

COST-G: Status and recent developments

A. Jäggi¹, U. Meyer¹, H. Peter², J. de Teixeira da Encarnação³, M. Lasser¹, F. Flechtner⁴,
 C. Dahle⁴, E. Boergens⁴, C. Förste⁴, T. Mayer-Gürr⁵, A. Kvas⁵, S. Behzadpour⁵, J.-M. Lemoine⁶, S. Bourgogne⁷, I. Koch⁸, J. Flury⁸, A. Groh⁹, A. Eicker¹⁰, A. Blazquez¹¹, B. Meyssignac¹¹

¹University of Bern, Switzerland
²PosiTim UG, Germany
³TU Delft, The Netherlands
⁴GFZ Potsdam, Germany
⁵Graz University of Technology, Austria
⁶Centre National d'Etudes Spatiales, France

⁷Stellar Space Studies, France
 ⁸Leibniz University Hannover, Germany
 ⁹TU Dresden, Germany
 ¹⁰HafenCity University Hamburg, Germany
 ¹¹LEGOS, France

GGHS 2022

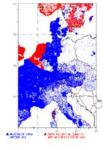
12 – 14 September 2022, Austin, Texas

Introduction

Gravity and geoid metadata

Online applications for the creation of metadata for gravity and geoid data. Service for searching the metadata database.

g-µeta the gravity metadata editor (vil).2.6 - twin edition)


N-µeta the geoid metadata editor (40.1.3 - alpha edition)

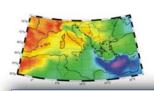
Global Earth Models

Collection and archive of all existing global

to GEMs, model visualization and service.

gravity field models, web interface for access

Gravity data


Land, marine, airborne gravity data as point

and gridded values. Absolute and relative

gracity data, WGM

Geoid

Geoid models and geoid determination software, geoid modeling processing methodologies

IGFS Mailling Lists Subscribe to our mailing lists to informed on IGFS Products & Stan

DEM data

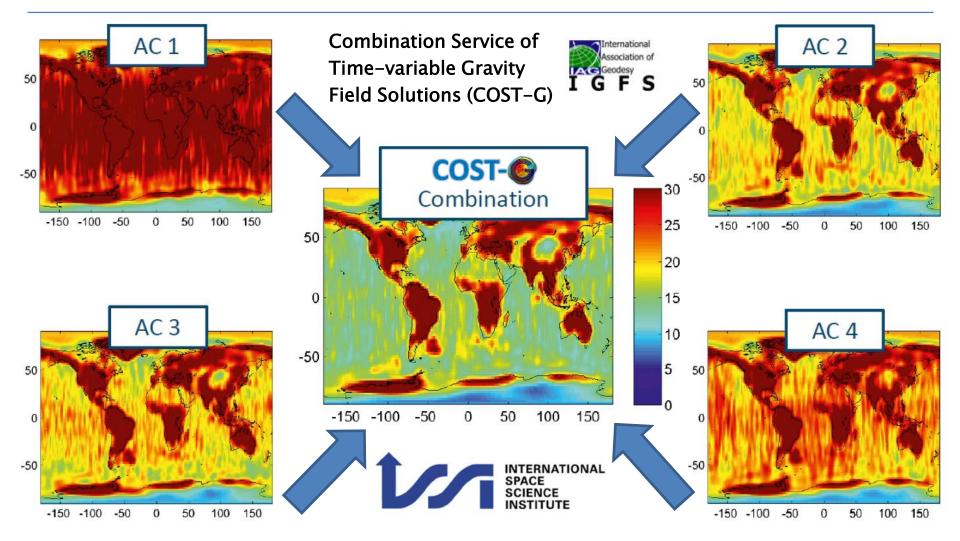
Digital Elevation Models, relevant software for DEM creation, assessment, manipulation and display, global relief and crustal models and spherical harmonic data sets.

SG and Earth tide data

Temporal variations of the Earth gravity field through long-term records from ground gravimeters, SG data, Earth tide data.

COST-G is one of the product centers of the

http://igfs.topo.auth.gr/



Time-variable GEMs

Combined gravity field solutions in SH coefficients and spatial grids for hydrological, oceanic and polar ice sheets applications.

