected Swiss parallel series as a
basis. The impact of the new method on trends was then
compared with INTERP-homogenized and original
Austrian time series.

2 | DATA AND METHODS

2.1 | Swiss parallel dataset

Swiss snow observations are mainly carried out by two
institutions: the Federal Office of Meteorology and Cli-
matology (MeteoSwiss) and the WSL Institute for Snow
and Avalanche Research (SLF). 28 pairs with indepen-
dent manual snow depth observations for at least
20 years, located at a maximum horizontal distance of
3 km and a vertical distance of fewer than 100 m were
compiled to a parallel dataset, including quality checks
and gap-filling. The stations are between 490 m a.s.l.
(Payerne) and 1770 m a.s.l. (Bivio) and have high corre-
lations: The smallest correlation based on daily values is
0.84 (Payerne), the average correlation is 0.95 and the
highest is 0.99 (Santa Maria, 1415 m a.s.l.). More details
about the dataset can be found in Buchmann et al., 2021.

The quality and availability of the corresponding
metadata vary over time. The metadata of the SLF sta-
tions at least include relocations and observer changes.
Information on MeteoSwiss stations is generally more
detailed, but specific snow information is still sparse or
not accurate enough. For example, sometimes there is a
sequence of very similar observer names, and it is unclear
whether this is a change of observer or a correction of the
name. Also, nonspecific names have been used, for exam-
ple, “Swiss Border Force”, which makes an unnoticed
change of observers very likely. Independence of observa-
tions can be deceptive and difficult to (dis)prove. For
example, stations are listed in two separate databases
under different names, different coordinates suggest two
independent stations or missing periods were filled in

with the parallel station sometime in the past. All these
points were considered when creating the Swiss parallel
dataset.

To validate the success of a new homogenization
method, appropriate validation data sets are needed,
which in a perfect world would represent the truth
(e.g., true snow depth). In the real world, however, these
are not available, so artificial datasets have been created
for this purpose in homogenization studies. Such approa-
ches have been shown for temperature and precipitation
(e.g., Venema et al., 2012) to evaluate the respective homo-
genization methods. We follow a different approach in our
study by not only using artificial snow series but also
datasets from parallel measurements (two independent
measurement series at almost the same location). The par-
allel measurements provide a best-possible setup for
homogenization studies (Venema et al., 2020), which
means in our case testing and validating the effectiveness
of the adjustment methods. However, such data are gener-
ally rare, especially those covering longer periods. Luckily,
a new dataset containing daily snow depth observations
from Switzerland (Aschauer and Marty, 2020; Buchmann
et al., 2021) was available and was therefore chosen for
testing and improving our adjustment methods for snow
homogenization. Selected parallel series were then altered
to construct artificial series of snow depth with less
(SCless) or more snow (SCmore) by subtracting or adding
between 5–30 cm snow as described in Section 2.3.4.

2.2 | Austrian dataset

Snow depth observations are carried out at about 1000
stations in Austria (Haberkorn et al., 2019), most of
which are operated by ZAMG and HD. About 87% of
these observations, especially at HD stations, are still
measured manually at 07:00 CET. This is advantageous
for the homogeneity of a time series, as observations with
the same methodology cover a period from the late nine-
teenth century until today. First automatic observations
were introduced around 2010. The ZAMG stations use
laser sensors, while the HD relies on ultrasonic devices.
Depending on the network, observers follow slightly dif-
ferent guidelines and procedures (Haberkorn et al., 2019)
but the modalities remain very similar, allowing the two
data sources to be merged. From these networks, the
SNOWPAT dataset (Schöner et al., 2019; Olefs and
Koch, 2020) was created, which is the basis for this work.
It consists of daily quality-checked (HS and HN) and
homogenized (HS) manual snow observations, currently
from 40 ZAMG and 46 HD stations. For this study it was
extended by 21 stations, mainly from southeastern
Austria in order to improve the spatial coverage. Since so
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many snow stations in Austria are still having manual mea-
surements, only those were considered in our study in order
to exclude inhomogeneities resulting from automatization.
The stations are distributed all over Austria (Figure 1), with
a denser network in alpine areas. The lowest station is
located at 121 m a.s.l. (Podersdorf am See), the highest at
2140 m a.s.l. (Villacher Alpe). Other high-altitude stations
are currently not included. As the digitization of historical
observations is time-consuming, many of the HD's histori-
cal observations have not yet been fully digitized, but there
are continuous efforts to do so. As a result, most of the HD
time series available and used for analyses (e.g., Matiu
et al., 2021) start with 1971, but thanks to some HD prov-
ince offices there has been access to digitized and quality-
checked long-term observations, with the earliest records
included starting with 1895. The mean length of the HS
series in the dataset is 79 years for ZAMG and 105 years for
HD. Most of the stations contain both daily HS and HN
observations, with HS usually starting earlier. Interestingly,
this contrasts with Switzerland (Scherrer et al., 2013).

The extent of available metadata depends on the sta-
tion network operator. ZAMG has an extensive collection
of information on its stations, which increases with time.
It contains information on station relocations and
changes in the observation system, such as observer
changes. In contrast, less information is available from
HD, where only station relocations are documented.

