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Abstract: 

Field-ready qPCR assays with a long shelf-life support monitoring programs for emerging aquatic 

pathogens and enable quick conservation and management decisions. Here, we developed, 

validated, and tested the shelf-life of qPCR assays targeting Gyrodactylus salaris and Aphanomyces 

astaci with lyophilization and air-drying.  
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Pathogenic microorganisms are a major threat to aquatic and terrestrial ecosystems. Globalization 

(international trade, transportation, and urbanization) and anthropogenic global changes have 

fostered the spread of pathogens (McIntyre et al., 2017; Guenard, 2021), resulting in biodiversity 

decline and economic losses. Three relevant aquatic pathogens with negative economic and 

ecological implications are: (i) the monogenean salmon parasite Gyrodactylus salaris (Gs) that 

colonizes the skin, gills, and fins of salmon and has caused widespread losses in both wild and 

farmed Atlantic salmon (Bakke et al., 1992; Rusch et al. 2018), (ii) the crayfish pathogen oomycete 

Aphanomyces astaci (Aa) that elicits crayfish plague in native European, Asian, and Australian 

crayfish species and causes massive population die-off events (Martín-Torrijos et al., 2021), and (iii) 

the amphibian-targeting panzootic chytrid fungus Batrachochytrium dendrobatidis (Bd), which 

originated in Asia, spread globally because of amphibian trade, and has decimated more than 500 

amphibian species over the past half-century (Fisher and Garner, 2007, 2020; Scheele et al., 2019). 

The analysis of environmental DNA (eDNA) is an emerging tool for a quick and relatively 

inexpensive method for monitoring and detecting aquatic pathogenic organisms (Amarasiri et al., 

2021). As a result, scientists, governmental agencies, and companies are increasingly incorporating 

eDNA methods into (semi)-automatic sampling machines coupled to portable real-time quantitative 

PCR (qPCR) thermocyclers for continuous on-site pathogen monitoring of waterways (Thomas et al., 

2020; Sepulveda et al., 2019, 2020). However, a remaining challenge is the requirement of cold 

storage for key reagents, which prohibits their use in field-operating machinery. Reagents that can be 

dried and stable at room temperature (RT) are commercially available. However, they have not been 

independently evaluated for their applicability and true shelf-life regarding eDNA monitoring of 

pathogens.  

This study describes field-ready storable dried qPCR assays for three aquatic pathogens, Gs, Aa, 

and Bd, all based on previously published and optimized primers and probes (Table 1). For Gs and 

Aa assays, we compared two different drying methods, lyophilization and air-drying, respectively, and 

the amplification efficiency of dried assays across a time series (Table 1). The dried Bd assay was not 

evaluated for shelf-life, so results are not shown but worked upon reconstitution after drying.  

All three assays targeted the ribosomal DNA internal transcribed spacer 1 (ITS1) region and were 

evaluated for reproducibility and sensitivity in a wet, freshly-made state. The standard curves were 

generated using serial dilutions of synthetic double-stranded DNA fragments (gBlocks, Integrated 
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DNA Technologies, Inc., Leuven, Belgium) encompassing the primer/probe target regions of the three 

assays (Table 1; Fig.1a,c; Supp. Material Fig. S1). 

After generating baseline data for the wet assays (Fig. 1A, C), the efficiency and shelf-life of dried 

assays for Gs and Aa were evaluated with a 12-week time-series experiment (Fig. 1B, D). The Gs 

assays were prepared using SensiFAST Lyo-Ready Mix (Meridian Biosciences, Bioline Assays Ltd, 

London, UK) with an exogenous internal positive control (IPC; Applied Biosystems, Waltham, MA, 

USA), which allows for the assessment of both the overall integrity of assays and the potential false 

negatives (PCR inhibition) in future environmental analyses. IPC kit includes a synthetic template 

DNA with its corresponding primers and TaqMan probe (VIC-labeled probe, in contrast to the FAM-

labeled probes used for the three target assays). Gs assays (Final drying concentrations: qPCR Mix: 

1x; forward and reverse primer: 0.75 µM; probe: 0.25 µM. Total volume in molecular-grade water: 18 

µl) were frozen at -80ºC for 24 h and then lyophilized at -50°C and <0.1 mbar for 4 h with a FreeZone 

2.5 Liter Benchtop (Labconco, Kansas City, MO, USA). Aa assays were prepared with Air-Dryable 

qPCR Mix (Meridian Biosciences, Bioline Assays Ltd) (qPCR Mix: 1x; forward and reverse primer: 1.2 

µM; probe: 0.3 µM. Total: 15 µl)  and air-dried at 60°C for 60 min using a drying oven (Memmert UE 

200-800; Memmert Gmbh, Schwabach, Germany) with a fan speed of 100% (drying time and 

temperature optimization, not shown); no IPC was used (Table 1). Both assays were vacuum-sealed 

in bags with silica beads, placed in darkness, and stored at either 4°C or RT (21°C ±1°C). qPCR 

analyses comparing dried vs. fresh assays were conducted every two weeks post-drying. The dried 

Gs assays were reconstituted with 18 µl of molecular-grade water and 2 µl of gBlocks, while the dried 

Aa assays were reconstituted with 15 µl of molecular-grade water and 5µl of gBlocks. Three different 

concentrations of the gBlocks fragments were used as standards for Gs (5.8 × 10
5
, 5.8 × 10

3
 and 58 

copies of Gs_124-289) and Aa (1.9 × 10
8
, 1.9 × 10

6
 and 1.9 × 10

4
 copies of Aa_1-152) (Fig. 1). 

Target
a 

 

(Reference) 

Forward 

primers  

(conc.) 

Reverse  

primers  

(conc.) 