Introduction

Improved and consolidated product integrating the strengths of all ACs

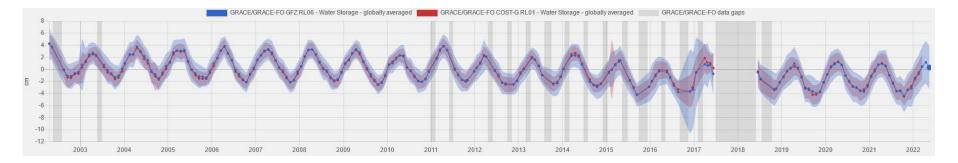
Level-2 Product Availability

Gravity Field Solutions for dedicated Time Periods

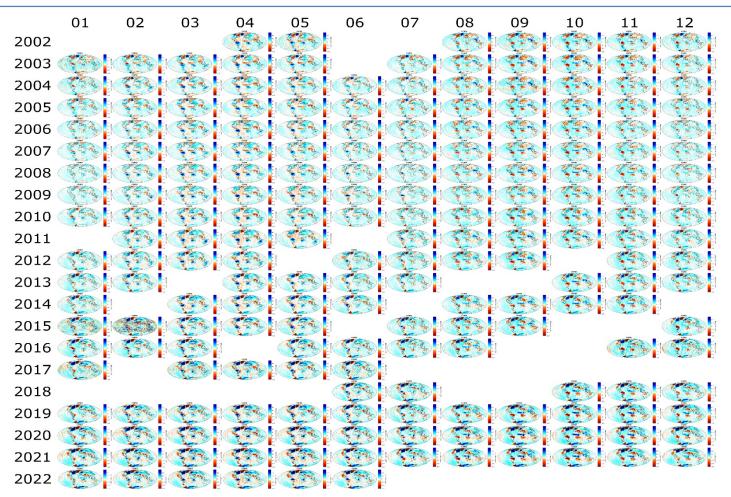
The following gravity field time series are presently available:

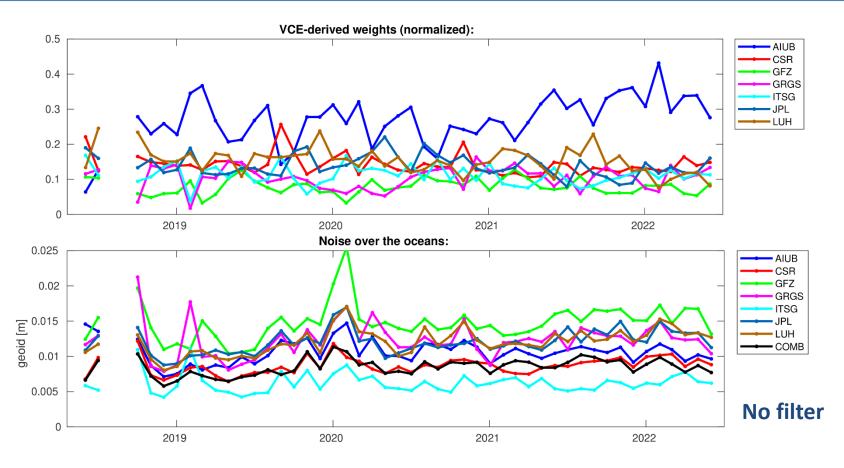
GRACE and Grace-FO s	RACE and Grace-FO solutions from the Science Data System centers CSR, GFZ and JPL collapse						
- CSR				Center for Space Research at University of Texas, Austin			
CSR Release 05		monthly		UTCSR Level-2 Processing Standards Document, Rev 4.0 May 29, 2012			
CSR Release 06	DOI	monthly		UTCSR Level-2 Processing Standards Document, Rev 5.0 April 18, 2018			
CSR Release 06 (GFO)	DOI	monthly		UTCSR Level-2 Processing Standards Document, V 1.1 June 6, 2019			
- GFZ			Helmholtz Centre Potsdam German Research Centre for Geosciences				
GFZ Release 05		monthly	weekly	GFZ GRACE Level-2 Processing, Revised Edition, January 2013			
GFZ Release 06	DOI	monthly		GFZ GRACE Level-2 Processing Standards Document for Level-2 Products, Rev. 1.0, October 26, 2018			
GFZ Release 06 (GFO)	DOI	monthly		GFZ GRACE Level-2 Processing Standards Document for Level-2 Products, Rev. 1.0, June 3, 2019			
- JPL			Jet Propulsion Laboratory				
JPL Release 05		monthly		JPL Level-2 Processing Standards Document, Release 05.1 November 3, 2014			
JPL Release 06	DOI	monthly		JPL Level-2 Processing Standards Document, Release 06.0 June 1, 2018			
JPL Release 06 (GFO)	IPL Release 06 (GFO) DOI monthly JPL Level-2 Processing Standards Document, v 1.0 May 28, 2019						