Before use, the data set was already subjected to com-
prehensive quality control by the operating institutions.
The aim was to reduce the uncertainty in the data and to
produce consistent, physically plausible time series of
snow depth and snowfall depth. Time series used had
been quality controlled by the station supervisors and
were subjected to further checks, for example, for

internal and external consistency. The identification of
errors was done by several plausibility checks. Whereas the
ZAMG series had already been quality checked for the
entire series length, most of the stations provided by the
HD had only been checked back to the early 1970s, with
earlier digitized observations being raw data. With addi-
tional checks, remaining errors which usually resulted from
data-digitization could be identified and excluded. An
uncertainty remained in the data set: a suspicious number
of observations ending with 5 or 0, for example, 150 or
165, which occurred mainly at higher snow depths and on
stakes with a 5 cm scale. This is likely a rounding error,
caused by the human observers. The same error was also
found in the Swiss dataset (Aschauer and Marty, 2020).

Gaps with a length of up to 6 years were filled using
the gradient-plus-inverse-distance-squared method GIDS
if the necessary conditions were fulfilled (Nalder and
Wein, 1998). Unfortunately, gaps between 1940 and 1946
often could not be filled due to the low number of refer-
ence stations. GIDS is a combination of multiple linear
regression (MLR) and inverse distance weighting (IDW).
In regression (1), X is the snow depth (to be predicted),
Lon (longitude), Lat (latitude) and h (station height) are
the predictors. The resulting coefficients b1, b2 and b3
were used to adjust the snow depth of each reference sta-
tion to the geographical location of the candidate station.

X=b0+b1Lon+b2Lat+b3h ð1Þ

In the next step, the adjusted snow depth series was
weighted with IDW (2). The HS value (HSp) to be
predicted at a given location (Lonp, Latp, hp), n is the
number of reference stations used and di is the respective
distance to the candidate station location:

Rauris, 934 m
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FIGURE 1 Correlations between the Austrian candidate station Rauris (black square) and all other stations in the dataset on a map

(a) and against horizontal distance (b). The orange circle indicates the selected reference station, the orange borders show that the necessary

conditions for selection as a reference station are fulfilled. [Colour figure can be viewed at wileyonlinelibrary.com]
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The successful application of GIDS strongly depends
on the number and representativeness of the reference
stations used. Best results were obtained with 10–20 sta-
tions at <100 km distance. After filling, all results were
again checked for plausibility. With these steps, the
method provided satisfactory results for both the HS and
HN series. For evaluation, a three-year synthetic gap was
created in selected stations, filled and the results tested
with LOOCV (leave one out cross-validation), excluding
one station at a time. The results showed increasing
uncertainty with increasing altitude, which is a known
problem for observations at high elevations
(e.g., Gultepe, 2015; Prein and Gobiet, 2017). The mean
absolute error (MAE) and the mean bias error (MBE)
were calculated for assessing the results, which were also
visually inspected. In this way, stations that were
unsuitable for filling gaps could be easily identified and
excluded from the calculations. A recently performed
comparison of gap-filling methods for snow depth time
series (Aschauer and Marty, 2021) showed that there are
better methods than GIDS available, less impacted by sta-
tion density. However, with carefully performed plausi-
bility checks the method produced useful results.

2.3 | Homogenization of snow depth
series

2.3.1 | Reference series

To detect breaks in the time series of a candidate station,
the observations are compared with either one or several
other stations, so called reference stations, which should
be subject to the same climate as the candidate time
series. Reference stations for snow depth homogenization
face several challenges: As shown in Figure 1 using the
example of the Austrian station Rauris (934 m), the cor-
relation based on daily values with neighbouring stations
does not change linearly with distance. Due to complex
orographic situations and related influences such as
exposure to shortwave radiation, wind speed and direc-
tion, amount of snowfall and temperature, closest sta-
tions do not necessarily show the highest correlation.
Thus, it can be quite low for stations at a smaller dis-
tance, but above an acceptable threshold for stations

>200 km away. The amount of snow changes with the
vertical distance as well, which is a good reason to
exclude stations exceeding a certain elevation distance as
it has a strong influence on the adjustment factor.

As stated in Venema et al. (2020), two independent
observation series at the same location, one of which can
be used as a reference for the other, would be the best
possible solution for the task. However, since this is
hardly the case for most stations, other solutions must be
found. These can either be a highly correlated neigh-
bouring station (e.g., Nemec et al., 2013) or a computed
composite of several neighbouring stations, which can
also be weighted differently (e.g., Szentimrey, 1999;
Domonkos, 2015). Both approaches have specific advan-
tages, disadvantages and requirements. It is well known
in climate research that the probability for inhomogenei-
ties in long-term climate observational series is high
(Auer et al., 2007; Venema et al., 2020). Consequently,
the homogeneity of reference series must also always be
questioned and cannot be assumed. It is important to
note that a series incorrectly assumed to be homogeneous
implies the risk of introducing inhomogeneities and a
bias to the series to be homogenized. To keep this risk
low when using fully automated homogenization pack-
ages, for example, ACMANT (Domonkos, 2015), it is
therefore common to use either weighted or unweighted
mean composites. The decision which series to include or
exclude for this can have a noticeable impact on the
homogenization result, as no metadata is used in these
approaches.