TaqMan 

probe  

(conc.) 

IPC
b
 gBlocks / 

reference 

sequences 

(Acc. No)
c
  

qPCR  

program 

Drying 

method 

Shelf-

life 

tested 

Gs 

(Rusch et al., 

2018) 

Gsal-208F 

(0.75 µM) 

 

Gsal-149R 

(0.75 µM) 

Gsal-188P-

MGB2 

(0.25 µM) 

Yes Gs_124-289 

(DQ898302) 

2 min 95°C; 

45 cycles 

(10 s 95°C, 

Lyophilization Yes 
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1 min 

60°C) 

Aa 

(Vrålstad et 

al., 2009) 

AphAstITS-

39F 

(1.2 µM) 

 

AphAstITS-

97R 

(1.2 µM) 

AphAstITS-

60T 

(0.3 µM) 

No Aa_1-152 

(AM947023) 

2 min 95°C;  

45 cycles (5 

s 95°C, 20 

s 60°C) 

Air drying Yes 

Bd 

(Boyle et al., 

2004) 

ITS1-3 

Chytr 

(0.9 µM) 

 

5.8S-Chytr  

(0.9 µM) 

Chytr-

MGB2  

(0.25 µM) 

Yes Bd_26-271 

(AY598034) 

2 min 95°C; 

50 cycles 

(10 s 95°C, 

1 min 

60°C) 

Lyophilization No 

Table 1. qPCR assays evaluated in this study. 

a
 Gs: Gyrodactylus salaris; Aa: Aphanomyces astaci; Bd: Batrachochytrium dendrobatidis

 

b
 IPC: Internal Positive Control including a template DNA and its complementary TaqMan probe and 

primers.  

c
: gBlocks names refer to the selected positions in the corresponding reference sequences, whose 

GenBank Accession numbers are detailed  
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Figure 1. Validation and stability results for the two dried assays. (a + c) Standard curves of TaqMan-

based qPCR amplification of Gyrodactylus salaris (Gs; a) and Aphanomyces astaci (Aa; c) using fresh 

assays and gBlocks fragments. Standard curves were plotted using all three replicates for each serial 

dilution. The dotted lines represent the three concentrations used in each shelf-life experiment. (b + d) 

Shelf-life experiment results for Gs (b) and Aa (d) over 12 weeks, testing three concentrations and 

two different storage temperatures (4°C and room temperature - RT). These results, are shown as 

changes in Cq values compared to fresh assay (y-axis = Cq dried – Cq fresh); where a positive Cq 

means the sample amplified after the control and a negative Cq the sample amplified before the 

control; a perfect match in Cq values of the fresh and dried assays is indicated by a zero. 

Concentrations for each assay were selected within the quantification range. Asterisks indicate the 

main Cq changes associated with the degradation of the assays (see details in Fig. 2). nd: non-

detected qPCR signals. 

We find that in three of four conditions (i.e., Gs: 4°C, Aa: 4°C, RT), dried assays perform equally 

well as fresh assays even after 12 weeks (3 months) of storage. Gs assays stored at RT declined in 

performance at week 8, with increased Cq values compared to the control and anomalous IPC signals 

(Fig. 1b, indicated by the asterisks; Fig. 2). In optimum conditions, with stable reagents and lack of 

PCR inhibitors (often present in environmental DNA samples), the Cq values for IPC (VIC 

flourescence) should be 25±2, as shown in Fig. 2b for the assays stored at 4°C and fresh controls. 

While at week 10, only the highest concentration could be detected, by week 12, all concentrations 

were undetectable (Fig. 1b). Since the aim was to develop Gs assays stable at RT, further 

optimization is required to make this assay stable at RT for the same duration. In a diagnostic setting, 

however, often, a combination of storage options is possible, where assays can be stored for a longer 

time at 4°C and used or stored at RT for field-based studies (<6 weeks) when cold storage is not 

possible. Air-dried Aa assays were stable until the end of the experiment at all concentrations and in 

both storage conditions. An anomaly occurred in week 10 when the highest concentration of the 4°C 

stored group and the medium concentration of the RT stored group were not detected. Since results 

in the following timepoint, in week 12, were on par with the control group, we assume that this 

anomaly was likely a result of the drying position in the oven if there was not equal airflow across all 

samples (communication with the company), a future issue that would need to be addressed.  
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Figure 2. Partial degradation of the freeze-dried Gyrodactylus salaris qPCR assays. (a) Aspect of 

qPCR reagents. (b) Amplification curves for the internal positive controls (IPC; VIC signals). Note the 

poor performance of the dried assays stored at room temperature (grey IPC curves) compared to 

those stored at 4°C (red) and fresh controls (blue). 

 

The development of field-ready diagnostic assays is vital for detecting and controlling emerging 

diseases quickly on site. Here, we provide proof-of-concept data for field-ready qPCR assays that 

could be further coupled with portable field-use qPCR machines to detect and monitor aquatic 

pathogens. Additional steps include further optimization to increase shelf-life and easy transferability 

to developing (semi)-automatic microfluidic devices. A possible method for ease of transferability 

would be to follow Xu et al. (2021), where the addition of liquid nitrogen to the master mix formed a 

transferable ball.  

We demonstrate the feasibility of preparing dried, long-term stable qPCR reactions that can be 

reconstituted with water and a template. All assays would be suitable for field-based conservation 

monitoring programs.  

This work was supported by the Norwegian Environment Agency (Auto e-DNA project).  
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Highlights 

 Development of field-ready qPCR assays for detecting aquatic pathogens 

 Lyophilization and air-drying methods are suitable for drying qPCR assays 

 The development of dried assays is vital for monitoring and conservation programs 
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