The processing standards to generate the GRACE Level-2 products of CSR, GFZ and JPL are also available in the Document Section of the GRACE archives at GFZ ISDC or JPL PO.DAAC

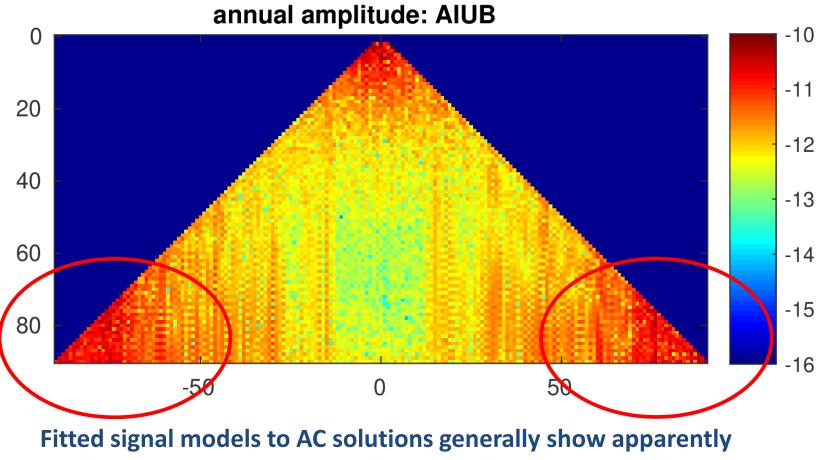

/	COST-G (Internation	l Combi	ination Serv	collapse all	
	DSM		quarterly	Deterministic Signal Model	
	Grace	DOI	monthly		
N	Grace-FO	DOI	monthly		
	Swarm	DOI	monthly		

Level-3 Product Availability

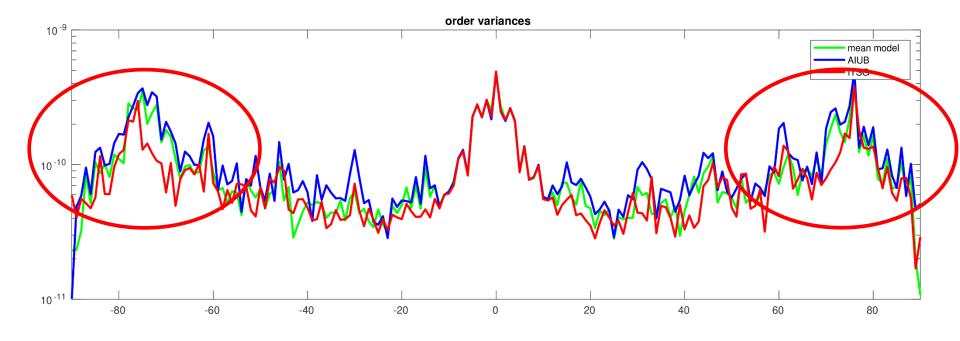

- Monthly combined GRACE/GRACE-FO gravity models:
 available at ISDC, GravIS
 - <u>ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3</u>


GRACE-FO Operational Combination

Flawless and uninterrupted operational combination with a latency < 3 months.

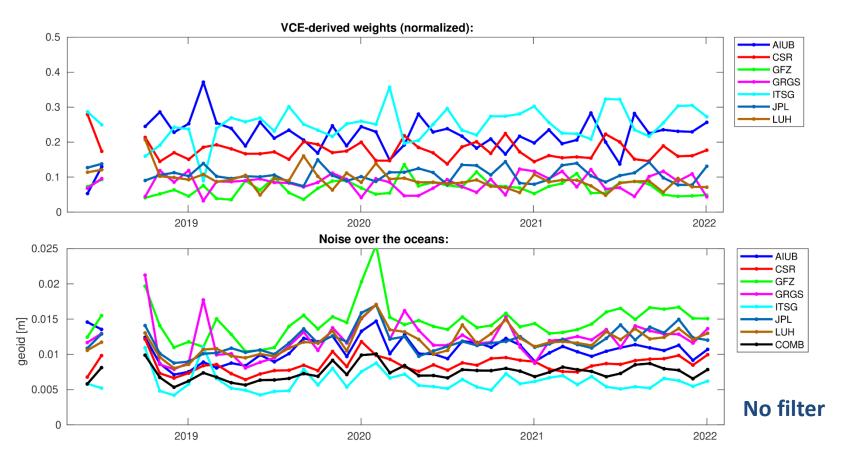

GRACE-FO Operational Combination

Weights do not reflect the noise over the oceans of AC solutions:Highest weight: AIUBLowest noise: ITSG