In the case of the Swiss parallel dataset, each pair's
MeteoSwiss station served as candidate and the SLF sta-
tion as a reference, which was decided out of practical
reasons and to have consistency for the comparisons. For
the Austrian dataset, an unweighted composite and a sin-
gle reference approach were compared. To ensure that
the candidate and reference station had similar climate
conditions and to avoid false correlations, the selection
criteria from Marcolini et al., 2019 were applied: Mini-
mum correlation of 0.7, within 100 km horizontal and
300 m vertical distance. Time series meeting these
criteria were selected as possible reference series and
ranked according to the correlation. For the single refer-
ence variant, the station with the highest correlation was
used. If at least four series met the conditions, an

HSp=
Xn
i=1

1
di

� �2
" #−1

�
X
i=1

n

HSi+b1 Lonp−Loni
� �

+b2 Latp−Lati
� �

+b3 hp−hi
� �� � 1

di

� �2
"( )

ð2Þ
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unweighted average was calculated as a composite. The
comparison did not show any significant advantage for
one or the other variant in the analysed cases and since
the former had already been used for snow data
(Marcolini et al., 2019; Schöner et al., 2019), this
approach was pursued. Most of the time, the highest cor-
related reference station was chosen, but if its data qual-
ity or representativeness was doubtful, the second highest
was used instead. Reasons for this were either identified
breaks in the reference series within 10 years of a break
in the candidate station or due to major differences in the
immediate station locations or local climate (narrow val-
ley in the candidate station versus a wide plain in the ref-
erence station). This was the case for Rauris and Bad
Gastein (both in Salzburg, Austria) due to a break in the
respective reference series and Oed (Lower Austria) due
to the station environment.

2.3.2 | Break detection

After Mestre et al. (2011), each time series consists of a
climatic and a station effect as well as random white
noise. With a constant station effect, a time series is seen
as homogeneous. With break detection, constant shifts of
station effects are identified and adjusted afterwards.

Metadata is considered as an important source for
deciding whether a detected break in the data can be
accepted or not (Auer et al., 2007) and is a valuable
source of information for homogenization to understand
sources of inhomogeneities. However, as noted by Ven-
ema et al. (2020), all metadata are subject to a degree of
uncertainty and may also contain errors that can be mis-
leading. Therefore, the available metadata was only used
as an indicator for the uncertainty of observations: It was
assumed that time series from stations that have experi-
enced major shifts in the past may poorly represent the
“true” temporal variability. Shifts due to changed obser-
vation practices can be excluded for the analysed
Austrian and Swiss manual snow depth time series. In
our case, all breaks were caused either by station reloca-
tions or observer changes, which mostly also included
relocations.

Snow depth shows a strong interannual variability,
especially compared with long-term trends (Marke
et al., 2015). This is caused by its sensitivity to different
atmospheric conditions, location and altitude. To over-
come these high-frequency variations and to provide
robust trends at larger temporal and spatial scales, previ-
ous studies of (at least to our knowledge) break-detection
in snow time series were based on seasonal data
(NDJFMA, DJF). Although there are several different
methods for detecting systematic shifts (breaks) in

climate data series, to our knowledge only two are known
today to be used for detecting breaks in snow height
(HS) series: SNHT (Alexandersson, 1986; Alexandersson
and Moberg, 1997; Moberg and Alexandersson, 1997) and
PRODIGE (Caussinus and Mestre, 2004), which is
implemented in ZAMG's homogenization package
HOMOP. A comparison of the two methods showed good
overall performance for both, with equally credible
results. Differences occurred mainly for suspicious frac-
tures at very low snow depths, which were detected by
HOMOP but not by SNHT (Marcolini et al., 2019). Due to
the assumption of homoscedasticity in the homogeneous
time series, both tests are not able to detect inhomogenei-
ties in trends, where inhomogeneities in the trend often
show up as a string of single jumps.

For the creation of the evaluation-dataset, homoge-
neous subperiods were identified in the HS series of the
Swiss parallel dataset using the SNHT. The quotient
series (candidate/reference) were split into shorter
sequences until either only homogeneous sub-periods
remained, or the periods were too short (< 10 years,
Moberg and Alexandersson, 1997) to provide stable
results and were excluded from further analysis. As with
SNOWPAT (Schöner et al., 2019; Olefs et al., 2020), the
test was carried out with quotients of mean seasonal
snow depth (HSmean, NDJFMA). Since homogeneity
tests have difficulty interpreting changes at the beginning
and end of a time series (Toreti et al., 2011), corresponding
results <10 years after the beginning/before the end of a
time series were flagged as suspicious. Alexandersson
(1986) developed the SNHT to detect a single break in a
time series. Therefore, it has difficulties with time series
that contain two or more breaks (Moberg and
Alexandersson, 1997). In this case, the significance of the
largest break may be biased. As also emphasized by
Alexandersson (1986), if two equal but opposite shifts
occur, both may not be detected as would be the case for
multiple shifts in the same direction. The latter would be
considered as natural variability. In addition, the SNHT is
not the optimal method to correctly detect trends (Moberg
and Alexandersson, 1997). If inhomogeneities in trends
occur, they would be detected as a series of shifts.

2.3.3 | Adjustment methods

INTERP
Once the breakpoints were identified, the inhomogenei-
ties in the daily snow observations were adjusted with
INTERP (Vincent et al., 2002). It is a median-based
approach that can do reasonable adjustments to climate
time series and improve their homogeneity and has been
used to calculate daily adjustments for several climate

6 RESCH ET AL.
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variables, for example, temperature (Vincent et al., 2002)
or relative humidity (Chimani et al., 2018). Since ratios
between the candidate series and the reference series are
generally used for the homogenization (adjustment), it is
thus predefined that the number of days with snow cover
in the candidate series would not be increased by the
homogenization. The adjustment factor is calculated
according to (3), where C/R are the daily time series of
the candidate/reference station, a/b the time after/before
the detected inhomogeneity. All data of the inhomoge-
neous subsection of the candidate series are multiplied by
the same adjustment factor, which must not be correct in
the case of very small or very large snow depths.

Adjustment factor=

median Cað Þ
median Rað Þ

� �
median Cbð Þ
median Rbð Þ

� � ð3Þ

InterpQM
INTERP is known to provide useful results and improve
a time series homogeneity (Vincent et al., 2002; Chimani
et al., 2018). Schöner et al. (2019) used it to homogenize
snow depth time series but emphasized that only
monthly or seasonal values should be analysed, as it may
introduce a bias for small and very high values in the
daily observations.

This constraint was the motivation for implementing
improvements to INTERP, which was extended by the
concept of quantile matching. For this purpose, the data
was first split into several subsets/interquantile ranges
(IQR), for example, from the 0th to 94th and 95th to
100th percentile, as shown in Figure 2. A “raw” adjust-
ment factor was then calculated for each IQR (called
“InterpQMraw” in Figure 2) using Formula 3. To avoid
artificial jumps in snow depths, the “raw” factors of two
neighbouring IQRs were then linearly interpolated on a
percentile scale between the centres of the two IQRs. No
interpolation was performed to the lower (upper) half of
the smallest (largest) IQR. The resulting factors (called
“InterpQM” in Figure 2) were then applied to each
corresponding percentile of the time series. If the number
of unique snow depth values in a time series was <100,
the interpolation was based on the number of available
unique values. To determine the optimum interquantile
ranges (optimal in terms of the number of values per
IQR, its position in the percentiles and the improvement
achieved), several versions of InterpQM were compared
with the performance of INTERP on the evaluation
data. The best performing version (see Section 3.2) was
then selected for homogenization of the SNOWPAT
dataset.

2.3.4 | Evaluation of adjustment methods

Based on the results of the SNHT applied to the Swiss
dataset, eight station-pairs were selected to evaluate the
performance of the different adjustment methods. The
station pairs are listed in Table 1, together with their alti-
tude, the correlation of the daily snow depth of each sta-
tion pair and the chosen evaluation period, with the
break at the end of the period, respectively. The presence
and timing of the detected breaks were decisive for the
selection of suitable station pairs, so that no break would
influence the results. If a break was found in the series, it
had to be at least 20 years before the end of the observa-
tions so there would be no periods to be tested shorter
than 10 years. The next steps were to select a 10-year
period of the MeteoSwiss station, add artificial inhomoge-
neities, adjust them and evaluate the effectiveness of the
adjustment methods (INTERP, InterpQM). To account
for a broader range of potential inhomogeneities, a set of
three different scenarios was created for each pair: SCrep,
SCless and SCmore. In the former, all values in the test
period were replaced by a highly correlated neighbouring
MeteoSwiss station. To simulate the relocation of a sta-
tion from a location with less (SCless) or more snow

n.candidate = 5026

n.reference = 8868

342

630
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FIGURE 2 Calculated adjustment factors for the second break

of the Austrian station Tamsweg based on interquantile ranges

(IQR). Red circles: INTERP, blue squares: Adjustment factors of the

IQRs (InterpQMraw), turquoise triangles: Interpolated adjustment

factors (InterpQM), vertical dashed lines: Separation of the IQRs. n.

candidate and n.reference are the numbers of observations in each

IQR in the candidate and reference series. [Colour figure can be

viewed at wileyonlinelibrary.com]

RESCH ET AL. 7

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7742 by Schw
eizerische A

kadem
ie D

er, W
iley O

nline L
ibrary on [13/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


(SCmore) than at its actual location, the snow depths
were adjusted by subtracting or adding between 5–30 cm
snow. The adjustments were linearly interpolated
between the 0th and 100th percentiles and then added to
or subtracted from the corresponding values, for exam-
ple, five was added to the lowest, 13 to the middle and
30 to the highest snow depths of a station. No new snow
days were added to SCmore, but some were removed
from SCless through this process. The time series were
restricted to the beginning of the 10-year test period and
the end of the observations.

To assess the effectiveness of the applied adjustments,
the mean arctangular absolute percentage error MAAPE
(4) (Kim and Kim, 2016) and RMSE (5) were calculated
for three snow indicators: All daily snow depths
(HSdaily), seasonal (NDJFMA) means of snow depth
(HSmean) and the largest 5% of daily snow depths
(HS95). HS95 was preferred here over the seasonal maxi-
mum snow depths (HSmax) as a more robust quantity,
because it analyses not only the single largest but a whole
group of large values. Since HS95 is not a common snow
indicator, it was not used later but the more common
HSmax was used for further comparisons. The RMSE
based on seasonal values was also used to quantify the
Efficiency (6) (Domonkos et al., 2012) of the performed
homogenization. MAAPE was used due to its more stable
results in datasets with many zeros and small numbers,
which is inherent in snow observations. Efficiency has
been used also in other studies on time series homogeni-
zation (e.g., Gubler et al., 2017; Chimani et al., 2018).
HSorig is the original snow depth series, HShom is the
homogenized evaluation series, RMSEval is the RMSE
from the evaluation versus original time series and
RMSEhom is the RMSE from the homogenized versus
original time series.

MAAPE=
1
n

Xn
i=1

arctani
HSorigi−HShomi

HSorigi

				
				

� �
ð4Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i=1

HSorigi−HShomið Þ2
vuut ð5Þ

E=
RMSEval−RMSEhom

RMSEval
×100 ð6Þ

2.3.5 | Impact on time series

The effects of the homogenization on long-term trends in
the snow series were assessed with the nonparametric,
rank-based two-sided Mann–Kendall test (Mann, 1945;
Kendall, 1975; Lettenmaier et al., 1994) applied on vari-
ous snow-climate indicators. For this purpose HSmean
and HSmax, the mean and maximum seasonal snow
depth, were selected as together they cover a significant
portion of the winter snow depth distribution. The signif-
icance level used for rejecting the H0 (no trend in the
time series) was a p value <0.05. To assess the strength of
the trend, the Theil-Sen (Sen, 1968) was calculated for
the two indicators. This involves sorting the pairs of time
and observation from smallest to largest and calculating
the slopes between each pair. The median of all slopes is
then referred to as the “Sens Slope” and used as a mea-
sure to assess the overall strength of a trend.