Artefacts in High-Order Coefficients

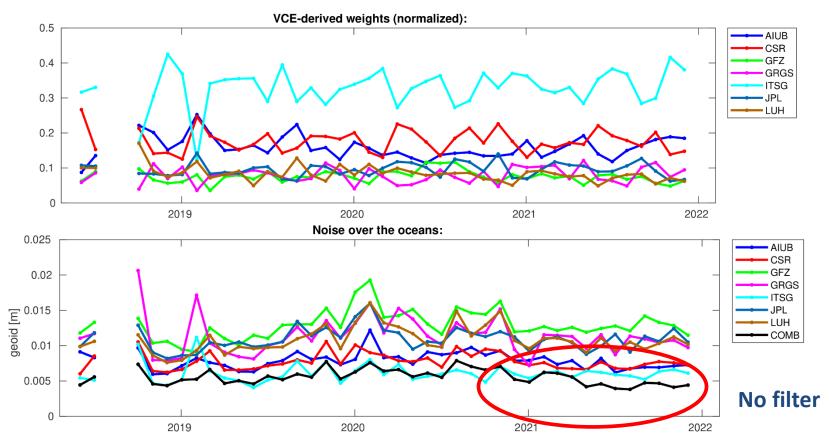
increased signal amplitudes for high-order coefficients.

Artefacts in High-Order Coefficients



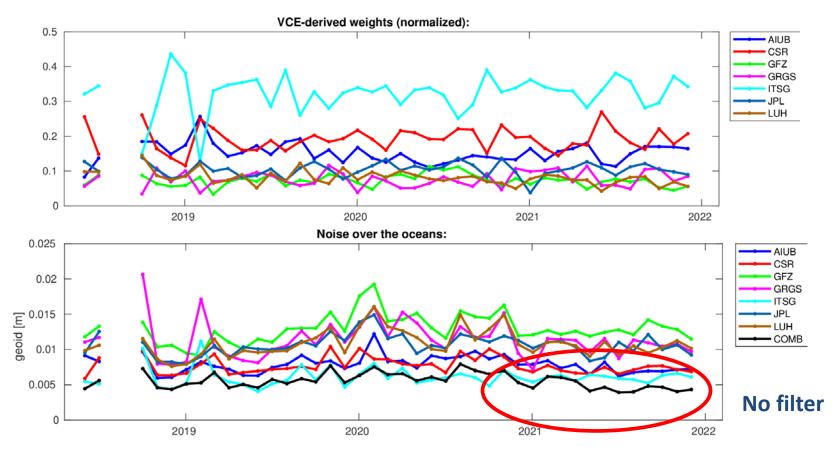
Systematic artefacts in high orders are significantly reduced in the ITSG time-series. Consequently ITSG is down-weighted by VCE if high orders are taken into account for the derivation of weights.

=> Exclude high orders for VCE


Adopting the Revised Weighting Scheme

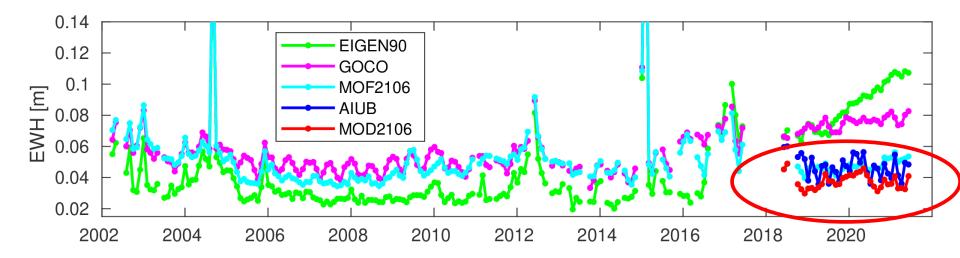
Weights better reflect the noise over the oceans of AC solutions:Highest weight: ITSGLowest noise: ITSG