In order to analyse to what extent homogenized time
series differ from the original ones, the Wilcoxon rank-
sum test and Kruskal–Wallis test, followed by Dunn's test
at a 95% confidence interval were performed to HSdaily,
HSmean and the number of days per season with snow
depth > 1 (dHS1) of the original and homogenized time
series. The mean of the adjustments and their standard
deviation were compared with the estimated uncertainty
of manual snow depth observations for assessing if the
adjustments were larger. The uncertainty of manual
snow observations depends mainly on each observer and
site, the scale on the poles (1 or 5 cm) and the weather

TABLE 1 List of the selected Swiss

station pairs for testing the efficiency of

the adjustment methods, together with

its altitude (defined as the mean of each

pair's altitudes), the correlation between

candidate and reference, the selected

10-year test period and date of artificial

break.

Name Altitude (m) corrHS Test period Break

Adelboden 1325 0.92 1984–1993 31 October 1993

Andermatt 1440 0.99 1999–2008 31 October 2008

Bivio 1770 0.97 1984–1993 31 October 1993

Davos 1560 0.97 1977–1986 31 October 1986

Einsiedeln/Sihlsee 910 0.97 1970–1979 31 October 1979

Küblis 815 0.96 1997–2006 31 October 2006

Santa Maria 1415 0.99 1980–1989 31 October 1989

Zuoz/S-chanf 1660 0.97 1955–1964 31 October 1964

8 RESCH ET AL.
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conditions during the observation. Based on SLFs and
ZAMGs long experience, it is estimated to <5 cm on a
pole with a 5 cm scale and 1–2 cm with a 1 cm scale.

3 | RESULTS

3.1 | Break detection

Inhomogeneities in the Swiss dataset of parallel observa-
tions were detected applying the SNHT on the quotients
of HSmean (NDJFMA) between the candidate and the
respective parallel station series: About 66% of the station
pairs showed breaks. An overview is presented in
Table 2. Between one and two breaks were detected with
PRODIGE and confirmed with the SNHT and metadata
in six of the 86 Austrian stations (Table 4, Marcolini
et al., 2019): Bad Gastein (1092 m), Galtür (1577 m), Oed
(400 m), Rauris (934 m), St. Leonhard im Pitztal
(1335 m) and Tamsweg (1026 m). A possible explanation
for the large difference in the detected number of breaks
between SNOWPAT and the parallel dataset are signifi-
cantly higher correlations between the time series of the
station pairs for the latter. This indicates a lower noise of
the quotient series, which otherwise would mask smaller

breaks. For additional prove, break detection was also
performed for the Swiss HN pairs, indicating that for HS
and HN different breaks were identified for almost every
station pair. This finding could be explained by different
influences on HS and HN observations (e.g., ablation pro-
cesses for HS), different measurement devices and obser-
vation and procedures. If compared with variables like
temperature (Venema et al., 2012), a lower number of
breaks was detected in the analysed snow depth time
series.

3.2 | Evaluation of InterpQM

To compare the performance of INTERP and InterpQM
in homogenizing snow depth series and to identify the
best performing InterpQM version, the three inhomoge-
neity scenarios (SCmore, SCless and SCrep), which were
artificially created from the Swiss parallel dataset, were
adjusted with both methods for the breaks detected, as
described in Section 3.1. For this purpose, daily snow depths
(HSdaily), seasonal means of snow depth (HSmean) and
the largest 5% of daily snow depths (HS95) were analysed.
In a first step, the percentage of cases with a better perfor-
mance of InterpQM than INTERP was calculated. This

TABLE 2 Overview of the stations of the Swiss parallel dataset where breaks were detected using the SNHT on seasonal data.

Station Correlation Altitude (m) Break

Klosters 0.89 1190 1999

Adelboden 0.92 1325 1983

Andermatt 0.99 1440 1998

Bever 0.95 1750 1968

Bivio 0.97 1770 1983

Bosco-Gurin 0.97 1525 1980

Cavaglia 0.93 1690 1999

Crans-Montana 0.97 1590 1976

Gadmen 0.96 1190 1995

Göschenen 0.95 1110 1989, 2009

Einsiedeln/gross 0.97 910 2009

Einsiedeln/Sihlsee 0.97 910 1968

Lauterbrunnen 0.95 800 2000

Mürren 0.97 1650 1988

Samedan 0.93 1750 1995

Sedrun 0.95 1420 1984, 2001

Splügen 0.95 1457 1985, 2004

Zermatt 0.97 1600 1990

Zernez 0.92 1475 1996

Note: The detected break is shown together with each pair's correlation and altitude, which is defined as the mean of each pair's altitudes.
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evaluation (Table 3) showed that using more IQRs did not
necessarily improved the results. The overall best results for
all different InterpQM-versions were gained in the more
complicated SCrep-dataset, regardless of amount and distri-
bution of the IQRs. The results of SCless slightly favour all
different InterpQM versions, but many of them had prob-
lems with SCmore, where only three were clearly better
than INTERP. From these, the version with two IQRs (0th
to 94th, 95th to 100th) showed the overall best results (79%
in SCmore, 56% in SCless and 68% in SCrep) and was there-
fore chosen for the homogenization of the Austrian dataset.
In the following, it is referred to as InterpQM and its results
are analysed in more detail. For presenting the results in a
more intuitive way, a compilation is presented in Figure 3
as a station-by-station difference of the two methods, sepa-
rated by the analysed scenario and snow indicator. The dif-
ferences between INTERP–InterpQM were evaluated by the
RMSE, the MAAPE and the Efficiency (with a higher value
indicating better performance).

The differences between the two methods were larg-
est for SCless and smallest for SCrep. For comparison,
the absolute values of the evaluation measures of all

InterpQM versions against INTERP are presented in
Figure S1. The results were quite different for the tested
scenarios: For both methods, homogenization efficiency
was lowest for SCrep and highest for SCmore. The largest
differences were found for very large snow depths
(HS95), where the RMSE, the Efficiency and the MAAPE
for InterpQM were better than for INTERP at seven (out
of eight stations) for SCless, six for SCmore and five for
SCrep. The differences between the two methods in Effi-
ciency were up to 130% for SCless, 55% for SCmore and
22% for SCrep. For the MAAPE, they ranged between
−0.13 and 0.44, with the smallest differences found for
SCrep.

In HSdaily, the RMSE was lower for InterpQM in six
out of eight stations in all three evaluation datasets, Effi-
ciency was higher in six stations for SCless and SCmore
and seven for SCrep. The differences (INTERP—Inter-
pQM) were smaller than for HS95, ranging from −3.2 to
+4.9 cm and −52 to +35%. The MAAPE of InterpQM was
lower in two stations for SCless, for all stations in
SCmore and five stations in SCrep. The results for
HSmean showed a better performance of INTERP for six

TABLE 4 Results of the break detection and adjustment factor determination of the Austrian stations together with their altitude, the

correlation based on daily values between candidate and reference and the likely reason for the break.

Station Altitude (m) Year INTERP InterpQM 1–94, 95–100 Correlation Meta-information

Bad Gastein 1092 1972 1.24 1.18, 1.24 0.89 Change of observer

Galtür 1577 1988 1.01 0.99, 0.94 0.91 Relocation of station

Rauris 934 1973 1.16 1.19, 1.37 0.86 Relocation of station

1993 1.51 1.56, 1.36 Relocation of station

Tamsweg 1026 1983 0.88 0.61, 1.09 0.85 Relocation of station

1998 0.58 0.47, 0.84 Relocation of station

Oed 400 1996 1.23 1.75, 1.46 0.81 Relocation of station

St. Leonhard im Pitztal 1335 1985 0.94 1, 1.03 0.92 Relocation of station

TABLE 3 Percentage of the

analysed Swiss evaluation cases per

InterpQM version with better results

than INTERP.

InterpQM ranges SCmore (%) SCless (%) SCrep (%) Overall (%)

0, 25, 50, 75, 100 40 50 67 52

0, 25, 50, 75, 95, 100 36 50 65 50

0, 50, 100 36 56 72 55

0, 50, 75, 100 36 54 74 54

0, 50, 75, 95, 100 36 54 71 54

0, 50, 95, 100 36 54 72 54

0, 75, 100 67 53 67 62

0, 75, 95, 100 69 53 61 61

0, 95, 100 79 56 68 68

Note: The first column shows the used percentiles for defining the interquantile ranges (IQR).

10 RESCH ET AL.

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7742 by Schw
eizerische A

kadem
ie D

er, W
iley O

nline L
ibrary on [13/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



stations of the SCless scenario for RMSE and Efficiency
and seven for MAAPE, but in contrast lower RMSE and
Efficiency in six (5) and lower MAAPE in seven

(6) stations with InterpQM for SCmore (SCrep). Since the
MAAPE can be roughly considered as a percentage error,
it can be summarized that InterpQM reduced the relative
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0

10

20

30

In
te

rp
 −

 I
n

te
rp

Q
M

 [
R

M
S

E
 c

m
]

−50

0

50

100

In
te

rp
Q

M
 −

 I
n

te
rp

 [
E

ff
ic

ie
n

c
y
 %

]

SCless SCmore SCrep SCless SCmore SCrep SCless SCmore SCrep

−0.25

0.00

0.25

In
te

rp
 −

 I
n

te
rp

Q
M

 [
M

A
A

P
E

]

INTERP better InterpQM better
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errors of HS95 in SCless between 7% and 19%, between
1% and 4% in SCmore and between 2% and 3% in SCrep
better than INTERP. On the contrary, errors of HSmean
were 3–26% larger using InterpQM in SCless, but smaller
for SCmore (between 1% and 3%) and for SCrep (3–9%).
For HSdaily errors were also between 1% and8% larger
with InterpQM for SCless but 1–4% smaller for SCmore
and 1–3% for SCrep.

As mentioned, either a single adjustment factor is cal-
culated for all data (INTERP) or one for each IQR that is
interpolated to each percentile (InterpQM) of a time
series. Individual seasons that differ greatly from the
others, for example, with extremely large snow depths,
therefore, affect the INTERP adjustment factor and thus
all adjusted values, while the results for InterpQM are
less influenced. Two examples of this can be seen in
Figure 4: The season 1980/1981 in the SCless dataset of
Davos and 1984/1985 in Santa Maria. Like this case, a
strong year-to-year variability of snow depth also poses a
challenge for INTERP.