Further Improvements of the Combined Solution

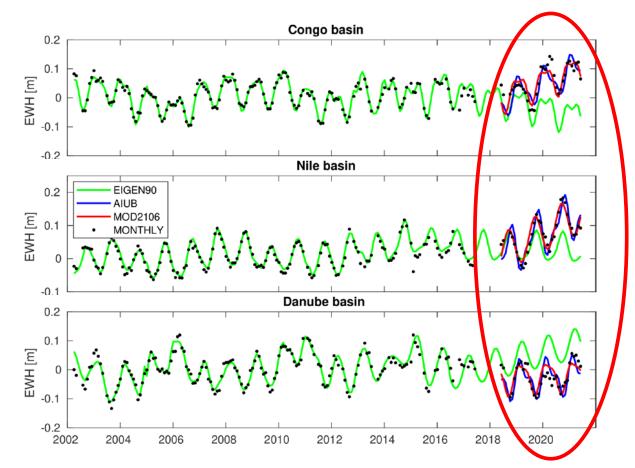


- Empirical Noise Modeling of AIUB AC solution (Ph.D. work of M. Lasser)
- GFZ time-series based on ACT product from G3P (as AIUB, GRGS, ITSG, LUH)

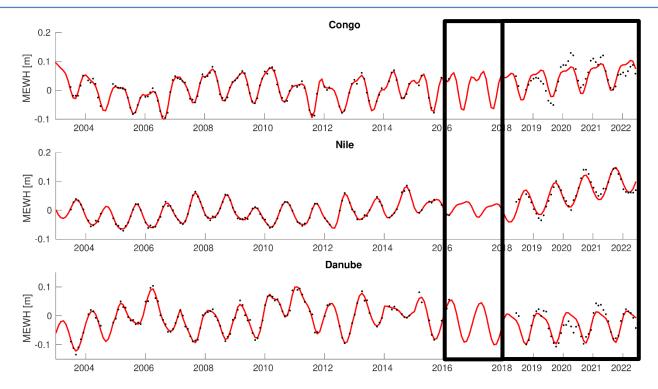
=> Combination outperforms all solutions in 2021


Further Improvements of the Combined Solution

• CSR and JPL RL06.1 time-series are based on the new JPL-ACT product; the main effect is on C₃₀, which in case of using either the G3P-ACT or the new JPL ACT does not need to be replaced by SLR-derived values.


COST-G Fitted Signal Model (FSM)

- Differences (RMS over continental areas) to the monthly GRACE/GRACE-FO gravity fields indicate rather poor prediction quality of EIGEN-GRGS-RL04 (standard model for, e.g., POD of altimetry satellites).
- High-resolution models based on GRACE-data only (e.g., GOCO06S) are clearly out-performed by fitted signal models including GRACE-FO data (MOF2106: GRACE + GRACE-FO; MOD2106: GRACE-FO only).
- A high-resolution static GRACE-FO model with co-estimated time-variations (AIUB) seems to suffer from over-estimation of semi-annual variations.


COST-G FSM: performance in river basins

Quarterly updated fitted signal models are provided as a COST-G product to support operational LEO POD activities.

COST-G FSM: extension to GRACE period

- GRACE period is fitted in yearly batches (small adaptions due to Earthquakes) with continuity conditions at boundaries
- GRACE data of 2016/2017 is used for prediction till 12/2017
- GRACE-FO data is fitted in one batch to ensure good prediction quality
 - => Might be interesting for post-processing LEO POD analyses

Summary: GRACE-FO combination

- COST-G GRACE-FO combined Level-2 products are made available with a latency of approx. 3 months at ICGEM.
- COST-G Level-3 products for GRACE and GRACE-FO are available via GFZ's GravIS portal.
- A revised weighting scheme has been tested that is in better accordance with the noise assessment of the individual AC solutions.
- Further improvements of the combined solution are achieved by improving individual AC solutions, e.g., by using stochastic noise modeling not only for the ITSG but also for the AIUB solution.
- The combined solution is shown to outperform individual AC solutions in terms of the noise assessment over the oceans.

Summary: COST-G FSM

- New COST-G product for operational LEO-POD
- Fit to GRACE-FO monthly combined solutions
- Updated quarterly
- Outlook: extension of FSM to GRACE period for e.g., altimetry/SLR reprocessing campaigns.