3.3 | Homogenization of Austrian snow
depth series

Given the evaluation results, the adjustments with Inter-
pQM should give a more realistic picture of the real snow
depths, especially for large and small values. As pres-
ented in Table 4, the homogenization with InterpQM
increased the snow depth for three stations (Bad Gastein,
Oed, Rauris), decreased it for two (Galtür, St. Leonhard
im Pitztal) while lowering the smaller and increasing the
larger values in Tamsweg. INTERP raised the snow depth
in Bad Gastein, Rauris and Oed but as well in Galtür,
while decreasing it in St. Leonhard and Tamsweg. As an
example, the seasonal mean (HSmean) and maximum
snow depth (HSmax) as well as the differences of
INTERP and InterpQM of Rauris and Galtür are shown
in Figure 5. In Rauris, adjustments prior to the first break
in 1973 were up to 21 cm lower with INTERP than those
of InterpQM, while it was the other way round, with up
to 11 cm larger values between 1973 and the second

RMSE

INTERP: 0.9

InterpQM: 0.71

MAAPE

INTERP: 0.002

InterpQM: 0.001

HSmax

−4

0

4

o
b

s
 −

 h
o

m
 [

c
m

]

SCmore

Davos, 1560 m

RMSE

INTERP: 1.55

InterpQM: 1.24

MAAPE

INTERP: 0.009

InterpQM: 0.007

INTERP InterpQM

HSmean

−10

−5

0

RMSE

INTERP: 5.02

InterpQM: 4.14

MAAPE

INTERP: 0.014

InterpQM: 0.021

HSmax

−10

0

10

20

30

Santa Maria, 1415 m

RMSE

INTERP: 1.37

InterpQM: 1.53

MAAPE

INTERP: 0.034

InterpQM: 0.034

HSmean

−10

−5

0

5

RMSE

INTERP: 9.64

InterpQM: 1.64

MAAPE

INTERP: 0.023

InterpQM: 0.003

−75

−50

−25

0

o
b

s
 −

 h
o

m
 [

c
m

]

SCless

RMSE

INTERP: 4.28

InterpQM: 1.29

MAAPE

INTERP: 0.019

InterpQM: 0.006
−50

−40

−30

−20

−10

0

RMSE

INTERP: 14.24

InterpQM: 5.13

MAAPE

INTERP: 0.039

InterpQM: 0.039
−150

−100

−50

0

RMSE

INTERP: 4.35

InterpQM: 2.74

MAAPE

INTERP: 0.054

InterpQM: 0.047
−50

−40

−30

−20

−10

0

10

RMSE

INTERP: 9.02

InterpQM: 8.44

MAAPE

INTERP: 0.022

InterpQM: 0.02

1
9
7
7

1
9
7
8

1
9
7
9

1
9
8
0

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

−100

−50

0

50

o
b

s
 −

 h
o

m
 [

c
m

]

SCrep

RMSE

INTERP: 4.73

InterpQM: 4.18

MAAPE

INTERP: 0.023

InterpQM: 0.02

1
9
7
7

1
9
7
8

1
9
7
9

1
9
8
0

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

−40

−20

0

20

RMSE

INTERP: 14.38

InterpQM: 12.92

MAAPE

INTERP: 0.077

InterpQM: 0.068

1
9
8
0

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

−100

−50

0

50

RMSE

INTERP: 4.47

InterpQM: 4.15

MAAPE

INTERP: 0.07

InterpQM: 0.068

1
9
8
0

1
9
8
1

1
9
8
2

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

−40

−20

0

FIGURE 4 Difference between observed and homogenized data for HSmax (maximum seasonal snow depth) and HSmean (mean

seasonal snow depth) of the evaluation data set for the Swiss stations Davos and Santa Maria. [Colour figure can be viewed at

wileyonlinelibrary.com]

12 RESCH ET AL.

 10970088, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7742 by Schw
eizerische A

kadem
ie D

er, W
iley O

nline L
ibrary on [13/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


break in 1993. Galtür represents an interesting case, with
opposite sign of the adjustments: The snow depth was
slightly increased with INTERP but decreased with Inter-
pQM. The difference between the two methods is up to
14 cm for HSmax and 4 cm for HSmean.

3.4 | Impact of homogenization

The Wilcoxon and Kruskal–Wallis Test revealed the dif-
ferent impact of the two adjustment methods to the
homogenized series: While the adjustments did not cause
a significant change for dHS1 for any of the stations, they
had a significant effect for HSdaily of all stations with
InterpQM, but only for three with INTERP (Galtür,
Rauris and Tamsweg). HSmean was only significant for
Bad Gastein and St. Leonhard with InterpQM and Bad
Gastein, St. Leonhard, Oed and Tamsweg with INTERP.
Figure 6 shows long-term trends of snow depth as the
mean change per decade and its significance, calculated
for the entire time series for HSmax and HSmean. In the

original time series, all stations showed a negative trend
for HSmax, only Galtür (−5.7 cm/decade) and Tamsweg
(−3.5) were significant. When homogenized with
INTERP/InterpQM, the negative trend of Bad Gastein
was increased by 2.8/2.4 cm/decade, of Oed by 0.9/2.9
and of Rauris by 0.6/1.3. INTERP weakened the trend of
St. Leonhard by 0.7 cm/decade while InterpQM slightly
intensified it by 0.1. Both methods reduced it in Tamsweg
(1/3.4), where the adjustments by InterpQM were so
strong that the trend (−0.1 cm/decade) was almost
removed. The trends of Bad Gastein and Oed were also
significantly changed by both methods, while only Inter-
pQM removed both the negative trend and its signifi-
cance of Tamsweg.

The HSmean trends were generally smaller and only
for Tamsweg significant in the original data. Both
INTERP/InterpQM strengthened the trends of Bad Gas-
tein by 1.1/0.8 cm/decade, of Oed by 0.3/1 and of Rauris
by 0.3/0.4. In Galtür, INTERP intensified it by 0.2, while
it was weakened with InterpQM by 0.1. In St. Leonhard,
INTERP reduced it by 0.3, while no changes were done
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by InterpQM. In Tamsweg, INTERP weakened the trend
by 0.4, the stronger adjustments by InterpQM (1.5
cm/decade) completely removed it. Due to strong adjust-
ments, both methods changed the trend in Bad Gastein
to significant. The changes in Galtür were only minor,
but with the large reduction of snow depth, InterpQM
turned Oed to significant. Despite the decreased trend in
Tamsweg with INTERP it remained significant but was
completely removed with InterpQM.

A comparison of the calculated adjustment values,
both for INTERP and InterpQM, with the uncertainties
of the snow depth observations shows that the mean
adjustments of the time series ranged between 2 and
14 cm and the corresponding standard deviation between
0.9 and 6.9 cm. The measurement uncertainty of snow
depth can be assumed <2 cm for most cases and <5 cm
for special cases, for example, snow stakes with a 5 cm
scale. This is lower than the value of the adjustments, or
put in another way, the adjustments exceed the inaccu-
racy of the measurements.

4 | CONCLUSIONS

Adjustments to a time series by homogenization can have
a strong impact on climatological analysis. Careful

evaluation and application of homogenization is there-
fore very important. A general disadvantage of homoge-
nized data is that their physical consistency cannot be
guaranteed, so they should not be used for all kinds of
analyses. The choice between homogenized and non-
homogenized data depends on the intended analysis and
the cause of the inhomogeneity, for example, a systematic
error due to sensor bias or a station relocation. As for
trend and most other analyses, homogenized data are
clearly preferable, for the analysis of individual extreme
values, for example, the highest observed snow depths at
a station, nonhomogenized data may be a good choice.

Based on the results of a previous homogenization of
snow depth time series (Schöner et al., 2019), and a
recently available Swiss parallel dataset, the potential of
improving snow homogenization by introducing a
quantile-based adjustment scheme was investigated. For
this purpose, the widely used method based on a median
adjustment (INTERP) was extended with quantile
matching (InterpQM). A comparison of the methods
showed that the quantile approach generally provides
better and more realistic results, especially for very large
snow depths. Despite remaining uncertainties, InterpQM
provides more robust data, for example for the derivation
of trends or analysis of decadal-scale variability. Interest-
ingly, the results of the various evaluation datasets made
with the Swiss parallel data series, showed that the
implementation of quantile matching improved the
results in most but not all cases. This is surprising in that
one might expect the quantile adjustment (InterpQM) to
be always better or at least equally good as a median-
based adjustment method (INTERP).

Since the true measured value is always unknown in
homogenization, the results of the evaluations carried
out are an important guide for assessing the improved
adjustment method. In order to evaluate the impacts of
possible station changes on snow depth series, we tried to
simulate different inhomogeneity scenarios and then
compared the performance of the two methods for
homogenization. The comparison of the different inho-
mogeneity scenarios for different indices shows that Qua-
ntile Matching generally leads to the expected
improvement of the homogenization of snow depth. Only
in exceptional cases, such as the seasonal mean snow
depth and a reduced snow depth before the break,
INTERP and InterpQM perform similarly, in most other
cases InterpQM was better. Overall, the analysed
InterpQM-variant performed better in 68% of all evalua-
tion cases, in 56% of cases with reduced pre-break snow
depth, 79% of the increased snow-depth- and 68% of the
replacement variant cases. When comparing indicators
across all scenarios, InterpQM performed better in 75% of
all cases for HS95, in 58% for HSdaily and 56% for
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HSmean. The analysis of the adjustments for very large
snow depths (HS95) showed that the advantages of the
quantile matching method were strongest here. This con-
firms the main idea of our study of implementing qua-
ntile matching for homogenizing time series of snow
depth: Improving the quality of large snow depths in the
time series, as they can have a strong influence on long-
term trends. From our results we conclude that this was
successful, even if the improvements were not as clear-
cut as postulated. The evaluation of InterpQM shows that
it achieved by far the best results compared with INTERP
on the most difficult dataset, where an entire period was
replaced by values from another station. This inhomoge-
neity was also considered to be the most realistic, since
the exact impact of each station relocation is largely
unknown and was only simulated in the other scenarios.
We tried not to overfit InterpQM to specific inhomogene-
ities and to simulate different possible impacts as realisti-
cally as possible. However, this cannot be avoided
completely and a possible reason for the partly very simi-
lar results of INTERP and InterpQM could be that the
artificial inhomogeneities could also be adjusted very
well by the median approach of INTERP.

After the evaluation using the Swiss parallel time
series, InterpQM was applied to the Austrian SNOWPAT
dataset, where Schöner et al. (2019) had detected and
adjusted breaks at six stations. As shown for the example
of Galtür, INTERP and InterpQM can lead to consider-
able differences in the results, even in the sign of the
adjustment. While this had no effect on the sign or signif-
icance of the trend for Galtür, for other station time series
the significance varied with the different methods while
the sign of the adjustment was the same (e.g., HSmean in
Oed). The evaluation carried out with the Swiss parallel
data set and the comparison of the error measures for dif-
ferent InterpQM variants also showed that the use of a
higher number of adjustment factors (higher number of
IQRs) does not necessarily increase the quality of the
results.
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